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Abstract. We study transonic flows along a nozzle based on a one-dimensional
model. It is shown that flows along the expanding portion of the nozzle are
stable. On the other hand, flows with standing shock waves along a contracting
duct are dynamically unstable. This was conjectured by the author based on
the study of noninteracting wave patterns. The author had shown earlier that
supersonic and subsonic flows along a duct with various cross sections are
stable. Basic to our analysis are estimates showing that shock waves tend to
decelerate along an expanding duct and accelerate along a contracting duct.

1. Introduction

It is well known that gas flows are often highly unstable. This is clear from
experimental studies and causes great difficulties in numerical calculations.
However, the emergence of shock waves in the flow as a consequence of the
nonlinearity of the gas dynamics equations makes it even more difficult for
analytical studies. The present paper is a step in understanding such phenomena.
We show that for a 1 -dimensional model flows along an expanding duct are
always asymptotically stable, while flows with a standing shock wave along a
contracting duct are dynamically unstable. Since the initial value problem for the
gas dynamics equations is expected to be well-posed, by instability we mean that
the asymptotic state of a flow does not depend smoothly on the initial state.

The equations which model gas flow in a variable area duct are of the form
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where α(x) is the cross section of the duct, ρ, u, p, and E are, respectively, the
density, velocity, pressure and the total energy of the gas, and xeR, f >0. For a
uniform duct, 0'(;>c) = 05 the equations become

dρ d(ρu) _
~^ — I Λ — — v
dt dx

0

d(ρE) d(ρEu

In this case it was shown by Liu [6] that the asymptotic state of a solution of the
initial value problem consists of the elementary waves determined by the values of
the initial data at x=±oo. In particular, the flows are always asymptotically
stable. The reason for such a strong stability phenomenon is that in spite of very
complicated nonlinear wave interactions, waves also tend to combine, cancel and
decouple as a result of the dependence of the characteristic speeds on the state and
the hyperbolicity of the system. Consequently, a general solution tends to a wave
pattern which is noninteracting. Such a wave pattern consists of shock waves,
rarefaction waves and a traveling wave, and can be found by solving the Riemann
problem which is an initial value problem with the initial data containing only two
constant states :

, fω, for x<0,
) = { '

K for x>0,

ω = (ρ,ρu9ρE)9

where ω£ and ωr are constant states.
For a variable cross section duct, it has been shown by Liu [8] that supersonic

and subsonic flows are also asymptotically stable provided that the duct becomes
uniform as x— » + oo. In this case, the asymptotic state consists of the aforemen-
tioned elementary waves and a standing wave which is a solution of

(ρu2+p)x=-^ρu2, (1.4)
α(x)

. a'(x) . .
(oEu -f pt/)v — -— (oEu -\- pu).

a(x) "*

When the flow is not transonic, shock waves and rarefaction waves travel with
nonzero speed and eventually decouple from the standing wave. For transonic
flows, these two kinds of nonlinear modes intertwine and more interesting
nonlinear wave phenomena occur. Based on the above studies, one expects that a
general solution also tends to an asymptotic state which does not create any
nonlinear interaction. Such noninteracting wave patterns were studied in Liu [9].
It was found that for an expanding duct a noninteracting wave pattern is uniquely
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determined by its value at x = + oo and thus one should expect the general
solution to be asymptotically stable. On the other hand, along a contracting duct
there may exist three noninteracting wave patterns with the same given end states
at x= ±00. One wave pattern is smoothly deformed to a supersonic flow and the
other to a subsonic flow. Thus these two should be stable by [8]. The third one,
which contains a standing shock wave, is therefore expected to be unstable by the
criterion of the exchange of stability. It is the purpose of this present paper to
verify the above conjecture on the stability of wave patterns in the dynamical
sense. In particular, we show that when a standing shock wave in a contracting
duct is perturbed, it accelerates and the solution eventually tends to a stable wave
pattern with no standing shock wave which differs greatly from the original
unperturbed state. On the other hand, when a standing shock wave in an
expanding duct is perturbed, it decelerates and tends to a nearby asymptotic state.
Actually, as waves move along the duct, complicated wave interactions begin to
occur; nevertheless, the above statements remain valid qualitatively.

Our basic estimate is on the change of speed of a shock wave as it moves along
a duct. This and ohter estimates on wave interactions are established in Sect. 3.
Our analysis is based on the random choice method of Liu [8], which generalizes
the Glimm scheme, [3], for conservation laws. The idea is to decompose the
solution into nonlinear modes for conservation laws and standing waves. In Sect. 4
we describe a variation of the simplified method of Liu [9]. Finally, in Sects. 5 and
6, respectively, we study flows along a contracting duct and along an expanding
duct.

