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Abstract. We consider a two-parameter family of maps of the plane to itself.
Each map has a fixed point in the first quadrant and is a diffeomorphism in a
neighborhood of this point. For certain parameter values there is a Hopf
bifurcation to an invariant circle, which is smooth for parameter values in a
neighborhood of the bifurcation point. However, computer simulations show
that the corresponding invariant set fails to be even topologically a circle for
parameter values far from the bifurcation point. This paper is an attempt to
elucidate some of the mechanisms involved in this loss of smoothness and
alteration of topological type.

1. Stochastic Behavior in Deterministic Systems

In 1899 Poincare remarked on the complexity of the behavior of dynamical
systems having what he called a "homoclinic point" [21]. The depth of this
complexity was illustrated by Smale, who showed that stochastic behavior is
associated with a non-degenerate homoclinic point [27]. More precisely, Smale
constructed an invariant Cantor set on which the dynamical system is equivalent
to a Bernoulli shift. Since Bernoulli shifts model such random processes as coin-
tossing experiments, Smale proved the existence of stochastic behavior in certain
deterministic systems.

The invariant Cantor sets discussed by Smale are unstable in the sense that
nearby orbits tend away from them. That "stable" invariant sets can also behave
stochastically has been appreciated only recently. The appropriate notion here is
that of an "attracting" invariant set, or an "attractor." Roughly speaking, an
attractor is an invariant set with the property that nearby orbits are drawn to it
asymptotically.

A class of attractors exhibiting stochastic behavior has been discussed by
Williams [30], Ruelle [24], and Bowen [3]. These so-called "expanding attrac-
tors" have a certain uniform hyperbolic structure which makes them tractable to
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analysis. Ruelle and Takens coined the term "strange attractor" as a nickname for
"expanding attractor" [26].

Mainly as a result of computer simulations, the name "strange attractor" has
been applied to objects which are not necessarily expanding attractors. On the
other hand, as Ruelle points out in [25], there is as yet no completely satisfactory
mathematical definition of strange attractor which is universally accepted. Here
we shall use an operational definition which seems to conform to common usage
and which is useful when studying dynamical systems on a computer. Specifically,
a dynamical system is said to have a strange attractor if there is an orbit which
when followed for a long time does not appear to converge to a fixed point, a
periodic orbit, or a quasi-periodic orbit. Although this definition is maddeningly
vague and subjective, it is often quite clear in practice when a strange attractor has
been found.

Stein and Ulam were apparently the first mathematicians to observe strange
attractors on a computer [28]. Lorenz later studied a meteorological model with a
strange attractor, now known as the "Lorenz attractor" [17]. Although the Lorenz
attractor exhibits a certain stochastic behavior, it is not an expanding attractor
[9, 11]. More recently, Henon found a quadratic map of the plane with a strange
attractor [13]. He illustrated what might be regarded as a Cantor set structure in
his attractor.

Much of the computer work has involved maps of the plane. As dynamical
systems, these maps have two state variables and a discrete time variable. An
iteration of the map corresponds to following the system through one unit of time.
If the map is invertible, then the system is reversible and can be followed both
forward and backward in time. An invertible map of the plane can be suspended to
give a flow in a three-dimensional space and hence can be generated by a
differential equation in three state variables. Conversely, if an appropriate section
exists, then the solutions of an autonomous differential equation in three state
variables give rise to an invertible two-dimensional map. Properties of two-
dimensional discrete systems thus have analogs for three-dimensional differential
equations.

Typically, one studies a one parameter family of maps which have several fixed
points. The number of fixed points and their stability properties depend on the
parameter value. A particularly interesting transistion is the so-called Hopf
bifurcation for maps. As the parameter varies, a fixed point loses stability and
spawns a smooth invariant circle. In the case of interest here, the invariant circle is
an attractor which grows as the parameter continues to change. The analog for
differential equations is a periodic orbit which becomes unstable and spawns an
attracting invariant torus.

Curry and Yorke studied a parameterized family of maps of the plane [6]. At a
certain parameter value, a Hopf bifurcation occurs. As the parameter changes, the
attracting invariant circle grows and starts to warp, eventually becoming a strange
attractor. The question arises: how can a smooth invariant circle become a strange
attractor?

In this paper we report on a computer assisted study of a simple one parameter
family of quadratic maps of the plane. Just as in the Curry-Yorke case, a fixed
point bifurcates into a smooth invariant circle which somehow transforms itself
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into a strange attractor as the parameter is increased. Our object is to elucidate the
mechanism by which this transformation occurs.

We first attempted to pin down the precise parameter value at which the circle
loses its integrity. To our surprise, we found that there is no unique parameter
value which divides nice behavior from strange behavior. There are parameter
intervals for which the attractor appears to be a smooth invariant circle
interspersed among parameter intervals for which the attractor appears to be
strange. The more precision we used in our investigation, the more interspersed
intervals we found. We tried to catalog various types of behavior, but could find
no simple patterns.

Inspired by the work of ArnoΓd [1], we decided to embed our system in a two-
parameter family. As we investigated this two-parameter family, many patterns
began to emerge. It became clear how the smooth invariant circle can lose its
smoothness. It also became clear how the attractor can cease to be even
topologically a circle. Both of these phenomena are related to behavior associated
with the "homoclinic" and "heteroclinic" points defined by Poincare.

Ruelle and Takens have suggested that strange attractors might provide an
explanation for the phenomenon of turbulence in classical fluid dynamics [26]. If
they are correct, then our work can be regarded as a study of how the transition
from a non-turbulent to a turbulent state can occur for parameterized families of
maps of the plane. In this context, part of our conclusion can be stated as follows.
In one parameter families, the transistion to turbulence is itself a turbulent process.

We consider this paper to be a blend of computer experiment and mathemati-
cal theory. Sections 6 and 7 contain theorems relating the nonexistence and
existence of homoclinic orbits to uniqueness and nonuniqueness of rotation
numbers. Section 8 contains a rigorous discussion relating the loss of smoothness
of an invariant circle to the formation of a certain type of heteroclinic orbit. That
the hypotheses of Sects. 6-8 are satisfied for the model we study is supported by
computer simulation, but is not proved. However, it was the computer studies of
the model which suggested the mathematics, not vice versa.

2. Annular Attractor Blocks

Henceforth we restrict our attention to two-dimensional discrete dynamical
systems, which we write as maps of the plane F:R2-^R2. Iteration of the map
corresponds to evolution in time if the system starts with initial state xeR2, then
its state after n units of time is Fn(x). An orbit for F is a bi-infinite sequence of
points xn such that xn+ ί=F(xn) for all n. The positive semi-orbit through x is the
infinite sequence (x, F(x\ F2(x),...). Unless otherwise noted, we assume that F is
one-to-one, at least in the region of interest.

Definition. Let B be a compact subset of the plane. We call B an attractor block if
F(E) is a subset of the interior of B. Let

A= Π F"(B).
n>0
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Fig. 2.1. Schematic drawing of an attractor which is a circle in resonance. Saddle points are indicated
by x and sinks by 0

Then A is called an attractor specifically, A is the attractor associated with
attractor block B. A subset of A is called a subattractor of A if it is itself an
attractor.

An attractor A has two stability properties. First, orbits starting nearby tend to
A asymptotically. Second, the attractor block remains an attractor block under
small perturbations of the map F.

Some authors impose a further condition which A must satisfy to be called an
attractor [25]. They require that A should have some recurrence, or inde-
composability, property. Conley has proved that an attractor has no subattractor
if and only if it satisfies a weak recurrence property called "chain recurrence" [4].
However, he does not impose this condition in the definition of attractor, and we
have adopted his definition.

The attractors of primary interest to us are those for which the attractor block
B is an annular region in the plane. A case of special interest occurs when A is a
circle containing two periodic orbits, one stable and the other unstable (see
Fig. 2.1). In this case we refer to A as a "circle in resonance." When resonance
occurs, most orbits tend asymptotically to the stable periodic orbit, which is a
subattractor within the invariant circle A. Simple computer simulations will show
only this subattractor and not the whole circle.

By "simple computer simulation" we mean the following. Starting with some
initial point x, compute y = Fn(x), where n is large (at least several thousand). The
output is then the positive semi-orbit of y. Obviously, the output can depend on
the starting point x, in which case it may be important to choose several different
points and repeat the procedure.

Even in cases when A is not a circle in resonance, simple computer simulation
often produces only a portion of A. While working with the computer, we found
ourselves referring to the portion of A found by the machine as the "visible
attractor," while referring to the rest of A as the "invisible attractor." These are not
mathematical concepts, only useful labels for computer output.
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It would be nice to be able to equate the visible attractor with a chain recurrent
subattractor. However, Conley has shown that there are systems for which none of
the attractors is chain recurrent [4]. Although there is always a chain recurrent
"quasi-attractor" [4], even this concept is not equivalent to our "visible attractor."
There are chain recurrent quasi-attractors which are not "visible" to a computer.
Thus we are left without a mathematical definition of the concept of "visible
attractor."

The invisible attractor often can be illuminated by a study of the unstable
manifolds of the unstable periodic points. To be more precise we must first define
these stable and unstable manifolds.

Let y be a periodic point of period q, i.e., Fq(y) = y, and Fn(y)ή=y for 0<n<q.
The periodic orbit associated with y is the set

Y={y,F(y)9F
2(y\...,F*-1(y)}.

The stable manifold of Y is the set

) = {x:d(F"(x), 7)^0 as

The unstable manifold of Y is the set

) = {x:d(Fn(x)9Y)-+Q as

If z is a fixed point, then z is a periodic orbit with period 1 and the above
definitions reduce to

Ws(z9F) = {x:F\x)-+z as H-» + OO},

Wu(z,F} = {x:Fn(x)-^z as n->-oo}.

Since y is periodic with period q, it is a fixed point for Fq. It can be shown that

W5(Y9F)=q\J Ws(Fk(y)9 Fq) 9
k = 0

i.e., that the stable manifold of the periodic orbit 7 is the union of the stable
manifolds of each point of the orbit under the qth iterate of F. The same statement
is true for the unstable manifolds.

For the map F:R2-+R2, denote by DF(x) the Jacobian matrix for F evaluated
at the point x. Let z be a fixed point for F and let λl and λ2 be the eigenvalues of
DF(z). We call z a saddlepoίnt if |AJ < 1 and \λ2\ > 1. The stable manifold theorem
states that Ws(z,F) is a curve tangent at z to the eigenspace corresponding to λ^
while Wu(z,F) is a curve tangent at z to the eigenspace corresponding to λ2 [12].
These curves are as smooth as the map F.

Note that these curves do not behave like solution curves of a differential
equation. In particular, it is possible for them to cross without coinciding exactly.

Consider again the periodic point y with its periodic orbit Y. We call the
eigenvalues of the Jacobian matrix DFq(y] the "eigenvalues of the periodic point y."
Note that the eigenvalues of y are the same as the eigenvalues of Fk(y) for any fe.
Hence these eigenvalues are associated with the periodic orbit Y and are called
also the "eigenvalues of the periodic orbit 7" Note also that these eigenvalues are
exactly the eigenvalues associated with y regarded as a fixed point of Fq.
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We say that y is a periodic saddle if its eigenvalues λί and λ2 satisfy
|1J < 1 < |/y. The above considerations show that in this case WS(Y, F) is the union
of q curves, each passing through one of the points in the orbit. The same is true for
WU(Y,F). We say that y is a periodic sink if its eigenvalues satisfy l/l^l and
\λ2\ < 1. Note that, if y is a periodic sink, then Y is an attractor.

