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Abstract. The previously proved results that every analytically renormalized
Feynman integral is a regular holonomic function suggests that the S-matrix
should be locally expressible as an infinite sum of regular holonomic functions.
A regularity property R is formulated that expresses the condition that the
S-matrix be locally expressible near each physical point p as a convergent sum
of regular holonomic functions, with each term enjoying some of the regularity
properties of a corresponding Feynman integral. This property .R holds at
every physical point p that has yet been analyzed by the methods of axiomatic
field theory or S-matrix theory. Some analyticity properties of unitarity-type
integrals are then examined under the assumption that the ^-matrix satisfies
property R and a weak integrability condition. These results rest heavily on
some recently proved properties of regular holonomic functions.

1. Introduction

Sato [1] has conjectured that the S-matrix satisfies a holonomic system of (micro)-
differential equations with characteristic variety determined by the Landau
equations. Support for this conjecture has been adduced by Kashiwara and Kawai
[2], who have shown that the analytically renormalized Feynman function FG(p)
associated with any Feynman graph G satisfies such a system of equations with
characteristic variety confined to the extended Landau variety «S?(G)C.

The Feynman functions enjoy an important additional property: they are
regular holonomic functions. A regular holonomic function is, by definition, a
hyperfunction that satisfies a holonomic system of linear differential equations
with regular singularities. Kashiwara and Kawai [3] have developed a microlocal
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theory of holonomic systems with regular singularities, and have shown, as an
immediate by-product of their theory, that the Feynman functions FG(p) are all
Nilsson class functions. This fact had been believed previously, but the proof had
been blocked by technical difficulties. (Private communication to T. K. from
Professor J. Lascoux and Professor F. Pham.)

The fact that every Feynman function is regular holonomic suggests that the
S-matrix may be expressible as an infinite sum of regular holonomic functions.
Indeed, Kawai and Stapp [4] have shown on the basis of the general S-matrix
discontinuity formulas and weak analyticity requirements that each point P in a
large part of the physical region has a complex mass-shell neighborhood Ω(P) such
that the kernel of the connected part of the ^-matrix restricted to Ω(P) can be
expressed in the form

SP(p)= Σ aG>)FG(p), (1-1)

where the functions 0GjP(p) are holomorphic in Ω(P), and $P is the collection of
connected graphs G such that P lies on the positive-α Landau surface Lf(G). This
result immediately entails the weaker condition that SP(p) can be expressed in the
form

SP(P)= Σ SG», (1.2a)
Ge&p

where SGίP(p) satisfies on Ω(p) a holonomic system with regular singularities whose
characteristic variety Ch(SG>P(p)) is confined to the characteristic variety Ch(FG(p))
of the system that FG(p) satisfies,

Ch(SG>))cCh(FG(p)), (1.2b)

and whose singularity spectrum (SS) is confined to the singularity spectrum of

FG(P\

SS(SGjP))GSS(FG(p)). (1.2c)

At the previously examined points P, only a finite number of nonvanishing
terms occur in the sums (1.1) and (1.2a), and hence no convergence problem arises.
But for any point P lying, for example, on a three-particle threshold, any equations
of the form (1.1) or (1.2) must contain an infinite number of nonzero terms. Hence
the question of convergence must in general be considered.

A formulation of property (1.2) that incorporates an appropriate convergence
condition is provided by the following definition. Let P be any point in the original
real domain of definition of the S-matrix. Then the regularity property RP consists
of the following four conditions :

1) There exists a complex product-neighborhood Ωf(P) x Ω^P) of P and a set
of bounded operator SP and SG>P (for all Ge^p) that transform square integrable
functions defined over the initial real domain Ωf(P) into square integrable
functions defined over the final real domain Ω^(P), where Ωf(P) is the restriction of
Ωj(P) to the real mass shell.
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2) The sum £ SG P converges absolutely to SP in the sense that

_ ^ >0 (! 3a)

and

3) The kernel of SG P considered as a hyperfunction SGP(p) defined over
Ωf(P) x Ωj(P) is regular holonomic and satisfies (1.2b) and (1.2c).

4) The kernel SP(p) oϊSP is the restriction to Ω.(P) x Ω^P) of the kernel Sc(p) of
the connected part of the 5-matrix.

The appropriateness of the convergence condition specified in Rp is discussed
in Sect. 2.