2. Preliminaries

The gas dynamics equations (1.2) are supplemented by the constitutive relation

P = p(v9s),

where s is the entropy of the gas, v = 1/ρ is the specific volume. These physical
quantities satisfy the thermodynamics relation de= Tds — pdv, Tthe temperature of
the gas. We assume that

dp/dv<0 and 82p/dv2>0. (2.1)

The characteristic speeds λi9 i —1,2,3, and corresponding characteristic right
vectors rf are [2] :

1/2, (2.2)

r^&λ^E + pυ-uit-dp/dv)112)),

r^ = (l,λ^E + pυ + uυ(-dp/dvγ12}},

and r2 is such that r2 Vu = r 2 - V p = 0. Hereafter the coordinate system for the states
is ω = (ρ,ρw,ρ£). The first inequality in (2.1) implies that λi9 ί=l,2,3, are real and
distinct and so systems (1.1) and (1.2) are strictly hyperbolic. The second inequality
in (2.1) implies that

' = - 2 ' - d l l 2 3 l 2 < Q
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Direct calculations also yield :

ri-ru=-(-dp/dv)ll2v2<Q, r3 yu = (-dp/dv)1/2v2>0, (2.5)

0. (2.6)

We now describe the elementary waves for Euler equations (1.2). An
ί-rarefaction wave (ω0, ω1), i=l, 3, is a smooth solution with speed λi which
depends on one parameter and connects ω0 on the left and ωl on the right. It is a
consequence of (1.2) that ω± is on the i-raref action curve J^(CL>O), the integral curve
of rf through ω0, and λi(ω1)>λi(ω0):

There are two kinds of discontinuity waves. For the 2-characteristic field, (ω0, ω1)
is a discontinuity wave with speed σ(ωQίω1) provided

ω1 e T2(ω0) = {ω : u(ω) = w(ω0), p(ω) = p(ω0)}

and is a constant discontinuity:

For the first and third characteristic fields, a discontinuity wave (ω0, ω^) with
speed σ(ωQίωί) satisfies the following jump (Rankine-Hugoniot) condition

— ω0) = /(ω) — /(ω0) for some scalar,

σ = σ(ω0, ω) : λt(ω) < ̂ (ω0)} , i = 1, 3 ,

and is a shock wave satisfying the following stability property, [1] :

λi(ω1)<σ(ω0,ω1)<λi(ω0).

If we set

then any state ω on 7^(ω0) can be related to ω0 on the left by an ί-elementary wave
(ω0,ω). The curves T^CUQ) and T3(ω0) are C2 at ω0 and monotone curves in the
(u, p)-plane :

(p1-p2)(ul-u2)<Q for ω1,ω2eTί(ωΌ), ,

for ω l 5ω2eT3(ω0),

The above holds in a small neighborhood of ω0 under the assumption (2.1). It
holds globally under a stronger assumption, [5] :

p = p(v,e), dp/dv<Q, dp/de>0. (2.8)

It follows from the thermodynamics relation de = Tds — pdv that dp/de = Tdp/ds
and so the second inequality in (2.8) is equivalent to, [11] :

p = p(υ, s) , dp Ids > 0 .

To solve the Riemann problem (1.2) and (1.3) we find states ωm and ωn such
that ωme T-^ω )̂, ωπe T2(ωm), and ωne T3(ωr) so that the solution consists of 1-wave
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(ωΛ ωm), 2-wave (ωm, ωn), and 3-wave (ωn, ωr). The states ωm and ωn are determined
uniquely by ω^ and ωr due to (2.7). We choose any nonsingular parameter τί5

1=1,2,3, along 7^ curves to measure the strength of waves:

We choose τ so that shock waves have negative strength and rarefaction waves
have positive strength.

3. Basic Estimates

The steady state equations (1.4) can also be written as

, (3.1)
dx

where c(x) = — a'(x)/a(x) which is assumed to be small in absolute value. In this
section we will fix two space positions x = x_,x = x + ,x_<x + , and call (ω^ω^ a
standing wave if there exists a solution ω(x) of (1.4), or equivalently (3.1), such that
ω(x_) = ω0 and ω(x+) = ω1. We will consider transonic flows with numerically
positive speed, that is, |A1(ω)| is small. We first study the evolution of subsonic and
supersonic waves as they propagate along the duct.

Lemma 3.1. Suppose that all the states are not sonic, that is, there exists λ^, >0 such
that either λ^ω) > λ^ for all ω under consideration or λ^ω) < — λ^. for all ω under
consideration. Let (ω^, ώ^) and (ωr, ωr) be two standing waves. Then the strengths of
elementary waves in the solutions of the Riemann problems (ω^ ωr) and (ώ^, ώr) for
(1.2) are related as follows:

(ω,, ωr\ = (ω,, ώr\ + 0(l)aic(λJ ~ 2 , i = 1, 2, 3 ,

c= max |c(x)|,
x^x^x+

where 0(1) is a bound depending only on the system (1.2).

Proof. Since the waves T{, i= 1,2,3, are smooth, the solution of the Riemann
problem depends continuously on the end states. Thus the lemma follows from the
elementary theory of ordinary differential equations. We include (λ^}~2 on the
right hand side of the estimate just to remind us that λ^ may be a small
number. Q.E.D.