In case the attractor A is an invariant circle in resonance, then it is equal to the
closure of the unstable manifold of the periodic saddle, i.e., to the union of this
unstable manifold and the orbit of the periodic sink. In this case one can see the
invisible attractor by computing the unstable manifold. Even when A is not a
circle, much of its structure can be illuminated by computing the unstable
manifold of a periodic saddle contained in it.

A useful tool for studying maps of the circle has been the concept of rotation
number. The rotation number for points in an annular attractor block can be
defined as follows. Introduce polar coordinates x = (r, θ) on the annulus. Let (rn, θn)
be the coordinates of Fn(x). We must be careful to point out here that F is taken to
be continuous in polar coordinates, so that the θ-coordinate of F(r, θ) has no
jumps. Stated in different terminology, we are considering a lift of F to the
covering space of the annulus. Now let

/Ί

ρ(x)= lim-^-. (2.1)
^ ' »-oo 2πn v '

If this limit exists, we call ρ(x) the rotation number of the point x. If the limit does
not exist, then we say that the rotation number of x does not exist.

For homeomorphisms of the circle, the rotation number is independent of the
starting point, and we speak of the rotation number of the map. For maps of the
annulus, one cannot expect the rotation number to be independent of the starting
point, unless A is a circle. In fact, if the rotation number is not unique, then A
cannot be a circle. Levinson used this last argument to conclude the existence of a
strange separating set in a certain forced nonlinear oscillator by constructing two
stable periodic orbits with different rotation numbers inside an annular attractor
block [16].

3. A Model of Delayed Regulation

In his book, Mathematical Ideas in Biology, John Maynard Smith models the
growth of a population whose ability to reproduce in any given generation is
governed by the population in the previous generation [18]. Let Nn be the
population density in the πth generation and let a be a parameter reflecting the
growth rate. Then in its simplest form Maynard Smith's model is

Nn+1=aNn(l-Nn_1). (3.1)

Note that this is the standard discrete logistic model except that the nonlinear
term regulating the population size contains a time delay of one generation.
Consequently we shall refer to (3.1) as the "delayed regulation" model.
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Fig. 3.1. The visible attractor for the delayed logistic map, Eq. (3.2), for various values of the parameter
a. Each of the sets shown consists of iterates 1000-2500 of the point (0.1, 0.2)

Equation (3.1) can be transformed into a two dimensional system by the
introduction of new variables

Then

i.e.,

where Fa is the map of the plane defined by

Fa(x,y) = (y9ay(l-x)). (3.2)

Note that Fa is a one parameter family of maps of the plane, with a as the
parameter.

The map Fa has a fixed point at

a-\
(3.3)

which is stable for l<α^2. As a passes through the value 2, this fixed point
loses stability and spawns an attracting invariant circle via a Hopf bifurcation. The
circle is shown for various parameter values in Fig. 3.1. Note that it grows as the
parameter a increases, becoming noticably warped by α = 2.16. When a reaches
2.27, the circle has completely broken down, leaving a strange attractor. Various
blow-ups of this strange attractor are shown in Fig. 3.2, where a finer and finer
structure appears with each successive enlargement. One should note here the
similarity to the pictures obtained by Henon [13].
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r

(a)

(d) (e)

Fig. 3.2. a The visible attractor for the delayed logistic map for a — 2.27. Successive enlargements of a
portion of the visible attractor. Each picture shows the boxed region from the preceding picture. Scales:
a xe[0,l], ye[0,l]. b xe[0.040625, 0.1140625], ye[0.1203125, 0.2203125]. c xe [0.07516357,
0.07895020], ye [0.1675, 0.17046875], d xe [0.07735272, 0.07758346], ye [0.16891479, 0.16903076].
e xe[0.07748395, 0.07749910], ye [0.16899833, 0.16900286]

In addition to the fixed point defined by (3.3), the map Fa has another fixed
point at the origin. Before discussing the role of this fixed point, we digress briefly
to define homoclinic orbits.

Definition. Let z be a fixed point for the map F. The orbit {xn} is said to be
homoclinic to z if xn φ z for some n and if

>z as and as — oo .

A homoclinic point is a point on a homoclinic orbit.
We see that a homoclinic point x is a point in the intersection of the stable and

unstable manifolds of z. If these manifolds intersect transversely at x, then x is
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UNSTABLE MANIFOLD-

( a )

(b) (c)

Fig. 3.3. a The invariant circle and the unstable manifold associated with the fixed point (0,0) for the

delayed logistic map when a = 2.09. The computation was started near the fixed point (1,1) and the
a

"spiral arms" show how the iterates approach the invariant circle, b Schematic drawing of the unstable
manifold associated with (0,0) for a near a*, c Schematic drawing of the unstable manifold associated
with (0,0) for a = a*

called a non-degenerate homoclinic point. If they intersect tangentially, then we
call x a point of homoclinic tangency.

For non-invertible maps it is possible that xn = z for all sufficiently large values
of n. For example, for the map Fa we have

Fβ(x,0) = (0,0) for all x.

The origin has one eigenvalue equal to 0 and the other equal to a, so that it is a
saddle point for 0>1. Its stable manifold is the x-axis while one branch of its
unstable manifold points into the first quadrant. Pounder and Rogers have shown
that, for 0 = 0*^2.2701, the unstable manifold becomes tangent to the x-axis, and
a point of homoclinic tangency develops [22] (see Fig. 3.3). It is exactly this critical
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Fig. 3.4. Rotation number versus parameter a for the delayed logistic map

value of a which marks the end of the attractor. For α<α*, one can construct an
annular attractor block entirely within the first quadrant. For α>α*, most points
starting in the first quadrant eventually tend to infinity. Thus, once a point
homoclinic to the origin appears, the invariant set we are studying ceases to be an
attractor. However, it is the approach to this homoclinic tangency which seems to
govern the transformation of the smooth invariant circle into a strange attractor.

An indication of the breakdown of the invariant circle as a approaches α* can
be seen in Fig. 3.4, which is a plot of the rotation number versus the parameter a.
For α<2.17, the attractor is an invariant circle, and its rotation number is
computed by approximating the limit (2.1) along a single orbit. We know from the
general theory that this plot is the graph of a Cantor function, but we sketch it as a
smooth curve, since that is how it looks at this scale. For α>2.18, we compute the
rotation number by finding a periodic saddle, and we plot the parameter interval
over which the periodic saddle is present.

When a reaches approximately 2.177, a 1/7 resonance occurs and persists until
a is approximately 2.200. During this resonance, the attractor remains topologi-
cally a circle, although it loses differentiability, as will be discussed in Sect. 8.

For 2.200 < a < 2.205, the attractor still appears to be topologically a circle, but
we are not confident of our resolution of this region. For a> 2.205, there are many
intervals of a for which the rotation number is unique interspersed with intervals
for which an infinite number of different rotation numbers exist. The last interval
with a unique rotation number is approximately (2.2414, 2.2520), where the
rotation number is 1/8. The endpoints of this interval are marked D and D' in
Fig. 3.4. Beyond this interval, the rotation number of 1/8 persists, while apparently
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Fig. 3.5. Enlargement of a portion of Fig. 3.4

all the rotation numbers between 1/8 and 0 appear in decreasing order as a
increases to α*.

Some of the complexity can be seen in Fig. 3.5, which is a plot of some of the
rotation numbers for 2.205 <α<2.225. The rotation number 2/15 is unique in part
of the interior of its parameter interval, but not unique near the endpoints of its
interval. The same is true for rotation numbers 3/22, 4/29, and 5/36. It appears that
rotation number 6/43 is unique near the left endpoint and in the interior of its
parameter interval, but not near the right endpoint. It seems reasonable to
conjecture that there are an infinite number of intervals of unique rotation number
interspersed among an infinite number of intervals of nonunique rotation number.

The following fact about rational numbers is useful for thinking about rotation
numbers. If a/b and c/d are rational numbers expressed in lowest terms, and if
every rational number between a/b and c/d has a denominator larger than both b
and d, then (a + c)/(b + d) is the unique rational number between a/b and c/d with
the smallest denominator. For example, the lowest order resonance between 1/7
and 1/8 is (1 +1)/(7 + 8) - 2/15, between 1/7 and 2/15 is 3/22, etc. This fact is closely
related to Farey sequences [23]. The Farey sequence of order N is the ordered
sequence of all nonnegative reduced fractions between 0 and 1 whose de-
nominators do not exceed N. The numbers a/b and c/d are two consecutive
fractions in a Farey sequence. The number (a + c)/(b + d) is called the "mediant"
between a/b and c/d.

To understand better the complexity of the rotation number structures
indicated in Figs. 3.4 and 3.5, we introduce a second parameter into the delayed
regulation model. Before introducing this new model, we first discuss Hopf
bifurcation in two-parameter families. Our discussion follows closely ArnoΓd [1].
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4. Hopf Bifurcation in Two-Parameter Families

Throughout this section we use the complex numbers as a coordinate system on
the real plane. A map on R2 can be written as a function of one complex variable,
and two real parameters can be written as a single complex parameter.

Consider the map from the complex plane to itself

z^/μ(zHμz + 0(|z|2), (4.1)

where z, μe C and μ is the complex parameter. Note that z = 0 is a fixed point of fμ,
for all μ. The eigenvalues at this fixed point are μ and μ. The above form for fμ is
general, since almost any two parameter family of maps having a fixed point with
complex eigenvalues can be transformed to the form (4.1) as follows. First translate
the fixed point to the origin. Then make a complex linear change of coordinates
which diagonalizes the linear part of the map. Finally, introduce the eigenvalue at
the origin as a new complex parameter. The only additional condition necessary is
that the function which gives this eigenvalue in terms of the original parameters
should be invertible.

The origin is stable for |μ| < 1 and unstable for |μ| > 1. We are interested in the
bifurcation associated with the loss of stability occurring at |μ| = 1. To study this
bifurcation we look at values of μ near μ0, a point on the unit circle. Certain low
order resonances must be excluded to insure the bifurcation of an invariant circle.
(For a discussion of the bifurcations near these resonances, see ArnoPd [1], looss
[14], or Takens [29]). Thus we assume that

We now write fμ in its normal form,

To insure that an attracting invariant circle bifurcates out of the fixed point for
|μ| > 1, we assume that

Re(μ0c(μ0))<0.

Under these assumptions, the Hopf bifurcation theorem for maps states that, for μ
near μ0, with |μ| > 1, the map fμ has an attracting invariant circle surrounding z = 0
[1, 29].

Recall that resonance occurs on the invariant circle if there is a pair of periodic
orbits, one consisting of saddles and the other of sinks. We say that a p/q
resonance occurs if the rotation number of these periodic orbits is p/q.