The purpose of this paper is to derive conditions on the singularity structure of
unitarity-type integrals under the condition that the scattering functions appear-
ing in the integrand enjoy the regularity property RP for certain critical points P in
the domain of integration. These critical points are the critical points associated
with the so-called u = 0 points of the integral. Subject to the validity of property RP

at these critical points, our result extends the earlier result [5] on the singularity
spectra of unitarity-type integrals at w Φ O points to many u = 0 points.

This extension to u = 0 points constitutes a significant improvement over the
earlier u φ 0 results. Indeed, there are many unitarity-type integrals for which the
u — 0 points cover the entire domain of definition. For these integrals the earlier
w φ O result entails no domain of analyticity at all, whereas our result, when
applicable, restricts the singularities to well-defined codimension-one subvarieties.

The property RP required for our result has, as noted above, been derived at
many points P from S-matrix arguments. In fact, the stronger property with SG P

replaced by aGfPFG has been obtained at these points. Similar results have been
obtained also from axiomatic field theory [6]. These stronger results are in accord
with Landau's suggestion [7] that the singularity structure of the S-matrix is given
correctly by the Feynman integrals, quite apart from the validity or nonvalidity of
the perturbation theory in which they first arose.

The condition that property Rp holds for every physical point P is called
property R. This property can be regarded as a specific and precise formulation of
Landau's suggestion.

The special examples mentioned above yield instead of property R the stronger
property Rs, which is R with SG P replaced by aG>PFG. Thus one might wish to
regard Rs as the precise formulation of Landau's suggestion. However, this
stronger property Rs is not compatible with the convergence condition (1.3). This
will be explained in Sect. 2. The essential point is that the conditions (1.2b) and
(1.2c) on SG>P(p) hold not only for aG>P(p)FG(p) but also for the similar functions
associated with the contractions of G, and moreover, for any finite linear
combination of such functions. This flexibility is needed to maintain the con-
vergence property (1.3): the analogous convergence condition does not hold for
the expansion (1.1).
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Property .R is also a specific and precise formulation of Sato's conjecture. It
adds to Sato's general holonomicity requirement an appropriate convergence
condition, and also the requirement that the singularities of the holonomic systems
be regular.

Property R is, lastly, a very reasonable ansatz for the physical-region part of
the maximal analyticity property of S-matrix theory [8]. For this property R is
compatible with the stringent requirements of macrocausality. Moreover, the
previous studies [4, 9, 10] suggest that the 5-matrix requirements of unitarity,
macrocausality, and Lorentz invariance require the presence of no singularities
other than those allowed by R. Furthermore, they suggest that if only those
singularities permitted by R are allowed then all these singularities must in fact be
present, provided no special selection rules intervene.

To prove that property R is in fact compatible with the general S-matrix (or
field-theoretic) principles one must know the singularity structure of unitarity-type
integrals under the condition that property R holds. Sections 3 and 4 address this
problem, and in particular the preliminary problem of extending with the aid of
property R the earlier u φ 0 results on the singularity structure of unitarity-type
integrals to the more delicate u = 0 points. Our earlier works have made clear that
some analyticity property beyond that provided by macrocausality is needed to
cope with these u = Q points.

An alternative approach to the u = 0 problem has been developed by
lagolnitzer [11]. It is based on a different assumed regularity property. Whereas
the present approach is within the general framework of maximal analyticity,
where the ultimate aim is to impose the strongest analyticity assumption
compatible with the other general principles, lagolnitzer's approach is based
rather on a strengthened formulation of the macrocausality principle. In both
approaches one is faced with the task of verifying the compatibility of the
assumption with the other general principles. Our assumption is known to be
compatible with all cases that have yet been studied, and also with the possibility
that the ^-matrix be locally expressible as a sum of renormalized Feynman
functions with analytic coefficients. lagolnitzer's property has not yet been shown
to be compatible with the well-understood analyticity properties near the leading
two-particle threshold. If that property can be shown to be compatible with this
and the other detailed results so far derived from field theory and S-matrix theory,
then we would expect lagolnitzer's approach to be complementary to our own.

We conclude this introduction with a brief review of some terminology
connected with Landau surfaces.

A Landau graph G is an oriented graph each edge (or line) / of which is
associated with a particle-type label tv The graph G is completely specified by
giving for each edge I of G the corresponding particle-type label ίj(G) (which fixes
the mass ml = m(ίz), and distinguish a particle from its antiparticle) and for each
edge / and vertex; of G the incidence matrix element £tj(G) = [/:/], which is +1,
— 1, 0 according to whether the edge / terminates, on, originates on, or is not
incident upon vertex j. A vertex of G is an internal vertex if more than one edge is
incident upon it and is an external vertex if exactly one edge is incident upon it. An
external vertex j is an initial or final vertex according to whether the one edge
incident upon j originates or terminates on j. The edge incident upon an initial or
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final vertex is called an initial or final line (or edge) respectively. The initial and final
lines are called the external lines, and the others are called the internal lines.
Vertices with no edges incident upon them are excluded. Vertices with exactly two
lines incident upon them are called trivial vertices, and are excluded unless
otherwise stated.