The following crucial estimate is on the evolution of a 1 -shock wave which is a
perturbation of a standing 1 -shock wave. It shows, in particular, that the shock
wave accelerates as it propagates along a contracting duct and decelerates as it
propagates along an expanding duct.

Lemma 3.2. Suppose that (ω^ωr) is a 1-shock wave which is a perturbation of a
standing shock wave, that is, λί(ω^)>0>λί(ωr) and its speed σ = σ(ω^,ωr) is small
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compared to its strength a = \(ω^ωr)\. Suppose also that the duct is not uniform for
xe(x_,x+), in other words, either c/2^c(x}^c, x_<x<x+ or c/2 5* — φc) ̂  c,
X-^x^x + , f o r some small positive constant c. Let (ω^ω^) and (ωr, ώr) be two
standing waves, then there exist ω^ on S^(ώ^) and a positive constant d depending
only on (1.2) such that

(i) \\ω^-ώr\\ = 0(l)c\x_-x+\u2, and
(ii) when c/2 ̂  c(x) ^ c for xe(x_, x + )

when c/2^ — c(x)^cfor xe(x_,x+)

dc\x _ - x + 1 ̂  σ(ω^ ωr) - σ(ώ^ ωj ̂  2dc\x _ - x + \ .

Proof. We will prove the lemma when σ^O and c/2:gφc)^c, x_ <x<x+ other
cases are proved similarly. Let ω^(x) and ωr(x\ x_<x<x + , respectively, be the
solution of (1.4) with ω^(x+) = ώ^ ω^(x_) = ω^ ωr(x_) = ωr, and ωr(x + ) = ωr. We
will denote by pj(x) the pressure for the state ω^(x) etc. Clearly we have

ωf.(x)), x_ ^x^x + . We have by integrating (1.4)

(3.2)2

9rΰr+pr = K(ρrUr+pr)+ J K(y)c(y)pr(y)dy,

;Ut + P;U;) ,

QrErΰr + prΰr = K(ρrErur + prur), (3.2)3

We choose ω on 51 (ω^) such that

σ(ω^, ω) = σ(ω^ ωr) = σ. (3.3)

It follows from (3.3) and the jump condition for (ω^ωr) and (ώ^ώ) that

σ(ρj—ρ) = ρβj — ρύ, (3.4^

)-(ρrι/
2 + p,),

, _ _ _, , _ _ 2 _ , ,_7 _λ (3.4)2σ(ρ^w^ — ρw) = (ρ^g + p^) — (ρir + p),

σ(QjEf -ρE) = (ρ^E^ + p^) - (ρEΰ + pu).

We have from (3.2): and the first identity in (3.4)15 that

(3.4)3
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This, and the second identity in (3.4)2 yield

ρrΰr- ρu = σ[(ρ,- ρ) - K(ρ,- ρr)] . (3.5)!

We have from (3.2) 2 and the first identity in (3.4) 2 that

J K(y)c(y)(pr(y)-p^(y))dy.
X -

This, (3.2)!, and the second identity in (3.4)2 yield

x +

(eA2 + ft.) ~ (P2 + P) = σ(fi A - QU) + f K(y)c(y) [_pr(y) - pjyftdy . (3.5)2

From (3.4)!, we have

ρΛ<τ - M^) - ρr(σ - Mr) Ξ yl , ρ,(σ - ΰ^) = ρ(σ - M) Ξ

whence we have from (3.4) 3 that

3.2)! and (3.2)3 imply

Thus we have from the above four identities that

= Er + pr/ρr -Ef + (QM - ρΰ)/B + p/ρ

= E;- (QtU, - prur)/A + pjρr -Ef- p^

which can be simplified to

,3,,3

We now finish the proof of the lemma based on (3.5)15 (3.5)2, and (3.5)3. We have
from (3.5)! that

ρrΰr - ρΰ = σρ^ -

On the other hand we have from (3.1) that
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where λ^ is the minimum of |At.(co)| for all ω under consideration. Since σ and |c(x)|
are small compared to the strength α of the shock wave (ω^, ω,.), we know that λ^, is
of the same order of α and it follows from the last four estimates that

ρrΰr — ~QU = 0(l)σc|x + — x _ |(α ~ 1 + α)

Note also that pr(y) — pj(y\ x_ ^y^x + , is of the same order as α and so (3.6)1 and
(3.5)2 yield

_ — x + \ + 0(l)σ2c\x+ — x_\a~^

where we have defined the strength α by the difference in p just for convenience.
Since σ is small compared to α the above estimate becomes