Now consider μ0 = el2πp/q, q^5. The values of μ for which the p/q resonance
occurs lie in a horn emanating from μ0. Specifically, let

Resonance occurs in a region

where the real coefficients α and β depend only on the terms up to order q in the
expansion of fμ [1] (see Fig. 4.1).
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UNIT CIRCLE

Fig. 4.1. Schematic drawing of a resonance horn emerging from the unit circle in the complex μ-plane

(c) e > O

Fig. 4.2a-c. Creation of saddle-sink pairs for the model map (4.2). a No fixed point for ε < 0. b One fixed
point, a saddle-node, for ε = 0. c Saddle-sink pair for ε>0

The boundaries of the horn correspond to "saddle-nodes." The creation of a
saddle-sink pair through a saddle-node is best seen in the following simple model
near (x,y) = (0,0):

(x,j;)-»(r.x,);-ε-f y2), (4.2)

where r is a fixed constant with 0 < r < 1, and where ε is a parameter. For ε < 0 there
is no fixed point, for ε = 0 there is one fixed point, a saddle-node, and for ε > 0 there
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UNIT CIRCLE IN
fμ-PLANE

ONE-PARAMETER
SUBFAMILY

7
Fig. 4.3. A typical transition from saddle-node to saddle-sink pair and back to saddle-node along a
one-parameter section through a resonance horn

are two fixed points, a saddle-sink pair (see Fig. 4.2). The saddle and sink are at the

points x = 0, y = ± ]/ε~, growing out of the saddle-node as ε passes through 0.
When ε is positive and small enough, there is a distinguished manifold

associated with the sink. This manifold is the set {y = — ]/ε } and is indicated with
double arrows in Fig. 4.2c. It is the set of points which approach the sink at the
exponential rate r". All other points approaching the sink approach at the rate

(1 — 2 J/ε)", the slower exponential rate given by the larger eigenvalue. Even with
the addition of the higher order terms, the fast rate distinguishes a smooth curve,
called the strong stable manifold of the sink.
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There are also distinguished manifolds for the saddle-node. The strong stable
manifold is the set of points approaching the fixed point at an exponential rate.
This manifold is the x-axis for the above model and is indicated with double
arrows in Fig. 4.2b. The other distinguished manifold is the unstable manifold, the
set of points approaching the saddle-node backward in time. This manifold is the
positive y-axis for the above model.

We now return to our discussion of the resonance horn. Consider a one-
parameter subfamily passing across the horn, as shown in Fig. 4.3. When the
parameter is outside the horn, no periodic point of rotation number p/q is present.
When the parameter encounters the boundary of the horn, q saddle-nodes appear
on the invariant circle. These points are the iterates of a periodic point of period q
and are labeled ab, a'b', and d'b" in Fig. 4.3. As the parameter passes into the
interior of the horn, the saddle-nodes bifurcate, forming saddle-sink pairs. In
Fig. 4.3 the sinks are labeled α, a ', and a", while the corresponding saddles are
labeled b, b', and b". There are now two periodic orbits on the invariant circle, one
consisting of the saddles and the other of the sinks. The qth iterate of the map has
2q fixed points, alternating between saddles and sinks around the invariant circle,
as illustrated in Fig. 4.3. As the parameter continues to move across the horn, the
saddles and sinks move apart. As the parameter approaches the other boundary,
these points form different saddle-sink pairs. In Fig. 4.3 the saddle labeled b pairs
with the sink labeled a', while the saddle labeled b' pairs with the sink labeled a".
When the parameter encounters the other boundary of the horn, these new saddle-
sink pairs combine to form the saddle-nodes labeled a'b and a"b'.

5. A Modified Model of Delayed Regulation

In order to apply the ArnoPd theory to the delayed regulation map, we embed it in
a two parameter family of maps. Such an embedding can be accomplished in an
infinite variety of ways, some of which may yield models of interesting population
interactions. However, we have ignored these considerations and instead have
chosen our two parameter family on the basis of simplicity and computational
convenience. Specifically, we consider the family of maps,

F(a.»(x> y) = (y + bx, ay(l - x)) . (5.1)

Note that this map reduces to the model of Sect. 3 when fe = 0, i.e., that F(a>0} = Fa.
The map has a fixed point at

x=

The Jacobian matrix at this fixed point is

ί *[-(l~b)(a-

If the parameters satisfy 5/4<α<3, Q^b<l, then the eigenvalues of this matrix
are complex. Thus in this parameter range the map (5.1) can be written in the
complex form (4.1) and studied by the machinery of Sect. 4. The eigenvalues are
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b

0.6 -

Fig. 5.1. Resonance horns for the two-parameter version of the delayed logistic map, Eq. (5.1). Horns
corresponding to rotation numbers 1/7, 1/8, and 1/9 are shown to scale

inside the unit circle for a < 2 and outside the unit circle for a > 2, independent of b.
When α = 2, the eigenvalues are e±ίa, where

cosα =
1+6

Therefore the p/q resonance horn bifurcates from the line a = 2 at the value of b
which satisfies

cos(2πp/q)=——-.

We have computed various resonance horns, and the results of the com-
putations for three of them are shown in Fig. 5.1. These horns extend well into the
region where the attractor is no longer a circle, and hence where the machinery of
Sect. 4 no longer applies. The definition that we used to compute the horns is this:
a point (a, b) is in the p/q resonance horn if F(a>b} has a periodic saddle of rotation
number p/q. A boundary point of the horn corresponds to a periodic saddle-node
of the same rotation number. These boundary points were computed using
Newton's method to solve a system of equations containing the condition that 1 is
an eigenvalue of the periodic point.

The rotation number graphs in Figs. 3.4 and 3.5 show the intersection of these
horns with the α-axis, i.e., with the one parameter subfamily given by b = 0.
Overlapping rotation numbers correspond to overlapping resonance horns. The
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1/7 resonance horn does not intersect any other horn along the a-axis. However,
the 1/8 and 1/9 resonance horns do intersect, corresponding to the overlap of these
rotation numbers in Fig. 3.4.

We now wish to study in detail the behavior of the attractor for parameter
values inside the resonance horns. We shall return at the end of Sect. 7 to a further
discussion of our computer simulations of the map F(a>b). First we prove some
general results about rotation numbers for annular attractor blocks.

6. Unique Rotation Numbers

When the parameter values are inside the p/q resonance horn and near its tip, the
attractor is a smooth circle in resonance, as discussed in Sect. 4. For these
parameter values, every point in A has rotation number p/q. As the parameter
point moves inside the resonance horn away from the tip, it is possible for the
attractor to distort until it ceases to be a circle. This process will be discussed in
Sect. 8, but for now we wish to describe sufficient conditions for the rotation
number to be unique.

We begin by returning to the concept of rotation number. Throughout this
section we assume that BCR2 is an annulus, that F:B-+F(B)cB is a diffeomor-
phism, and that B is an attractor block with associated attractor A. Without loss of
generality we can assume that

otherwise, we can map B onto this set with a diffeomorphism. Let

and let

τ:B-+B:(r,θ)-+re>θ

be the standard covering projection using polar coordinates. Now let F be a lift of
F to B, i.e. let F:B-+B be a continuous map such that

commutes. Note that F is unique up to translation by a multiple of 2π in the
angular variable θ.

Now let arg denote the projection of B onto the angular variable, i.e.

arg(r,θ) = θ.

We always assume that F has degree 1, i.e. that

argF(r, θ + 2π) - 2π + argF(r, θ) for all (r, θ)eB.
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Fig. 6.1. Schematic drawing of the attractor block B divided into two components B0 and Bi by the
attractor A. Also shown is the local structure of the attractor and the stable manifold in a
neighborhood V of a periodic saddle point y (cf. Lemma 1)

Definition. Let ze£, and choose (r, Θ)eB such that τ(r,θ) = z. If the following limit
exists, it is called the rotation number of z:

ρ(z)= lim
argjFn(r,0)-g

2πn

Note that, for any given lift F and any given ze B, argF"(r, θ) — θ is independent
of the choice of θ. Note also that, if a different lift F is chosen, ρ(z) can change only
by an integer. Thus ρ(z) is well-defined modulo 1. Henceforth we fix a lift F and
compute all rotation numbers with respect to that lift.

We are now ready to state the main result of this section. First note that A is a
compact connected set which separates the annulus B into two components: Bt,
containing the inside boundary of B, and B0, containing the outside boundary (see
Fig. 6.1).

Theorem I. Suppose that F satisfies the following three hypotheses:
(a) There exists a periodic saddle point yεA with positive eigenvalues.
(b) Ws(y, Fq)nA = {y}9 where q is the period of y.
(c) One branch of Ws(y, Fq) intersects only Bt, while the other branch intersects

only B0.

Then ρ(z) = ρ(y) for all zeB.

Note that the hypotheses of Theorem I are satisfied near the tip of the p/q
resonance horn where A is a smooth circle in resonance.

Before we prove this theorem, it is necessary to describe the local structure of A
near y. To this end, we define the local stable and unstable manifolds for a fixed
point. Let f:R2^R2 be a diffeomorphism and let zeR2 be a fixed point with
saddle structure. Let U be an open neighborhood of z. Then the local unstable
manifold of z is

for all Tt^O and fn(x) as — 00} ,
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with a similar definition for the local stable manifold Ws

loc(z,f, U). The stable
manifold theorem states that there exists a U such that W{oc(z,f, U) and
W^oc(z,f, U) are smooth embedded arcs [12]. Henceforth we fix such a U. Note
that the global unstable manifold as previously defined satisfies

Lemma 1. Lei F satisfy hypotheses (a) αwd (b) of Theorem L Then there exists an
open set V, with ye VC U, and such that

Proof. Let the eigenvalues of DFq(y) be μ and v satisfying 0 < v < 1 < μ. By
Hartman's linearization theorem [12], we may choose a C° coordinate system in a
neighborhood of y such that f = Fq can be written

f(ξ,η) = (μξ,vη).

We may assume without loss of generality that this coordinate system is valid for

U = { ( ξ , η ) : \ ξ \ < l , \ η \ < ί } .

In these coordinates, y = (0, 0),

and

Assume that the conclusion of the lemma is false, i.e., assume that a sequence
ζk = (ξk,ηk)eA exists such that ζkφWu

loc(yJ, U} for all k and such that ζk->(0,0) as
k— >GQ. By choosing a subsequence, if necessary, we may assume that the entire
sequence lies in a single quadrant, which we may assume without loss of generality
is the first quadrant. Since ηk > 0, there is a unique integer nk satisfying

v^ηkv~nk<l for each k.

Choose a subsequence k(ΐ) so that

^(ί)v"nk(ί)-^?7*6[v, 1] as i->oo.

Relabel the sequences so that nk(ί} becomes nt and ζk(i} = (ξfc(ί), ηk(i}) becomes
ζί = (ξi,ηi). Since A is invariant, /"Λi(QeA for all i. But

/"nί(Q-(μ~%,v-^.)-(0,^) as i-o).

Since A is closed, (0,?/*)e A But (0,^*)e W%oc(y,f, U\ which contradicts hypothesis
(b) and establishes the lemma.

Now that we have determined the local structure of A near y, we can show that
the rotation number is unique on A. First we establish a formula for the rotation
number.
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Lemma 2. Fix an integer g>0, βx zeB, and let zeB satisfy τ(z) —z. Then

ρ(z) = lim — .
n-oo 2πnq

By the above formula we mean the following. The limit exists if and only if ρ(z)
exists. If ρ(z) exists, then it equals the limit.