A Landau diagram D is a spacetime diagram obtained by assigning to each
vertex j of some corresponding Landau graph G = G(D) a spacetime point xj and
assigning to each edge / of G = G(D) an oriented spacetime line segment that runs
from point xrα) to point x7 + ( / ) ? where [/*(/) :/] = ±1. Each line segment / of D is
required to have positive Lorentz norm \ χ j + ( l } — xr(ί)| >0, and is associated with a
momentum-energy vector pl that is defined by the conditions that pl be parallel to
x>j+(i) — Xj-(i) and satisfy the mass-shell and positive-energy conditions pf = mf and
plf o > 0. The final condition on D is that momentum-energy is conserved at each
internal vertex j :

ΣD :OP, = 0. (1.4)
I

The unique graph G(D] associated with any spacetime diagram D is con-
structed by extracting from it the incidence matrix and the set of particle-type
labels.

The 4n-vector formed from the n four-vectors pl associated with the n external
lines of D is denoted by pext(D). The Landau surface Lt(G) consists of the set of the
vectors pext(D) for all D such that G(D) = G:

Lί(G)^{pext(D);G(D) = G}. (1.5)

The positive-α surface L^(G) is the subset of LX(G) obtained by imposing on the
diagrams D in (1.5) the condition that for each line / of D the vector xj + ( l } — Xj-(l)

has a positive time component: x°+(l}>x®-(l}. The Landau surface L^(G) is the
closure of Lf(G).

These geometric definitions will be supplanted in Sect. 3 by equivalent
algebraic ones.

2. Convergence

We begin the discussion of convergence by considering a simple example in which
there is only one kind of particle, which is a spinless particle, and in which all
connected parts involving less than six particles vanish. Then the only contributing
graphs G that give positive-α Landau surfaces that intersect the three-particle
normal-threshold surface in a 3-to-3 amplitude are the graphs Gn of the kind
shown in Fig. 1.

PI
p2»-

P3 ̂  0 1 - 2

Fig. 1. The (n+ l)-vertex three-particle-threshold graphs G"
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In this example the formula for the discontinuity around the three-particle
threshold asserts that in some real neighborhood of any three-particle threshold
point P = (P1? ...,P6) one has

S: (pf, Pi) - S- (Pf9 Pi) = J S: (pf9 Pm)S- (pm, Pi)dpm , (2.1)

where^p/ = (p1?p2,p3)5 Pi = (p4,p5,p6\ Pn = (pΊ,P&p9\ and the functions Sc

+(p/?pJ
and S~(pm,pj) are, respectively, the limits of the kernel of the connected part of the
S-matrix from above and below a cut placed on the positive real axis Re z = x ̂  0 in
the variable

Z(P) = (Pl+P2 + P3)
2-9m2. (2.2)

The pj for je{ί, ...,9} are mass-shell four-vectors with pj<0= ]/m2 + p;, and

For real pf one has

f (2π)4δ\Pί + P2 + p3 - P7 - P8 - P9)dpm = ω(z(pf))z(pf)
2 Y(z(pf)) , (2.4)

where ω(z) is analytic in z, and nonzero near z = 0, and Y is the Heaviside function.
Then the function

) = ω(z}z2

2π
(2.5)

is analytic near the origin of the cut z plane, with the cut again placed along x^O,
and the boundary values f+(x) and f ~ ( x ) of /(z) from above and below this cut
satisfy

f+(x)-f-(x) = ω(x)2Y(X). (2.6)

For any Lorentz-invariant function a(p) analytic near the three-particle
threshold point P the function

SC(P)= [ Σ aίn+1\p)nz(pf))}(2πmPl+p2+p3-p4-p5-pJ (2.7)
L « = o J

is a solution of (2.1) near P by virtue of the identity

The function a[n+ί\p) is defined only on the restricted mass shell, and hence is a
function of the variables z(pf\ Ω(pf\ and Ω(pf), where Ω(pf) and Ω(p.) are
z-independent "angular" variables. It is defined by the equation

where the operator α"+ 1 is the (n+ l)-th power of the operator αz, which is defined
by the above equation for the special case a[1](p)^a(p).
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Solution (2.7) has the general form

an(p)f"(z(pf))
71=0

(2.9)

where the functions an(p) are holomorphic near P. This general form holds also for
the Feynman function FG corresponding to any contributing graph G (i.e., any
connected graph G each vertex of which connects at least six lines). Thus Landau's
suggestion is naturally interpreted in our example as the condition that the
function Sc(p) should have this form (2.9).