3cα|x_ - x + 1 ^(ρrwr

2 + pr)- (ρ

^l/4cα|x_-x + |. (3.6)2

Similarly we have from (3.5)3 that

£r+ ̂  - £+ ^ =0(l)cσ|x_ -x+lα- 1 . (3.6)3

Qr/ \ ^/

Let us denote by Γ any curve which is the interaction of surfaces ρu = const and
E + p/ρ = const. The tangent TΓ to Γ is the cross product of n1 = Pρw and
n2 = V(E + p/ρ). Direct calculations yield

TΓ = r 1+λ 1(0,-l,-M-A 1(l + ρβt;)), (3.7)

n1 n 2 =-ρ e Mϋ 2 φO, (3.8)

-A^-. (3.9)

Estimates (3.6)15 (3.6)2, and (3.8) imply that there exists ώ on Γ(ω) such that

||ώ- ωr || = 0(l)cσ|x_ - x+ α" 1 . (3.10)

From our hypothesis we know that σα"1 is small compared to α and ^(ω)! is of
the same order as α for all ω under consideration. Thus we have from (3.10) that

and so (3.9) yields

for some positive constant dί depending only on (1.2). The above estimate and
(3.6)2 imply that for some positive constant dQ
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It is clear from (2.6) and (3.7) that

TΓ Fp>0,

and so (3.9), (3.6)2, and (3.11) imply that

It follows from (3.7), (3.10), and (3.11) that there exists ώ on R^ώ) such that

(3.12),

aQ9 (3.12)2

(3.12)3

It is well known that S^CUQ) is tangent to jRf(ω0) up to second order (cf. [2]). Since ώ
is on 5j~(ω^), there exists ω^ on Sr(ώ^) such that

||ω-ώ||, (3.13)

which and (3.12)1 yield

= 0(l)x\x_-x+\oc2. (3.14)

This proves (i) of the lemma; (ii) follows from (3.12)2 and (3.12)3. Q.E.D.

4. Numerical Schemes

Since we will be dealing with instability phenomena, it is important that numerical
schemes used to calculate the solution are effective so that approximate solutions
do not oscillate around the unstable solution or bifurcate into different branches of
stable solutions. We will describe two variations of the random choice scheme
which was introduced in [8], simplified in [9] and is a generalization of the Glimm
scheme for conservation laws, [3, 7]. For convenience we write (1.1) as

dω df(ω)

^ + ̂ Γ=^'ω)' (u)

and the initial data, Euler equations and steady state equations become
ω(x,0) = ω0(x;),

^ + ̂ =0, (1.2)dt dx

-flfcω). (1-4)

We now describe the first scheme for calculating the solution of the initial value
problem for (1.1). Choose an equidistributed sequence {ak}™=0 in (0, 1), and mesh
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length Ax = r, At = s satisfying the usual Courant-Friedrichs-Lewy condition. The
approximate solution ωr(x, t) = ωr(x, t {ak}) is defined inductively as follows:
Suppose that ωr(x, ί) has been defined for 0 rg t ̂  ks, k a nonnegative integer. Then
ur(x, ks + 0) is defined according to ak :

ωr(hr + αfcr, ks + 0) = ωr(hr + akr, ks), h integer ,

ωr(x, /C5 + 0) is a solution for (1.4), (h— l)r<x<hr, h integer.

Thus ωr(x, /C5 + 0) consists of standing waves with possible discontinuities at x = hr,
h integer. We now resolve these discontinuities so that ωr(x, t) is defined for ks < 0
^(fc+l)s. To resolve the discontinuity, for example, at x = 0, we first solve the
Riemann problem for (1.2) with

x<0

and denote the solution by ω^x, t) = ψ(x/t). Then we perturb ψ(x/t) by (1.4) to
obtain an approximate solution to (1.1):

ώ(x,t) = ψ(ξ) when ξ = x/t and f-»0,
and

ώ(x,x/ξ) satisfies (1.4).

Note that ώ(x, t) exists locally in time and is uniquely determined by ωr(x, ks)
provided that (1.4) can be solved locally, which is the case if λt(ω), z = l,3, is
nonzero for all states ω under consideration. Finally, near (0, ks)ω~(x, t) is defined
as a translation of w(x,t): ωr(x, t — ks) = w(x, t). The discontinuities (hr,ks) in
ωr(x,ks) are resolved in a similar way. This defines the approximate solution
ωr(x, ί) for all (x, ί). Note that in addition to solving the Riemann problem, which is
needed in the Glimm scheme for conservation laws, we only have to solve the
ordinary differential equation (1.4) at most once for each time and space step.
When akr/s is between the maximum (minimum) speed of waves issued from
(hr, (k - 1)5), (((h + l)r, (k - l)s)) then ωr(x, (k + 1)5 - 0) - ωr(x, (k + 1)5 + 0) for
hr <x <(h+ l)r and we don't even have to solve (1.4). When akr/s is, say, less than
the maximum speed of the waves issued from (hr,ks\ then ωr(hr + Q,(k+ 1)5 + 0) is
the same as ιp(akr/s) where ψ is the solution of the corresponding Riemann
problem at (hr,ks). However one has to solve (1.4) with ω,(ftr + 0,(fe+l)s + 0) as
given to find the value of ωr((h + ϊ)r — Q 9 ( k + l ) s ) .