Proof. Set

zk = Fk(z).

For nq^k<nq-\-q, write

argzfc- argz = argz^ - argz + Rk,

where

k-l-nq
V"1

*^k 2-(
1 = 0

Since F has degree 1, the function

is periodic in θ and is therefore bounded on B. In particular,

|argF(r,θ)-arg(r,θ)|^K for all (r,θ)eB, (6.1)

so that \Rk\<qK. Consequently we obtain the estimate

qK £ argzfc- argz ^argzn g- argz | qK

2πnq \" k) 2πk = 2πk = 2πnq 2πk''

from which it follows that

if either side of the equality exists.

Lemma 3. Let F satisfy the hypotheses of Theorem I. Then ρ(z) = ρ(y) for all zeA.

Proof. Let Ϋ be the lift of y to B, i.e., let

Ϋ=τ~ί(y) = { >y-ι,y<»yι> },
where we have numbered the points in Ϋ so that

argj) f e + 1=argj>/ c + 2π for all integers fe.

We see that there is an integer p satisfying

Fq(yk) = yk+P for all fc,

which gives us the rotation number ρ(y) = p/q. Let A be the lift of A to 5, i.e. let

A = τ ~ ί ( A ) C B .
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Fig. 6.2. The components Ak of the lift of A-{y}

By Lemma 1, the attractor A in a neighborhood of the point y consists of a smooth
arc, the local unstable manifold of y. By hypothesis (c), one branch of the stable
manifold of y lies in Bt while the other branch lies in B0, which implies that A
separates B{ from B0 locally near y. Therefore we can construct a smooth arc C
which connects the inner boundary of B to the outer boundary and which
intersects A only at y. The lift C of C to B separates B into bounded components,
each projecting onto B—C. Since C intersects A only aty,A~C = Ά—Ϋ separates
into bounded components, each projecting onto A— {y}. Label these components
Ak so that

where "cl" denotes topological closure (see Fig. 6.2). For a set ScB and a real
number α, we use the notation

Note that

and that

Since A0 is bounded, there exist numbers bl and b2 such that

fo1^a

Now let zeΆ0, τ(z) = z. Then

)^fo2 for all weA0. (6.2)

so

2πnp + b^

, argf "^

2πnq q 2πnq'

Hence, by Lemma 2, ρ(z) = p/q, which completes the proof.
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It remains to show that the rotation number is p/q for every orbit in B. We
shall use the concepts of pseudo-orbits and shadows [3], ideas which will be useful
again in Sect. 7. Recall that an orbit is a bi-infinite sequence of points x^R2 such
that

F(xi) = xi+i for all i.

In contrast, we define a pseudo-orbit as follows.

Definition. Let εg O. An ε-pseudo-orbit is a bi-infinite sequence of points z eK2

such that
)^£ for all i.

Of course, a pseudo-orbit may be defined only for ί^. 0 or i ̂  0, in which case it
should be called a "semi-pseudo-orbit." However, we shall refer to them all as
simply "pseudo-orbits."

The concept of a pseudo-orbit is useful in computational work, since a
computer in fact follows an ε-pseudo-orbit, where ε is determined by the arithmetic
of the particular machine.

As we shall see in Sect. 7, it is often possible to find a true orbit very close to a
pseudo-orbit. We therefore define a "shadow" of a pseudo-orbit as follows.

Definition. Let <5^0. The orbit {xt} is said to the a δ-shadow of the pseudo-orbit

{*,} if
d(xi,zi)^δ for all i.

For convenience, we always use the Euclidean metric on B and the metric on B
induced by the covering map τ:B^>B. Then, if ε < π, every ε-pseudo-orbit {zj in B
lifts to a unique ε-pseudo-orbit {zj in B, once z0 is chosen. In addition, we can
define the rotation number of the pseudo-orbit {zj as the following limit, if it
exists :

g ({z)= lim aΓ

^v ί

Henceforth, we shall always assume that ε<π for every ε-pseudo-orbit.
Furthermore, we shall always assume that δ<π for every <5-shadow. This
restriction assures that, if {x } is a 5-shadow of an ε-pseudo-orbit {zj, there exist
lifts {xj and {zj such that {xj is a (5-shadow of {zj in 5. One easily sees that the
orbit {xj and the pseudo-orbit {zj share rotation numbers. That is, if either
rotation number exists, so does the other, and they are equal.

The proof of Theorem I now proceeds as follows. First we establish that every
pseudo-orbit in A has rotation number p/q. Then we prove that every orbit in B
eventually shadows some pseudo-orbit in A and hence also has rotation number
p/q. We begin by proving the following analog of Lemma 2.

Lemma 4. Fix integers q>Q and m, and assume that ε<π. Let {z } be an ε-pseudo-
orbit in B and let {zj be a lift to B. Then

1 n^co 2π(nq + m)'
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Proof. For nq + m^k<nq + m + q, write

argzk-argz =

where
k — 1 — nq — m

R

k= Σ
/ = o

In view of (6.1) and the definition of ε-pseudo-orbit we have \Rk\<(K + ε)q. Thus
we have the estimate

argzn g + m-argz L ή q(K + ε) ^ argz fc-argz £ argzng + m-argz | q(K + ε)

2π(nq + m) \ k) 2πk ~ 2πk ~ 2π(nq + m) 2πk

from which the assertion follows easily.
By analogy with the proof of Lemma 3, we also have :

Lemma 5. Let F satisfy the hypotheses of Theorem /, let A and {Ak} be as in the
proof of Lemma 3, and let q, m, ε, {z }, and {z } satisfy the hypotheses of Lemma 4.
Suppose that

znq + m£Anp for all π^O.

Then

Q({zi}} = p/q.

Proof. Let bv and b2 be defined by (6.2). Then

2πnp + bί^aτgznq + m^2πnp + b2,

2πnp + b1 argzng + m 2πnp + b2

2π(nq + m) = 2π(nq + m) = 2π(nq + m) '

Hence, by Lemma 4, ρ({zi}} = p/q, which completes the proof.
We shall need the following estimate on pseudo-orbits.

Lemma 6. For each integer n > 0 and each ε > 0, ί/zβre exists γn(έ) > 0 swc/z that, for
every ε-pseudo-orbit {z } in B,

d(Fn(zk\zk+n)^yn(ε) for all fc.

Furthermore, γπ(ε)^0 as ε->0.

Proo/ Since F is uniformly continuous on B, there exists a μ(ε) such that μ(ε)->0 as
ε-»0 and

d(ξ19ξ2)<ε implies

Now define yw(ε) by

' fθΓ W ̂  !
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Fig. 6.3. The arc Γ and the sets K = A-c\(Γ\ Fq(Γ), and J = Fq(K)

The proof is completed using induction on n and the following inequality

d(F"+H*J,*k+B+1)^^

We are now ready to prove that pseudo-orbits in A all have rotation number
p/q.

Lemma 7. Let F satisfy the hypotheses of Theorem I. Then, for sufficiently small
ε>0, every ^.-pseudo-orbit in A has rotation number p/q.

Proof. Let Γ be a open arc such that

and

d(y,x)<δ<π for all xeΓ.

By the definition of the local unstable manifold,

cl(F-«(Γ))CΓ, so cl(Γ)cF%Γ)

Let
K = A-cl(Γ) and J = Fq(K)

(see Fig. 6.3). Then
cl(J)CK.

Let A and Ak be as in the proof of Lemma 3. Let Kk and Jk be the components of
the lifts of K and / such that

KkCAk and JkCAk.

Since cl(Jk)CKk, since d(Jk) is compact, and since A — Kk is closed,

A=d(d(Jk\A-Kk)>Q.
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Note that A is independent of k. Let yn(ε) be given by Lemma 6, and choose ε so
small that yq(ε)<Δ.

Now let {zj be an ε-pseudo-orbit in A. If z^eΓ for all ί, then the orbit of y is a δ-
shadow of {zj and Q({zi}) = ρ(y) = p/q. Therefore we may assume that zmecl(K) for
some m.

Choose the lift {zj so that zmCK0. Since Fq(zm)ed(J), we must have

F«(zm)ecl(Jp).

By Lemma 6,

By induction we can show that

zm + nq^Knpcλnp for all n.

Lemma 5 implies that Q({zi}) = p/q9 and the proof is complete.
We now complete the proof of Theorem I by showing that every orbit in B

eventually becomes the shadow of some pseudo-orbit in A.

Lemma 8. Let xeB. Given ε > 0 and 0 > 0, there exists a positive integer N and an ε-
pseudo-orbit {z^CA such that

d(zn,F
n(x)}<δ for all n^N .

Proof. Choose 0 < η g min (ε/2, δ) so that

d(ξi9ξ2)<η implies d(F(ξJ,F(ξ2))<ε/2.

Let

H={xeB:d(x,A)<η}.

Choose N so large that FN(B) C H. Then d(Fn(x\ A)<η for all n ̂  N. Now, for each
^N, choose zneA such that

Then

d(F(zn\ zn+1)^ d(F(zn\ F"+ί(x)) + d(Fn+1(x), zn+1)

so {zj is an ε-pseudo-orbit, and the proof is complete.

7. Homoclinic Orbits

Theorem I gives us sufficient conditions for the rotation number to be unique. We
now state and prove Theorem II, which gives sufficient conditions for the existence
of an interval of rotation numbers. We shall return at the end of this section to the
relation between Theorems I and II and to their application to the delayed
regulation map. We first need some further definitions.
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Definition. Let YCB be a periodic orbit. A point xeB is said to be homoclinic to Y
if xe WS(Y9 F)n VF"(]^ F) — X It is said to be a nondegenerate homoclinic point if Ws

and Wu intersect transversely at x. If they intersect tangentially at x, then x is said
to be a point of homoclinic tangency.

Definition. Let Y and Y' be different periodic orbits. A point x is said to be
heteroclinic from Y to Y if xe WU(Y, F)n P^(r, F). If either Y or Y' is a fixed point,
then the same definition applies.

Theorem II. Let ye Abe a periodic point of period q and rotation number p/q, where
p and q are relatively prime. Suppose that Wu(y, Fq) intersects W\Fk(y\ Fq)
transversely for some 0<k<q. Then there exists a nontrivial interval I containing
p/q such that, for every αe/, there is a zeA with ρ(z) = α. Furthermore, there exist
points in A for which the rotation number does not exist.

Note that these hypotheses imply that there is a nondegenerate homoclinic
point to the periodic orbit of y. Indeed, they also imply something about the
structure of the homoclinic orbit. Each iterate of y is a fixed point for Fq. The
homoclinic point must be heteroclinic between two different iterates of y. One can
easily construct counterexamples to Theorem II for which there is a nonde-
generate homoclinic point which is not heteroclinic between two different iterates
of y.

Note also that the existence of a nondegenerate homoclinic point implies the
existence of a Smale horseshoe and hence of an invariant Cantor set on which the
map is conjugate to a Bernoulli shift [27]. However, without further construction,
one cannot conclude the existence of an interval of rotation numbers. Instead of
the Smale construction, we use the machinery of pseudo-orbits and shadows
defined in Sect. 6. We need the following standard definition [3].