The above scheme, when system (1.1) is reduced to conservation laws (1.3),
does not stagger the grid points (hr, ks) as was done originally in Glimm [3]. This
makes the scheme numerically more efficient. For the present study it is
particularly convenient, since waves with positive (negative) speed are never
moved to the left (right). As a consequence the scheme would approximate the
asymptotic state of an unstable solution accurately, (see next Section). When one is
interested in flows with a single relatively strong shock wave the following
variation has the advantage in tracing the evolution of the shock wave. Suppose
that at time t = ks, the position of the shock wave is x = xfe, (h—l)r^xk<hr. Then
we disregard the grid points ((h — l)r, ks) and (hr, ks) and extend the standing wave
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in ωr(x,ks + 0) for hr<x<(h + l)r [or (h — 2)r<x<(h— l)r] to the interval
xk<x<hr [or (h—l)r<x<xk] so that ωr(x,ks + 0) is discontinuous at x = xk and
continuous at x = (h— l)r and x = hr. This has the advantage that the position of
the shock wave is a continuous function of time. In the present study we will use
the first scheme just for simplicity in the presentation.

The existence theory is based on the estimates on the total variation of the
approximation solution. This is usually proved by induction. For a later purpose
we now introduce some of the notations. An /-curve J is a spacelike curve
consisting of lines between (h -f ak)r, ks) and (hr, (k +1)5) or between ((h + %), ks) and
((/ι+l)r,(fc+l)s), h any integer, k any positive integer. J2 is called an immediate
successor of J1 if J2 lies toward a larger time than J1 and they pass through some
grid points except one. The region between J1 and J2 is called a diamond Δ. The
strength of waves issued from (hr, ks) is measured by its initial strength at (hr, ks).
Suppose Δ is centered at (/ιr,(fc+ l)s). Then waves entering Δ9 besides those issued
from (hr,ks), come either from ((h— l)r, ks) or ((/z + l)r,fcs). The strength of waves
issued from (hr, ks) is unchanged at (hr, (k+ 1)5 — 0). Those issued from ((h— l)r, fa)
[or ((/z+l)r, fcs)] have positive (or negative) speed and the difference of their
strength between times fcs + 0 and (fc + l)s — 0 is due to the geometry of the duct
between x = (h — l)r and x = hr [or between x = hr and x = (h + l)r] and is estimated
by Lemma 3.1. The waves leaving Δ are then the result of nonlinear interaction for
(1.2) of waves inside Δ at time (fc+ 1)5 —0 just mentioned. Such interactions have
been studied in [3, 6].

The scheme just introduced converges and yields an exact solution provided
that no state is near sonic and the total variation of the approximation solution is
uniformly bounded [8, 9].

5. Unstable Flows

In this section we study flows with positive speed along a contracting duct. For
definiteness we assume :

for 0<x<l

(5.1)
c(x) = 0 otherwise.

Consider the solution ω^(x, t) = ω^(x) of (1.1) which consists of standing waves and
a standing shock wave at x = x^, O^x^l,:

ω (x,t) =
co2(x)

ω(— oo) x<0

ω(+oo) x>l,

(5.2)

where ωx(x) and ω2(x) are solutions of (1.4), (ω1(xs|ί)5 ω2(xj) is a 1-shock wave with

σ(ω1(xs|t)sω2(xj|t)) = 0, (5.3)



254 T.-P. Liu

and ω(— oo)Ξω1(0), ω(+oo) = ω2(l). Before we study the instability of standing
shock waves, we first show that wave patterns of other kinds are stable. We will
then show that a small perturbation of a standing shock wave causes the unstable
flow to approach one of the stable flows. By a noninter acting wave pattern we
mean a solution of (1.1) consisting of elementary waves for Euler equations (1.3) in
the region xφ(Q, 1) and of standing waves and a possible standing shock wave in
xe(0, 1). Moreover, these waves do not interact in the positive time direction, in
other words, they do not occupy the same space position for any positive time.

Theorem 5.1. Suppose that ω(x, 1) is a noninter acting wave pattern for (1.1) with the
property that ω(x, ί) does not contain any standing shock wave and all waves in
ω(x,ί) are weak and A1(ω)Φθ/or ω = ώ(x,ί). Then ώ(x,ί) is asymptotically stable in
the sense that if an initial data ω(x,0) is such that the total variation of
ω(x, 0) — ώ(x, 0) is small, then the solution ω(x, ί) o/(l.l) tends to an asymptotic state
consisting of elementary waves which are close to those in ω(x, t) both in position and
strength.

Proof. We may let the perturbation ω(x, 0) — ω(x, 0) be so small that ω(x, t) is never
sonic and so the schemes described in the previous sections may be applied. Note
that since ω(x, t) contains no standing shock wave, the standing wave in it is either
strictly supersonic or strictly subsonic. Although Liu [8] studies only flows which
are supersonic (or subsonic) throughout the duct, the ideas employed there can be
generalized to prove the present theorem. We omit the details. Q.E.D.

Theorem 5.2. The wave pattern ω^x, t), (5.2) and (5.3), is dynamically unstable
provided that \c(x)\ is small as compared to the strength α0 of the standing wave
(ωί(χ*\ω2(χ*))' More precisely, there exists cφc,0) such that the total variation of
ω(x, 0) — cύχ(x, 0) is arbitrarily small and as time goes to infinity ω(x, t) tends to one
of the stable asymptotic states without a standing shock wave as studied in the
previous theorem.

Proof. For definiteness we assume that 0^x j | ί<l. We choose the perturbation
ω(x,0) to consist of standing waves and a 1-shock wave at x — x^ with positive
speed. This can be done quite easily by choosing a state ώ on S^ω^xJ) which is
between ω1(x j js) and co2(

χ*) and arbitrarily close to ω2(xίjs), and define ω(x,0) by:

, t) otherwise ,

where ω2(x) is a standing wave with cό2(xί|s) = ώ. ω(x, 0) is a small perturbation of
co%(x, t) since ώ is close to ω2(xίjs). Moreover we have

σ(ω(x* - 0, 0), ω(x^ + 0, 0)) > 0 .

For convenience we choose Δx = r such that (x^O) is a grid point. We will use the
first scheme described in the previous section. We first establish the existence of the
solution ω(x, ί). The first step is to establish a uniform bound on the total variation
of the approximate solution w2(x, ί). We will show inductively that there is a
relatively strong 1 -shock wave in w2(x, t) which originates at (x^, 0) and persists for
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all time. Suppose that it crosses an /-curve J at x = h0r and has strength α^. Then
we define a nonlinear functional F(J) as follows :

L(J)Ξ]Γ{|<χ|:α the strength of any elementary wave crossing J},

Qι(J) Ξ QIC/) + flit/) + Ql(J} + QsιU) ,
r oo

δί(^)ΞΣ vαl ί k(x)|dx: α is the strength of a 1-wave which crosses J issues from
hr

(hr9ks)9h£h0\9

oo Λr

|α| J \c(x)\dx + |α| J |c(x)|dx : α is the strength of a 1-wave which crosses

J issues from (hr, fcs), h^h0>,

Q\(J) ΞΞ Σ {|αj8| : α and β are strengths of 1-wave which crosses J and at least one of
them is a shock wave} ,

Q2(J) = £ < |α| J : α is the strength of a 2-wave which crosses J issues from (hr, ks) >,

2'3(J)Ξ^<|α| J |c(x)|rfx: α is a strength of a 3-wave which crosses J issues from
I hr

(hr9ks)\9

QS

3(J) = Σ (\ocβ\: α ancl ^ are strengths of two 3-wave which crosses J and at least
one of them is a shock wave},

6d(^) = Σ {lαβl : α anc^ ̂ ' respectively, are strengths of a /-wave to the right a j-wave
to the left crossing J and ί <j},

where K is some large number to be determined later.
The terms β's are defined so as to detect the potential amount of wave

interactions in the solution. For instance, Q\ is so defined as to anticipate that the
relatively strong shock wave would move to the right, (cf. Lemma 4.2). β^ and Q\
are defined to reflect the fact that 1-waves on either side of the relatively strong
1-shock wave move toward it and are eventually combined into the right moving
relatively strong shock wave. This is the case if the shock wave issued from (x^, 0)
remains relatively strong for all time and always has positive speed. This, and
other qualitative properties, will be proved simultaneously as we establish the
bound on the total variation of wr below.

We will prove by induction that for any /-curve J

(5.5)

(5.6)
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where A is the region below J and 0 is the (unique) /-curve in the zone 0 rg t ̂  s. The
term A is defined to be the sum of all Q(Δ), Δ any diamond in A, and Q(Δ) is
defined as follows : Suppose that waves entering Δ are solutions of the Riemann
problems (ωl5 ω2) and (ω3, ω4) and are centered at (/ι1r, ks) and (h2r, ks), hl = h2 — 1,
respectively. Thus the center of A is (hr, (k + l)s), h equal to ̂  or h2. When fo equals
hl9 the waves leaving zl is the solution of the Riemann problem (ω1? ω4) and is the
result of the interaction of waves in the Riemann problems (ωl5 ω2) and (ω3, ω4).
Here (ω3,ω3) and (ώ4, ω4) are standing waves in the interval xe(7ιr,(7i+ l)r). Note
that in this case waves in (ω3, ω4) have negative speed and move from x = (/ι+ l)r
to x = /zr during the time tε(ks,(k+l)s]. We set (cf. [8])

Q(Δ) = ( f υ |c(x)|dx) Σ IK, ω4)J + X |(ω1? ω2χ.(ω3, ωJJ
\ hr I i ί > j

l5 ft)2)^35 ω4) | : at least one of (ωl5 ω2)

and (ω3, ω4)f is a shock wave) .