Definition. An invariant set AcR2 is said to have the shadowing property if, for
each <5>0, there is an ε>0 such that every ε-pseudo-orbit in A has a ^-shadow in
R2.

We use the fact that the closure of a nondegenerate homoclinic orbit has the
shadowing property [3-5]. We need only construct pseudo-orbits with the desired
rotation number, since we then are assured that true orbits with the same rotation
numbers exist.

Proof of Theorem II. Let y' = Fk(y) and let x be a point of transverse intersection of
Wu(y,Fq) and W\y',Fq) (see Fig. 7.1). Let A be the closure of the orbit of x. Choose
<5e(0,π) satisfying

δ<d(Λ,R2-B). (7.1)

Use the shadowing property of A to find an εe(0, π) such that every ε-pseudo-orbit
in A has a ^-shadow in R2. Condition (7.1) insures that the ^-shadow will be in B
and hence in A. The conditions ε < π and δ < π insure that the pseudo-orbit and its
shadow share rotation numbers.

Choose x0eA and a positive integer N such that

φc0,/)<ε/2 and d(FNq~k(xQ)9y
r)<ε/2 (7.2)
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Fig. 7.1. Schematic drawing of part of a homoclinic orbit: xe W"(y Fq)n Ws(y' Fq). The point x0 and
its iterates are used in the construction of a pseudo-orbit with rotation number different from that of
the periodic saddle y

(see Fig. 7.1). Let s = Nq—k, and let

H = (x0,F(x0),F2(x0),...,Fs'1(x0)),

We denote the juxtaposition of sequences with a " + ", i.e.,

with similar definitions for Y+H, Y+Y, and H + H. Also, we write

2H = H + H, 3H = H + 2H, etc.

Condition (7.2) insures that any bi-infinite juxtaposition of H and Y is an ε-
pseudo-orbit.

First consider the pseudo-orbit ΨQ= ... + 7+7+7+.... This pseudo-orbit is
in fact a real orbit, the periodic orbit of y, and has rotation number p/q.

Next consider the pseudo-orbit Ψ1 = ... + H + H + H+.... Let r be the number
of times the sequence H traverses the annulus. That is, r is the unique integer
satisfying

0) - argi0 - 2πr| < ε .

Then the rotation number of Ψ1 is r/s. Since p and q are relatively prime, and since
q does not divide s, we have

r/sή=p/q.
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We take I to be the nontrivial interval between p/q and r/s.
Now let ael be rational. We can write

up + vr
a= -

uq + υs

for some positive integers u and υ [23]. Consider the pseudo-orbit

The rotation number of Ψ2 is 0, as can be seen by counting the rotations of the
pseudo-orbit segment uY + υH.

We now construct orbits with irrational rotation numbers. Let ael be
irrational and pick a sequence of rationals atel such that α.-»α as i->oo. For each
z, write

and consider the pseudo-orbit

where nt is chosen so that ui+1/nt-^0 as z->oo. This pseudo-orbit has rotation
number α.

Finally, we construct a pseudo-orbit whose rotation number does not exist. Let
nt be a sequence of positive integers, and let

Also let

ίnί + n3 + . . . + π £ _ x if i is even_

if z is odd,

ίn2 + n4 + . . . + n{ if z is even

ί _ 1 if z is odd,

and

If ρ(Ψ4) exists, then it is equal to lim ρ . Note that

if i is odd,

ft=
/;. . -\- γ\ .r

if z is even.

If we choose nt so that (n^ +n2+ ... + nί_ί)/ni^>Q as z'->oo, then

ρ2j-+r/s but Q2j+ι^P/(ί as 7^°°
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B
0.4-

Fig. 7.2. The shaded region is the resonance horn for rotation number 1/8. The curves labeled
1/7,..., 4/31 are the upper boundaries of the corresponding resonance horns. Homoclinic tangencies for
the 8 period saddle occur for parameter values on the curves ED and E'D'

Thus the limit of ρ£ does not exist, and the pseudo-orbit Ψ4 does not have a
rotation number. The proof of Theorem II is complete.

Before proceeding, we would like to make two observations about the proof.
The general theory of shadowing tells us that the shadow of one of the pseudo-

orbits constructed above is periodic if and only if the pseudo-orbit is periodic.
Since Ψ2 is periodic, it follows that the shadow of Ψ2 is a periodic orbit with
rotation number a. Therefore we have actually constructed a periodic orbit for
each rational rotation number in /.

One should note also that our definition of rotation number uses the limit as
n-+ -f oo. Let us call this limit ρ + (x). We could also use the limit as n^ — oo, giving
us the asymptotic rotation number as we proceed backward in time. Let us call
this latter limit ρ~(x). The above constructions can be modified to produce an
orbit with the following property. For any α + e / and α ~ e / there exists a point
xeB such that

ρ + (x) = α+ and ρ~(x) = tt~.

We now turn to the question of how the hypotheses of Theorem I can fail. We
always assume that we take parameter values inside the p/q resonance horn, so
hypothesis (a) always holds. We first point out that it is possible for (c) to fail while
(b) is valid, i.e. for both branches of Ws(y,Fq) to lie on the same side of A. This
possibility is illustrated in Fig. 9.3g and is discussed in Sect. 9. However, if we start
at the tip of the resonance horn and vary the parameters continuously, hypothesis
(c) cannot fail unless (b) fails first. Although hypothesis (b) can be violated in many
ways, we have witnessed only one in our computer explorations of the resonance
horns: the formation via a homoclinic tangency of a homoclinic point satisfying
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PART SHOWN IN b, c, d

(c)

Fig. 7.3. Schematic drawing of the transition from b homoclinic tangency to c homoclinic crossing to
d homoclinic tangency on the opposite side

the hypotheses of Theorem II. The set of parameter values for which this tangency
occurs usually defines an arc in the two-dimensional parameter space.

For the two-parameter family F(a>&) discussed in Sect. 5, one of these arcs is
represented by ED in Fig. 7.2 for the 1/8 resonance horn. Although we have
computed the boundaries of the resonance horns quite accurately, the arc ED is
sketched using only a few data points. Along this arc we have the homoclinic
tangency shown in Fig. 7.3b. Below this arc there is a homoclinic point as shown in
Fig. 7.3c. Above this arc, there is no homoclinic point of the type shown.

There is an analogous arc on the other side of the resonance horn, represented
by arc E'D' in Fig. 7.2. It is the arc where the other side of the unstable manifold of
the saddle is involved in the homoclinic tangency, as illustrated in Fig. 7.3d.

In addition to the 1/8 resonance horn, the right hand boundaries of the
resonance horns 1/7, 2/15, 3/23, and 4/31 are shown in Fig. 7.2. All the numerical
evidence we have is consistent with the proposition that the arc ED is the limit of
these right hand boundaries. Our evidence also shows that 1/8 is the only rotation
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SADDLE-NODE

Fig. 7.4. Schematic drawing of a homoclinic tangency between saddle-nodes corresponding to the
point E in Fig. 7.2

number present in the region bounded by DEBE'D'D, while other rotation
numbers are present outside of this region in the resonance horn.

The reader should compare Fig. 7.2 with the rotation number graph in Fig. 3.4.
The points D and D' are labeled in both figures.

Homoclinic tangencies were previously studied by Newhouse [20]. His work
indicates that we can expect an infinite number of sinks for certain parameter
values near the homoclinic tangency. Although all the periodic orbits constructed
using pseudo-orbits are saddles, they probably arise as saddle-sink pairs bifurcat-
ing from saddle-nodes. Since these saddle-nodes occur along the boundaries of the
resonance horns, and since some of these boundaries accumulate along the arc ED
in Fig. 7.2, one might expect an infinite number of sinks for some parameter values
near this arc. The relation between this structure and Newhouse's theory remains
to be studied.

The arc of homoclinic tangency intersects the boundary of the resonance horn
at a point marked E in Fig. 7.2. Recall that the saddle and sink come together to
form a saddle-node when the parameters are on the boundary of the horn. At the
point E the unstable manifold of the saddle-node is tangent to its own strong
stable manifold, as shown in Fig. 7.4. We shall return to this point in Sect. 8.

8. Loss of Smoothness of the Invariant Circle

After a homoclinic point has developed, the attractor A for the map fμ no longer
can be even topologically a circle. However, for parameter values inside the
resonance horn near the unit circle, the attractor is known to be a smooth circle.
We now address the question of how this circle can lose its smoothness as the
parameters change.

The first answer which comes to mind concerns the relative strengths of the
eigenvalues of the periodic sink. Since the invariant circle is the union of the
unstable manifold of the periodic saddle with the periodic sink, and since the
unstable manifold is as smooth as the map itself, the smoothness of the invariant
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circle is determined by the way the two branches of the unstable manifold join
together at the sink.

For parameter values near the Hopf bifurcation or near the boundaries of the
horn, the sink will have one eigenvalue close to 1 and the other eigenvalue strictly
less than 1. The eigenvector corresponding to the eigenvalue close to 1 is tangent
to the invariant circle and represents the weak, or slow, rate of approach. The
other eigenvector is transverse to the circle and represents the strong, or fast, rate
of approach. Recall that there is a distinguished strong stable manifold of orbits
asymptotic to the sink and tangent to the strong eigenvector. This strong stable
manifold is indicated by double arrows in Fig. 2.1.

Now suppose that one branch of the unstable manifold comes into the sink on
one side of the strong stable manifold, while the other branch comes into it on the
other side. This assumption is valid in a set which includes parameter values near
the unit circle.

To illustrate the effect of the sink on the smoothness of the invariant circle, we
consider the following model. Suppose that we have a map /: R2^R2 with a sink
at the origin and a saddle elsewhere. Suppose that, in a neighborhood of the origin,
/ can be written

(x,y)-+(ux,βy), (8.1)

where 0</?<α< 1. Note that the y-axis is the strong stable manifold. Assume that
the unstable manifold of the saddle can be written as the graph of a function
y = ψ(x). Since the unstable manifold is as smooth as /, we can assume that ψ is real
analytic except possibly at the origin. A standard argument shows that, if β < oίfe, ψ
is a Ck function at the origin [7].

To see that ip cannot be expected to be Ck at the origin when β > αfc, consider
the curve

y = Mr5 where r= .
logα

This curve is invariant under the map (8.1) and is real analytic everywhere except
at x = 0, where it fails to be Ck. Here we are also assuming that r is not an integer.

Using the above model as a heuristic guide, we formulate the following
conjecture about the invariant circle for the map fμ. Let α and β be the eigenvalues
of the sink, with β<a. If β<of, then we expect the invariant circle to be Ck. If
β>αfc, then we do not expect the circle to be Ck.

We can look for the parameter values inside the resonance horn where β = of.
In general, we expect this equation to define a curve for each k. Since α-»l as the
parameters approach the boundaries of the resonance horn, we expect these curves
to accumulate against the boundaries as /c—»oo, as shown in Fig. 8.1. As we move
the parameters into the horn, we expect the invariant circle to lose smoothness.