Similarly, when h = h2, waves in (ω l5ω2) have positive speed and move from
x = (h—ί)r to x = hr during the time ίe(ks,(fc+l)s]. We set

°ne ° ωi? ω 2i
i

and (ω3, ω4)f is a shock wave} .

With this definition of Q(Δ) we have from Lemmas 3.1 and 3.2 and results on the
interaction of elementary waves for conservation laws, [3, 8], that

αf = (ω1? ω2). + (ω3, ω4). + O(l)Q^) , (5.6)

where α is the strength of the z-wave leaving A.
Suppose that (5.4) and (5.5) have been shown for J = J1 and J2 is an immediate

successor of J19 zl the diamond between them. According to (5.6), waves may
change their strengh only due to linear combining or cancelling, and nonlinear
interaction as measured by (λ Since the only wave crossing 0 is the 1 -shock wave
with strength α and issued from (x^, 0), , it follows that the strength of this shock
wave as it crosses Jx is of the strength α0 + O(l)β(/I1) and all other waves have a
total strength (Xl)^/^), where (AJ is the region below J \. It follows from the
induction hypothesis (5.5) that

βμ1)g2[β(0)-β(J)]^2α0 ΐ \c(x)\dx, (5.7)
Λ*

where x = x1 is the position of the relative shock wave as it crosses J v Thus, in
particular, the relative strong shock wave has strength

(5.8)
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as it crosses Jr The speed of this shock wave, according to Lemma 3.2 and (5.7), is

ί/2d J \c(y)\dy + OίDβ^J
-X*

(5.9)

Note that σ(x^) is assumed to be positive (though arbitrarily small) and a wave
with positive speed may travel only to the right according to the scheme
introduced in the previous section. Consequently, x^x^ and (5.9) implies by
induction that the relative strong shock wave always has positive speed at least up
to the point when it crosses Jv We now establish (5.4) and (5.5) for J = J2. Based
on the above description of the relative strong 1-shock wave we know that 1-waves
to the right (left) of this shock wave have negative (positive) speed. This, along with
estimate (5.6), imply that

whence we have easily (5.4) and (5.5) for J = J2- Actually, the functionals F(J) and
<2(J) were defined so that these two crucial estimates hold (see also [8]). Details are
left to the reader.

To finish the proof of the theorem, we show that the relatively strong shock
wave leaves the region xe(0, 1) in finite time so that the solution becomes a small
perturbation of a stable wave pattern as studied in the previous theorem. We know
from (5.9) that the speed of the shock wave is always positive. It remains to show
that as a result of the equidistributedness of the sequence {ak} and (5.9), the time
limit for the shock to leave xe(0,l) is independent of the mesh length Δx = r.
Assume for the moment that the shock wave propagates along a continuous curve
(which would be the case if the second scheme of the previous section were used).
Let x = x(t) be the position of the shock at time t then x'(t) = σ(x) and we have
from (5.9) :

For the approximate solution, the above estimate holds modulo an error which
depends on how well equidistributed the sequence {ak} is and goes to zero as
Ax = r tends to zero, [7]. Thus for simplicity we may argue with the above
inequality. Since d is a positive constant, φc) is positive for 0<x< 1, x(0)e(0,1),
x'(0) is positive (though it may be arbitrarily small), the inequality implies that

d ' ' ' " ' dz

and so there exists a finite time ̂  independent of Ax = r such that x(t) ̂  1 for t ̂  t%.
In other words, the relative strong shock wave leaves the region 0 < x < 1 before
finite time t%. This completes the proof of the theorem. Q.E.D.
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6. Stable Flows

We already know that a noninteracting wave pattern containing no standing
shock wave is stable and a flow along a contracting duct which contains a standing
shock wave is unstable. To complete the present study it remains to show that a
flow with a standing shock wave along an expanding duct is stable. Since for an
expanding duct, an asymptotic (i.e. noninteracting) wave pattern depends uniquely
and smoothly on its end states at x= ± oo, [10], it suffices to show that a small
perturbation of a flow with a standing shock wave tends to an asymptotic wave
pattern as time tends to infinity. Throughout this section we assume :

O for

c(x) = 0 otherwise .

Theorem 6.1. Suppose that ω(x,0) contains a 1-shock wave (ω_,ω+) at x^EfΌ, 1)
with λ1(ω_)<Q<λί(ω+), and both |φc)| and |σ(ω_,ω+)| are small compared to the
strength α of the wave (ω_, ω+). Suppose also that ω(x, 0) is a small perturbation in
total variation of standing waves for — co<x<x^. and for x^<x<co. Then there
exists a solution ω(x,t) of (1.1) which tends to a noninteracting wave pattern as t
tends to infinity.

Proof. The difference between the situation here and that in Theorem 5.2 is that
although there still exists a relatively strong shock wave for all time, this shock
wave, unlike the corresponding one in Theorem 5.2, stays nearby the unperturbed
standing shock wave. Consequently, we have to show that the shock wave
decelerates in general and so would not cause too strong nonlinear interactions if
it were to oscillate along the expansion portion of the duct. For this we define a
different nonlinear functional F( J) as follows : Suppose that the shock wave has
speed σ = σ(t\ strength α and position x = h0r = h0(t)r when it crosses J (at time ί).
We set

F(J) = L(J) + K{Q±(J) + Q2(J) + Q3(J) + Qd(J)} ,

where L and Q's are the same as those in the previous section except that Q\(J] is
set to be zero and L(J) is redefined as

L(J) = K\σ\+ £|α| : α the strength of any wave crossing J} .

The proof of uniform boundedness of the total variation in x of the approximate
solution ωr(x, ί) is similar to the proof of Theorem 5.2. The notable difference here
is that since we do not know a priori the sign of the speed of the relative strong
shock wave, we cannot foresee the potential interaction of the shock with the
geometry of the duct (which was taken care of by Q\ in Theorem 5.2). Instead, we
notice from Lemma 3.2 that when the shock moves between x = 0 and x = 1, where
the duct is not uniform, it tends to decelerate and so \σ\ tends to decrease. This
shows that the first part of L(J) tends to decrease. This is sufficient to dominate the
increase in the remaining parts of F(J) as the result of the nonlinear interaction of
the relatively strong shock wave with the duct. Therefore, in palce of (5.5), we have

Q(Λ) g 0(l)σ(0) + 2{Q(0) - β(J)} . (6.2)
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The above statements are shown using Lemmas 3.1, 3.2 and analogous arguments
used in the proof of Theorem 5.2 details are omitted.

We now study the asymptotic behavior of the solution. Given any ε>0, it
follows from (6.2) that there exists T= T(ε) such that

T}^ε. (6.3)

By choosing M = M(ε) sufficiently large we have

total variation^ {iφc, T) : \x\ Ξ> M} <; ε . (6.4)

Through (M, T) and ( — M, T) we draw generalized /-characteristic curves χϊ and
χΓ, ί= 1, 2, 3 which travel either with z'-characteristic speed or z-discontinuity speed
[4, 7]. The region between χ.+ and χ.~ is denoted by Ωt. Due to the strict
hyperbolicity of the system, χf do not intersect χί, zφj, after finite time T0>T.
After time T0, the z-waves outside Ω{ are either produced by interaction or issued
from (x, T), |x| ^M, and so (6.3) and (6.4) imply that the total amount of z'-waves
after time T0 and outside Ωt is 0(l)ε. Thus in Ωi9 z-waves cancel and combine and
behave (modθ(l)ε) like waves for scalar conservation law (Sect. 10, [8]).
Consequently, modulo the error 0(l)ε 3-waves tend either to a 3-shock wave or a
3-rarefaction wave, 2- waves tend to a traveling wave and 1 -waves tend to a shock
wave due to the presence of the relative strong shock wave in the solution.
Moreover, outside the 1-shock wave and in the region 0<x<l, the solution
equals (modθ(l)ε) standing waves. To show the closeness of such elementary
waves to a noninteracting wave pattern it remains to show that when the 1 -shock
wave stays in the region 0 < x < 1 its speed is close to zero. In fact we will show that

in this case its speed is 0(1) j/ε after time T0 H -- — where X = XQ is the position

of the 1 -shock wave at time T0. For this we first note that the speed σ(t) of the
shock wave at time t is a Lipschitz function of ί(modO(l)ε) in the following sense :
By Lemma 3.2 we have for t2>t1>T0

(6.4)

Thus if |σ(F)| g J/ε for some Fe τ0, Γ0 +
 Xo then |σ(t)| ̂  J/ε +0(l)s^2|/ε for

\ £ /

^ί0. It remains to show that if |σ(ί)|^ |/ε for all ίe I T0, T0+ — - ] then the

\x +2
1 -shock wave does not stay in the region 0 < x < 1 after time T0 -\ — - - . In fact it

is clear that when the speed of the one shock is larger than j/ε (or less than — |/ε )

for all ίe ίτo, T0+ — - - 1 then at time T0 + — - the position of the shock
\ ε / ε

wave is to the right of x = 1 (or left of x = 0) and by (6.4) its speed after that time is

|/ε"-0(l)ε^l/2|/ε [or - ]/ε +0(l)ε^ - 1/2 J/ε"] and always stays in the region
x^l (or x<0) for any larger time. This completes the arguments.
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When the perturbed data ω(x, 0) is equal to constant states both to the right
and to the left of a finite interval, the convergence of the solution ω(x,t) to
noninteracting wave patterns is of algebraic rates. For this more precise estimates
are needed, we will not pursue that here (cf. [6, 8]). This completes the proof of the
theorem. Q.E.D.
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