A particularly important case occurs when the circle fails to be even C1.
Following the above considerations, we expect this failure to occur when α = β, so
that the sink develops a multiple eigenvalue. We then expect the eigenvalues to
become complex, so that the invariant circle develops an infinite spiral, as shown
in Fig. 8.2. We have indeed observed such spirals for the maps Fa and F(fl(f>).
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Fig. 8.1. Sketch of a typical resonance horn in the complex μ-plane. The indicated functional
relationship between the eigenvalues α, β of the sink holds on curves shown inside the horn. We can
expect the invariant circle to be no more than Ck+ ί in the subregion of the horn below the curve labeled

Fig. 8.2. Schematic drawing of a saddle-sink pair of periodic orbits when the sink has complex
eigenvalues

However, there is another way in which the circle can fail to be C1. To see this
alternate way, we again appeal to the map / discussed above. This time we do not
assume that the unstable manifold can be written as the graph of a function
y = ψ(x), but instead assume that it contains a point with a vertical tangent, as
shown in Fig. 8.3a. Since the vertical tangent remains vertical under iteration of
the map, there will be points arbitrarily close to the origin with vertical tangents.
Since there will also be points arbitrarily close to the origin with nearly horizontal
tangents, the unstable manifold extended to the origin is not C1.

To be more precise about the relation between the above model and the
invariant circle after Hopf bifurcation, we must first discuss a certain splitting of
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y

UNSTABLE

MANIFOLD

(b)

Fig. 8.3a and b. Schematic drawing of the unstable manifold from a distant saddle point approaching a
sink for the model (8.1). Because of recurrent vertical and horizontal tangents the invariant circle is not
C1 in any neighborhood of the sink. The distance between the successive images of the points labeled a
and b tend to zero at the slow asymptotic rate α" while for the points b and c the corresponding
distances tend to zero at the fast rate β". b The transition state which separates the behavior described
in a from the case in which the invariant circle is C1

Fig. 8.4. Projection of the line bundle over a point in IR2 onto a circle with center (1/2, 0) and radius 1/2.
Each line through the origin corresponds to a unique point on the circle as shown

the tangent bundle. Consider again the map F'.B^B, where B is an annular
attractor block. For xeB, we have the derivative, or Jacobian, map

DF(x):R2-+R2,

which gives us the map on the tangent bundle

TF: B x R2-^B x R2 :(χ, ξ)->(F(x), DF(x)ξ) .

Now consider the real projective circle P1, that is, the space of lines through the
origin in R2. We identify P1 with a circle as follows :

Every line through the origin corresponds to exactly one point on the circle, as
shown in Fig. 8.4. The vertical line corresponds to the origin, while every other line
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corresponds to the non-trivial point of intersection of the line with the circle.
Define the projection

Every non-singular linear map L induces a map πL:P1-^P1 which makes the
following diagram commute:

This map can be written:

πL(ξ) =
π(Lξ) if £ + (0,0)

lπ(L(0,l)) if £ = (0,0).

The tangent map TF induces a map on the projective bundle :

πTF :BxP1-^BxP1: (x, ξ)-+(F(x\ nDF(x) (ξ)) .

We say that the tangent bundle splits if there exist two continuous functions σ1?

σ2:B-+P1 such that (1) the graphs of σ1 and σ2 are invariant under πTF, i.e.,

πTF(x, σ/x)) - (F(x), σ/F(x))) for all xeBJ =1,2,

and (2) for all (x, ξ)eB x P1 such that ξφσ2(x),

d((πΓF)"(x, ξ), graph (σ as n->oo.

The second condition says that, except for those vectors which lie in the graph of
σ2, all tangent vectors are attracted to the direction given by σr

Now assume that the attractor associated with B is a smooth circle in
resonance with rotation number p/q. Let yeB be one of the saddles and veB be
one of the sinks. For each of these points in B, there are two periodic points in the
projective circle bundle, one for each eigenspace. Let μ and v be the eigenvalues for
y, with corresponding eigenvectors η± and η2. Assume that 0<v<l<μ, and let
y1 = (y.πη^E B x P1 and y2 = (y,πη2)eBx P1. Note that ηί is the unstable direc-
tion for the saddle point y and hence is tangent to the invariant circle at y, while η2

is the stable direction and is transverse to the circle. Let α and β be the eigenvalues
for v, with corresponding eigenvectors χί and χ2. Assume that 0<β<α< 1, and let
v1=(v,πχ1)eBxPί and v2 = (v,nχ2)EBxPl. Note that α is the weak eigenvalue
and hence that χ1 is tangent to the invariant circle.

For the qth iterate of the map πTF onBx P1, the point vί has eigenvalues α < 1,
jβ<l, and jβ/α<l, while the point v2 has eigenvalues α<l, β<l, and α/β>l.
Hence υ± is a sink, while v2 is a saddle with two contracting directions and one
expanding direction, as shown in Fig. 8.5. These two contracting directions are
tangent to B in B x P1, while the expanding direction is normal to B. Therefore v2
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GRAPH (£Γ2) = (STABLE MANIFOLD OF

(STABLE MANIFOLD OF y 2 )

Fig. 8.5. The projective bundle over the annulus showing the lift of the invariant circle, the saddle-sink
pair on the invariant circle, and the stable manifold of the strong direction of the sink

has a local stable manifold which is the graph of a smooth function σv: U^P1,
where U is a neighborhood of v in B. For (x, ξ)e U x P1, either πTFqn(x, ξ)^v1 as
JI-»CQ or πTFqn(x, ξ)^v2 as n->oo, in which case ξ = σv(x). Thus, most tangent
vectors over xe U tend to the weak eigenspace at v. However, for each XG (7, there
is a unique tangent vector σv(x) which tends to the strong eigenspace at v.

Now consider the points y1 and y2 in B x P1. For the qih iterate of the map
πTF, the point j;1 has eigenvalues μ> 1, v< 1, and v/μ< 1, while the point y2 has
eigenvalues μ> 1, v< 1, and μ/v> 1. Hence j^ has two contracting directions and
one expanding direction, while y2 has one contracting direction and two
expanding directions. The unstable manifold Wu(y^9 πTFq) is one dimensional and
is the lift to BxP1 of the unstable manifold Wu(y,Fq) of y in B. That is,
(x,ξ)EWu(yί9πTF^ if and only if xεWu(y,Fq) and ξ is tangent to Wu(y,Fq) at x.
The stable manifold Ws(y2, πTFq) of y2 is one dimensional and is the graph
of a smooth function σy:W

s(y9F
9)-^P1. For (x,ξ)εWs(y,Fq}x P\ either

πTFqn(x,ξ)^yl as n->oo, or πTFqn(x,ζ)^y2 as rc->oo, in which case ξ = σy(x).
Now let K V^ V2, Y, 71? and Y2 be the orbits of v, vί9 v2, y, j;1? and y2,

respectively. We can extend U and σv so that U is a neighborhood of V and
graph(σj is the stable manifold of V2. We can also extend σy so that graph(σ y) is
the stable manifold of Y2. If the tangent bundle splits, then U can be extended so
that UvWs(Y,F) = B and so that

σ2(x) =
σv(x),

σίx),

if

if

xe U

is a continuous function.
We now turn to the function σ1? which is not unique but is determined by the

saddle point yv Since the eigenvalues of yί satisfy v/μ<v< 1 <μ, there is a non-
unique invariant manifold W associated with eigenvalues v and μ and tangent to
B x {0}. Furthermore, Wu(yvπTFq)CW, and W matches up continuously with the
one dimensional strong stable manifold at vv Therefore, the iterates of W and this
strong stable manifold form the graph of some function σ1 '.B^P1. The splitting is
now defined by σί and σ2.
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Fig. 8.6. Schematic drawing of a heteroclinic crossing of invariant manifolds in the projective bundle.
This corresponds to the structure of the invariant circle shown in Fig. 8.3a

The structure just defined is illustrated in Fig. 8.5. The lift of the invariant circle
to B x P1 is the unstable manifold of yί9 together with the point v1. The graph of σ2

is the stable manifold of v2, together with the stable manifold of y2. As shown in
the figure, the unstable manifold of 3^ does not intersect the stable manifold of υ2,
and the invariant circle is C1.

We have already discussed how the relative strengths of the eigenvalues α and
β can affect the smoothness of the invariant circle. It is also possible for the
invariant circle to cease to be C1 by the development of a type of heteroclinic point
in B x P1. If the unstable manifold of yί intersects the stable manifold of v2, then
this unstable manifold will have as limit points both vί and v2, as shown in Fig. 8.6.
Since the second coordinate of this unstable manifold in B x P1 represents the
tangent to the invariant circle in B, the invariant circle will have points arbitrarily
close to v with very different tangent directions, as was illustrated for the model
(8.1) in Fig. 8.3.

Note that there can be no splitting of the tangent bundle in this case, since the
stable manifold of v2 will behave wildly near y, having both y1 and y2 as limit
points.

There is another characterization of this behavior. When the splitting is
present, the invariant circle has the following property. Any two points between
two consecutive saddles on the circle approach each other at the asymptotic rate
given by the slow eigenvalue at the sink. When the heteroclinic point is present,
there exist distinct points on the circle which approach each other at the
asymptotic rate given by the fast eigenvalue at the sink. This phenomenon is best
illustrated in Fig. 8.3a. The distance between the iterates of the points labeled a
and b approaches zero at the slow asymptotic rate α", whereas the distance
between the iterates of b and c approaches zero at the fast asymptotic rate /?".

The transition between the presence and the absence of this heteroclinic
behavior occurs when the unstable manifold of yi becomes tangent to the stable
manifold of v2. The interpretation of this tangency in terms of the model (8.1) is
shown in Fig. 8.3b. A point x where the unstable manifold of y1 is tangent to the
stable manifold of v2 corresponds to a point where the tangent line to the unstable
manifold shown in the figure is vertical, but nearby tangent lines have positive
slope.
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UNIT CIRCLE

Fig. 8.7. Sketch of a typical resonance horn in the complex μ-plane. The curve labeled β = α indicates
where the eigenvalues α, β of the sink are equal. The curves JK and J'K! indicate parameter values for
which heteroclinic tangencies occur in the projective bundle. Points on JK correspond to the structure
of the invariant circle shown in Fig. 8.3b

CENTER-STABLE MANIFOLD OF w

Fig. 8.8. Heteroclinic tangency in the projective bundle over a saddle-node. This corresponds to the
point J in Fig. 8.7

The heteroclinic tangency which we have just described can occur regardless of
the relative strengths of the eigenvalues at the sink. Computer simulations indicate
that the arc of parameter values for which this tangency occurs connects the
boundary of the horn with the curve of double eigenvalues, as shown by the arcs
JK and J'K' in Fig. 8.7. In the region bounded by JKK'J'BJ, the attractor A is a
C1 invariant circle. Again, this figure represents computations on the map F(θtb) for
parameters inside the 1/8 resonance horn.

The behavior of the map at the point J is illustrated in Fig. 8.8. Since this point
is on the boundary of the resonance horn, the sink v and the saddle y have come
together to form a saddle-node w. The point vt^ corresponds to the eigenvalue one,
while the point w2 corresponds to the eigenvalue which is less than one. The point
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w2 has a two-dimensional center-stable manifold which is the continuation to w of
the stable manifold of u2. The point w1 has a one-dimensional unstable manifold,
which is the lift to B x P1 of the unstable manifold of w in B. For the parameter
values represented by the point J, the unstable manifold of w1 is tangent to the
center-stable manifold of w2.

9. Other Interactions Involving the Unstable Manifolds

We now briefly discuss some of the other phenomena occurring inside the
resonance horn. In this discussion we refer to Fig. 9.1, which is a sketch of the 1/8
resonance horn for the map F(α>b). The labels in Fig. 9.1 refer to the sketches in
Figs. 9.2-9A, and will be discussed in detail below. These figures are schematic
representations of pictures generated by the computer. In drawing them we have
exaggerated the essential features for the purposes of illustration. Also, our data
are not complete, and Fig. 9.1 represents only our best guess based on computer
observations to date.

C D D C

Fig. 9.1. Schematic representation of the structure observed in a typical resonance horn for the two-
parameter delayed logistic map. The labels (i)-(v) correspond to the saddle-node configurations shown
in Fig. 9.2, the regions a-h correspond to the structures shown in Fig. 9.3, and the curves 1-6
correspond to the various types of tangencies shown in Fig. 9.4
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(i) NORMAL ii) HOMOCLINIC TANGENCY (I)

) HOMOCLINIC CROSSING

(iv) HOMOCLINIC TANGENCY (II) (v) DISCONNECTED

Fig. 9.2. Saddle-nodes

The boundaries of the horn are the curves BA and BA', representing those
parameter values for which the 1/8 saddle-nodes occur, as discussed in Sect. 4. The
curve CLFKK'F'C represents those parameters for which the eigenvalues of the
sink coincide. Above this curve these eigenvalues are real. Immediately inside this
curve these eigenvalues are complex, and the invariant circle has spirals, as shown
in Fig. 9.3h. We shall discuss the region inside of this curve in more detail in
Sect. 10.

The arcs JK and J'K' were discussed in Sect. 8. Above the curve JKK'J' the
invariant circle is at least C1. The arc ED represents the parameter values for
which there is a homoclinic tangency, as discussed in Sect. 7.

At the point E, the unstable manifold of the saddle-node is tangent to its own
strong stable manifold, as shown in Fig. 9.2(ii). The behavior of the map for
parameter values in a neighborhood of the point E is illustrated in the following
model :

δ)2), (9.1)

where r is a fixed constant with 0<r < 1, and where ε and δ are parameters. This
map is exactly the map (4.2), except that the x-axis has been translated by δ.
Therefore, Fig. 4.2 illustrates the orbit structure of map (9.1). For ε>0, there is a
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(a)C1 (b) DIFFERENTIABLE, (c) HETEROCLINIC CROSSING

BUT NOT C1

(d) CUSP (e) HOMO/HETEROCLINIC (f) HOMOCLINIC CROSSING
CROSSING

(g) DISCONNECTED (h) SADDLE-SPIRAL PAIR

Fig. 9.3. Saddle-sink pairs. Saddles are indicated by x and sinks by 0

saddle point at (x,y) = (0, δ + ]/ε) and a sink at (x, y) = (0, δ — ]/ε), as shown in
Fig. 9.5. As ε->Ό, these two points come together to form a saddle-node at
(χ,y)=(θ,<5).

We now assume that (9.1) represents the local structure of the map, but that
globally the unstable manifold of the saddle comes back and is tangent to the x-
axis, as shown in Fig. 9.5. The homoclinic tangency will then occur for parameters

along the curve δ = — ]/ε, as shown in Fig. 9.6. The curve δ = + ]/ε represents the
parameter values for which the unstable manifold of the saddle is tangent to the
strong stable manifold of the sink. We shall refer to this latter phenomenon as
"heteroclinic tangency."

We consider the map (9.1) as a model for the qih iterate of F(α b) near the point
E. The (3-axis represents the boundary of the resonance horn, with δ increasing
toward the point B of Hopf bifurcation. The parameter ε is transverse to the
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(1) HETEROCLINIC
TANGENCY (I)

(2) HETEROCLINIC
TANGENCY (II)

ITΛ ZV ZY:-

(3) HOMOCLINIC TANGENCY
HETEROCLINIC CROSSING

(4) HOMOCLINIC CROSSING
HETEROCLINIC TANGENCY

(5) HOMOCLINIC TANGENCY (I) (6) HOMOCLINIC TANGENCY (II)

Fig. 9.4. Homo- and heteroclinic tangencies

(o,δ+ vε)

(o,δ--vε)

UNSTABLE
MANIFOLD

Fig. 9.5. Model based on Eq. (9.1) for the stable and unstable manifolds near the point E in Fig. 9.1
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δ

345

HETEROCLINIC
TANGENCY

VHOMOCLINIC
TANGENCY

Fig. 9.6. Regions in the (δ, ε)-plane corresponding to the behavior indicated in Fig. 8.3b, c, and e for the
model (9.1)

boundary of the horn, with ε positive inside the horn. Thus the curve δ — — ]/ε

corresponds to the arc ED in Fig. 9.1, while the curve δ = + |/ε corresponds to the
curve EF.

Along the arc EF, the invariant circle has the heteroclinic tangency shown in
Fig. 9.4(1). Immediately below this arc, the unstable manifold of the saddle
intersects transversely the strong stable manifold of the sink, as shown in Fig. 9.3c.
Above this arc, the unstable manifold of the saddle comes into the sink tangent to
the weak eigenspace, as shown in Fig. 9.3b.

The distinction between the structures of the invariant circle for parameter
values above and below EF is subtle but significant. As we know, the circle A is a
C1 submanifold of the annular attractor block B above the arc JK. Immediately
below this arc, the circle fails to be C1 because the tangent spaces to the sink
oscillate wildly. However, the unstable manifold of the periodic saddle is
compressed against the weak eigenspace of the sink, and hence this eigenspace is
the tangent space to the invariant circle at the sink. If we say that the submanifold
A is a differentiable submanifold of B if it has a tangent space at every point, then
the region EFKJE represents parameter values for which the invariant circle is a
differentiable submanifold, but not a C1 submanifold.

One should note here that the existence of the arc EF implies the existence of
the arc JK. To be a little more precise, the existence of the point E and the arc EF
implies the existence of the point J and the arc of homoclinic tangencies in B x Pl

emanating from it. However, we are not certain about the termination of the arc
from J, so that the point K in Fig. 9.1 represents a guess. Indeed, it was our
computer observations on the arc EF which led us to the formulation of the loss of
smoothness described in Sect. 8. We do not yet have the computer programs to
follow the stable and unstable manifolds in B x P1, so our resolution of the arc JK
is based on computations in B and is rather poor, particularly near the point K.
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As the parameters move down the resonance horn, it is possible that the
unstable manifold of the saddle again becomes tangent to the strong stable
manifold of the sink, but from a different orientation, as shown in Fig. 9.4(2) and
(4). We found such behavior in the 1/8 resonance horn, where it occurs for
parameter values along the arc IL in Fig. 9.1. Below this arc, there is no interaction
between the unstable manifold and the strong stable manifold. However, both
branches of the strong stable manifold pass directly to the outside of the annulus,
as shown in Fig. 9.3d and f. Contrast this with region (a), where the two branches
pass to opposite sides of the annulus. In region (d) the invariant circle has a cusp at
the sink, as shown in Fig. 9.3d. In region (f) a homoclinic point has developed, and
the attractor A is no longer even topologically a circle.

At the point /, the unstable manifold of the saddle-node becomes tangent to its
own strong stable manifold, as shown in Fig. 9.2(iv). This point is analogous to the
point E except again for the orientation. There is also another arc emerging from /
(labeled 6 in Fig. 9.1), so that the analogy with the point E is complete. Along this
arc, there is a homoclinic tangency, as shown in Fig. 9.4(6). Note again the different
orientation, as contrasted with Fig. 9.4(5).

The existence of the point / implies the existence of the quite remarkable region
labeled g in Fig. 9.1. In this region, there is no longer a homoclinic point; instead
both branches of the stable manifold of the saddle come directly from the outside
of the annulus, as shown in Fig. 9.3g. We find this region remarkable for two
reasons:

(1) The attractor A has broken into at least two components, one of which is
the periodic sink with rotation number 1/8. It appears that the complement of this
sink has rotation numbers bounded away from 1/8. For a given point (α, b) in the
region g, the set of rotation numbers assumed by points on the attractor A for the
map F(a>b} has a gap, and hence is not an interval. This property should be
contrasted with the fact that the set of rotation numbers is always an interval for
invertible or non-invertible maps of the circle.

(2) The development of the homoclinic tangency as the parameters approach the
arc labeled 6 from inside of the region labeled g seems to imitate in miniature the
development of the homoclinic tangency discussed in Sect. 3 and shown in Fig. 3.3.
This imitation leads us to speculate that the region g itself may contain subregions
where an analogous homoclinic tangency occurs for some higher order resonance.
There may be an infinitely nested structure of such regions.

Just as remarkable as the existence of region g is its termination further down
the resonance horn. It terminates with the development of a homoclinic orbit near
the point labeled H. The arc HG is again an arc of heteroclinic tangencies, as
shown in Fig. 9.4(4).

The arc IH inside the resonance horn is probably an accumulation of left hand
boundaries of other resonance horns analogous to the accumulation of right hand
boundaries along ED as shown in Fig. 7.2. We have not pursued this thought very
far.

It is likely that a curve analogous to the curve LIHG exists on the other side of
the resonance horn. Also, there may be an arc of heteroclinic tangencies in B x P1

analogous to the arc JK but occurring in region d. We have not as yet searched for
either of these phenomena.
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10. Other Phenomena Associated with the Periodic Sink

We now turn our attention to the behavior of the map for parameter values inside
the curve of double eigenvalues in the resonance horn. We have seen the behavior
described below for every resonance horn that we have studied, but our
observations are most complete for the 1/8 resonance.

Immediately inside this curve of double eigenvalues, the eigenvalues at the sink
are complex, and the invariant circle has the spirals shown in Fig. 9.3h. Further
inside the horn the eigenvalues again become real but negative. Further still the
sink loses stability by developing an eigenvalue of — 1 and undergoing a period-
doubling bifurcation. The original ^-periodic sink now has become a saddle with
negative eigenvalues, and a new 2g-periodic sink has appeared.

A model of this period-doubling bifurcation for the qth iterate of the map near
the sink is the following:

(x, y)~»( — rx, — (1 +ε)y + j;3), (10.1)

where r is a fixed constant, 0 < r < 1, and ε is a small parameter. The origin is a fixed
point of this map with eigenvalues — r and — (1 + ε) for all values of ε. For ε < 0, the
origin is a sink with the x-axis as its strong stable manifold, as shown in Fig. 10.la.
Since the eigenvalues are negative, points approaching the sink oscillate back and
forth across the origin. For ε > 0, the origin is a saddle with the x-axis as its stable
manifold and the y-axis as its unstable manifold. There is a periodic orbit of period

2 at (χ,y)-(0, ± 1/ε), as shown in Fig. lO.lb.
These events occur along curves in the parameter space, as sketched in

Fig. 10.2. Assume that the eigenvalues of the sink are α and β. The boundary of the
resonance horn is characterized by α = +1. The first curve sketched inside the horn
is where the two positive eigenvalues become equal, i.e., where a = β>0. Between
this curve and the next the eigenvalues are complex. The next curve is where the
eigenvalues again become real, this time negative, i.e., where a = β<0. The
innermost curve is where α= — 1. Inside this curve, the original ^-periodic sink has

(a) e <0

(b)e>0

Fig. lO.la and b. A model based on (10.1) for period doubling bifurcation, a The eigenvalue of the sink
(0,0) in the y-direction is near — 1 for ε <0. b A period two sink bifurcates from the origin as ε increases
from 0 leaving behind a saddle
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POSITIVE'

COMPLEX'

NEGATIVE"

Fig. 10.2. Sketch of a typical resonance horn with regions where the eigenvalues α, β of the sink are
positive, complex, and negative as indicated

become a saddle with negative eigenvalues, while the original ^-periodic saddle has
remained with positive eigenvalues. Immediately inside this last curve there is a 2q-
periodic sink.

This story repeats itself infinitely often. The 2^-periodic sink develops complex,
then negative, eigenvalues and undergoes a period doubling bifurcation, produc-
ing a 4g-periodic sink. The 4g-periodic sink itself loses stability, producing an 8g-
periodic sink. This process apparently goes on forever, with all of the 2nq-pQUodic
orbits having arisen for parameter values in some region further inside the horn.
Other /cg-periodic saddle-sink pairs arise spontaneously along other curves inside
this region. For example, inside the 2/15 resonance horn we found periodic sinks
with period 45 and 75 (k = 3 and k = 5).

The similarity of the bifurcations described above to the bifurcations of
interval maps is striking. Although our computer evidence is rather sparse, none of
it contradicts the conjecture that the sequence of successive bifurcations inside the
resonance horn follows the same rules as the sequence for interval maps [10, 19,

31].
However, one should be cautious about the analogy with interval maps. For

example, the eigenvalue of a periodic sink for a map of the interval goes from
positive values to negative values by passing through zero. Since zero eigenvalues
are impossible for diffeomorphisms, this same transition must be accomplished by
passing through complex eigenvalues. This difference may not be important, but
one should also recall the region g of Fig. 9.1. If there is some analogy between the
bifurcation structures for diffeomorphisms of the plane and for maps of the
interval, then one might also expect some analogy between these structures for
diffeomorphisms of the annulus and for maps of the circle. However, we have
already noted that the set of rotation numbers for the map F(a>fc) with parameter
values inside the region g is not an interval. Since the set of rotation numbers for a
map of the circle is always an interval, any analogy which exists may be somewhat
weak.

Despite this caution, one is also struck by the similarity between an interval
map and the visible attractor of F(α fo) for certain parameter values. For example,
Fig. 10.3 shows the visible attractor for (a, fc)« (2.252,0). This parameter point is in
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i
Fig. 10.3. Visible attractor for the delayed logistic map (3.2) with a = 2.2521185. Note that this value of
a belongs to the segment DD' in Fig. 3.4, 7.2, and 9.1

Fig. 10.4. Schematic representation of the action of eight iterations of the delayed logistic map (3.2)
applied to the part of the attractor labeled 1 in Fig. 10.3

the 1/8 resonance horn along the α-axis between points D and D' in Fig. 9.1. There
are no homoclinic points involving the 1/8 saddle, and the rotation number of
every point is 1/8. Although the visible attractor appears at first glance to consist
of eight arcs, a closer examination shows that these apparent arcs are extremely
complicated sets. Suppose that the part of the attractor labeled 1 in Fig. 10.3 were
an arc. The fate of that arc under eight iterations of the map is shown
schematically in Fig. 10.4. In the first seven iterations the arc is compressed and
stretched, while in the eighth iteration it is folded over on itself as shown. The
overall effect on the original arc after eight iterations is similar to the effect on the
unit interval of the map x->4x(l — x). Since the map F(a>b) is one-to-one, the
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(a)

//
ft

//

(c)

(b)

(d)

Fig. 10.5a-d. Enlargements of the part labeled 1 of the visible attractor shown in Fig. 10.3. Scales: b
xe [0.018125, 0.0575], ye [0.0484375, 0.10125]; c xe [0.02350676, 0.02556934], ye [0.05236221,
0.05519533]; d xe [0.03652778, 0.03750160], ye[0.053174, 0.05445258]

p/q

Fig. 10.6. Sketch of resonance horns for rotation numbers p/q, a/b, and r/s with r/s<a/b<p/q. The
shaded region is the intersection of the r/s and p/q horns and is contained completely in a/b horn



Bifurcations from an Invariant Circle 351

original segment could not possibly be an arc. A sequence of enlargements of this
segment is shown in Fig. 10.5. Again, note the similarity of these pictures with
those obtained by Henon [13].

To end this discussion of phenomena associated with the sink, we wish to
speculate on the relation between overlapping horns and the complicated
sequence of bifurcations described above. To be more specific, suppose that two
resonance horns p/q and r/s cross as shown in Fig. 10.6. Consider the a/b
resonance horn, where a/b is some rational number between p/q and r/s. Now
concentrate on parameter values in the region of overlap between the p/q horn and
the r/s horn. This region lies inside the a/b resonance horn. Using the con-
structions of Sect. 7, we can find infinitely many different periodic orbits with
rotation number a/b. In particular, we can find 2nb-periodic and fcfc-periodic orbits
for all positive n and k. It is tempting to conjecture that these orbits have all arisen
from bifurcations related to the original a/b sink in some analogy with similar
orbits for an interval map.

11. One Parameter Families

Many important systems have naturally only one parameter, or at least are
studied by varying only one parameter. However, as we have seen in this paper, the
phenomena associated with bifurcations from an invariant circle are more easily
understood in two parameter families. With this increased understanding, it is
easier to see patterns in the apparent complexity of one parameter families.

We conclude our report with a return to the original model of delayed
regulation, as an example of what we believe to be typical behavior for one
parameter families. This model is given by the family Fa of Sect. 3. Recall that Fa is
the one parameter subfamily obtained by letting b = 0 in the family F(ttib) of Sect. 5.

We studied the behavior of Fa as a varies from 2 to α*^ 2.2701. Recall that
there is a Hopf bifurcation at a = 2 from a stable fixed point to a smooth attracting
invariant circle. This circle transforms into a strange attractor as a increases to a*.
Our original naive hypothesis was that the invariant circle would lose smoothness,
gradually and monotonically, as a increased. Our goal was to pin down the precise
value of a for which the attractor made the transition from a circle to a strange
attractor. Of course, we now know that the attractor changes back and forth from
a circle to a non-circle many times as a increases from 2 to α*.

As a varies from 2 to 2.17, simple computer simulations show a visible
attractor that appears to be a circle conjugate to a rigid rotation. We know from
the general theory, however, that there should be a resonance at every rational
rotation number [1]. These resonances correspond to the intersection of the α-axis
with the various resonance horns between 1/6 and 1/7. When we used a numerical
Newton's method to find periodic orbits, we easily found these resonances in the
expected locations. However, the interval of a for which a particular resonance
occurs is far too small to be seen at the scale of Fig. 3.4.

One should note how the smoothness of the invariant circle changes as a moves
across this infinite number of resonance horns. The circle is C°° on the boundary of
each horn, while inside it is only Cr for some r< oo. Thus the smoothness of the
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circle as a function of the parameter is far from monotone, changing infinitely
often from C°° to C.

For α in the range between approximately 2.177 and 2.200, a 1/7 resonance
occurs, and the visible attractor shows only a period 7 sink. However, the invisible
attractor develops a spiral on part of the interior of this range. Thus the circle loses
all of its smoothness during this resonance, becoming a non-differentiable
submanifold. Although our computer studies were not conclusive, our best guess is
that the circle regains all its smoothness, becoming once again C°° near a = 2.200.

As a varies from 2.20 to 2.22 the visible attractor takes on many resonances,
which become easier and easier to find as a increases. The simple computer
simulations show only what appear to be stable periodic orbits for some values of
a interspersed with quasi-periodic orbits for other values. However, for a in this
range, we are passing through those parts of the resonance horns which exhibit the
structures discussed in Sects. 9 and 10, and the behavior of the invisible attractor A
is extremely complicated. Numerical computations on the unstable manifold show
many homoclinic and heteroclinic orbits arising and disappearing through
tangencies.

One should note here that the existence of a homoclinic orbit, and hence of the
infinite number of complicated periodic orbits implied by it, does not necessarily
show up in simple computer simulations. All of the orbits constructed in Sect. 7
are unstable and may not be part of the visible attractor. In fact, for parameter
values in the regions marked e and / in Fig. 9.1, one usually sees in the visible
attractor only the periodic sink associated with the resonance horn. Thus the
complicated behavior associated with homoclinic orbits occurs behind the scenes,
as part of the transient behavior of the system. It appears that it is only when the
homoclinic structures interact with the structures of Sect. 10 that they become part
of the visible attractor.

As we increase the parameter above 2.22 we encounter a 2/15 resonance from
approximately 2.2218 to 2.2344. As a varies across this interval, the visible
attractor begins as a period 15 sink, appears to undergo all of the bifurcations
discussed in Sect. 10, appears then to undergo all of these bifurcations in reverse
order, and ends up again as a period 15 sink. Moreover, for a in part of the interior
of this range, the 15th iterate of the map seems to have a miniature strange
attractor, similar to that shown in Fig. 10.5. This miniature attractor is quite small,
however, and can be missed without careful scrutiny.

If one returns with this more careful scrutiny to parameter values below 2.22,
one finds other instances where some of the bifurcations of Sect. 10 occur. For
example, the 3/22 resonance undergoes many bifurcations, becoming quite
complicated in the interior of its range. Another example is the 4/29 resonance,
where the period 29 sink bifurcates to a period 58 sink.

At the end of the 2/15 resonance we find that the visible attractor suddenly
jumps from a period 15 sink to a period 8 sink when a passes 2.2344. In fact, at this
value of a we find these two sinks coexisting. Simple computer simulations show
one sink or the other, depending on the initial point. The coexistence of stable
periodic orbits with different rotation numbers has been discussed before [8, 16].

During the 1/8 resonance, the complexity of the visible attractor seems to be
essentially monotonically increasing. We start with a period 8 sink which
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undergoes all the doubling and other bifurcations, eventually arriving at the
structure shown in Figs. 10.3-10.5. It continues to grow in complexity, as a
homoclinic point develops and begins to interact with the already complicated
structure. The 1/8 resonance region continues all the way to α* (and beyond). At
the beginning of the 1/8 resonance, the invisible attractor already has a homoclinic
orbit. This orbit disappears in a homoclinic tangency at a& 2.2414, but by this
time the visible attractor has undergone two period-doubling bifurcations. There
is an interval from a&2.2414 to a&2.2520 where the only rotation number present
in 1/8, even though the visible attractor is quite complicated.

We believe that the above sequence of events is typical in outline for one
parameter families of diffeomorphisms of the plane. Our analysis makes it clear
that this behavior is best understood by the study of one parameter subfamilies of
two parameter families. One can see that it is quite difficult to draw a one
parameter subfamily through the infinite number of resonance horns without
passing many times through regions of relative simplicity interspersed with regions
of relative complexity. In one parameter families the transition from simple to
complicated behavior is itself quite complicated.
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