Accepting this condition and substituting the form (2.9) of Sc(p) into (2.1), and
using the fact that the functions fn(z) for n = (0, 1, 2, . . .) are linearly independent, in
the sense that no nontrivial linear combination of these functions multiplied by
analytic functions vanishes, one obtains, using (2.8), recursion relations that imply
that (2.7) is the unique solution of (2.1) on the restricted mass-shell variety

We shall not attempt to derive the uniqueness of solution (2.7) from the weaker
property R, but rather accept on the basis of Landau's suggestion that solution
(2.7) is the physically appropriate solution.

Solution (2.7) provides a simple example of property RP. The connection is
made by identifying the term a[n+ 1]fn(2π)4δ4 of (2.7) with the term SGP of (1.2) for
G = G". Then in some sufficiently small real product neighborhood Ω(P) of P the
sum (1.2) is absolutely convergent in the operator sense (1.3) due to the decreasing
factors (z2)". On the other hand, if this same sum (2.7) were to be arranged in the
form (1.1), i.e. as Σ ao, p(p)FG(p\ then it would not in general converge. The
convergence in the form (2.7) is due to the fact that each independent function /"
occurs just once in (2.7), as compared to an infinite number of times in the
rearranged form (1.1). The parsimonious arrangement (2.7) avoids the divergence
associated with the infinite multiple counting of like terms.

In the context of the Landau condition that Sc(p) should be formally
representable in the form (1.1) one may describe the rearrangement that converts
the divergent formal sum (1.1) to the convergent sum (2.7) as follows: for each
Feynman function FG(p) one exhibits a "leading part" FG p(p) by subtracting from
FG(p) a sum of products of analytic functions times functions FG,(p\ where the G'
are contractions of G:

FL

G,P(p) = FG(p}-ΣaG,,G>P(p)FG,(p) . (2.10)

This equation permits a formal rearrangement of (1.1) into the form

Σ 4>)^.P(P)= Σ SG>)> (2.H)

where the SG>P(p) satisfy (1.2b) and (1.2c). However, this sum (2.11) converges only
if the leading parts FG p(p) are appropriately defined.

In our example the leading part of FGn(p) is FGn(p) = (f+(z(p))}n. This function is
characterized by the close connection of its behavior near the point P to that of the
phase-space integral associated with G" : both functions have, up to logarithmic
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factors, the same power-law fall off x4n when the point x = 0 is approached along
the positive real axis.

The close connection between singularities of Feynman integrals and those of
phase-space integrals is not accidental. It is demanded by the constraints imposed
on the singularity structure of the S-matrix by unitarity. In particular the S-matrix
is required to have singularities that cancel the explicit singularities arising from
the phase-space factors that occur in the unitarity equation, and in the more
complex equations that arise by combining the cluster decomposition property of
the S-matrix with multiple applications of unitarity [9]. The explicit singularities
of phase-space integrals thus become the "driving terms" that force the S-matrix to
have singularities [9]. And these S-matrix singularities must be of such a form as
to be able to cancel the explicit singularities associated with the phase-space
factors.

In our example the function SG P(p) can be identified as the part of Sc(p) that
exactly cancels the purely positive-α part of the singularities arising from the
phase-space integral associated with G. This can be seen as follows. Iteration of
(2.1) gives the expression

00

S C

+ =Σ(S C T, (2.12)
n= 1

which converges absolutely in some sufficiently small real product neighborhood
of P in the operator sense that the sum of the norms of the terms on the right-hand
side of (2.12) converges. Inserting solution (2.7) into the left-hand side of (2.12), and
the analogous solution with/" replacing/+ into the factors S~ on the right-hand
side, and using the representation ( f + — f ~ ) for the phase-space factors (2.4)
occurring on the right, one obtains an identity: every term on the right-hand side
containing a factor /~ can be paired with an identical term of opposite sign,
leaving precisely the sum (2.7). Moreover, each term Sn

GtP = a[n+l\J +)"(2π)4δ4 of
this remaining sum (2.7) enters only once on the right-hand side, and appears in
precisely that term that has the phase-space factor ( f + —f~)n corresponding to G".

There is a generalization of the expansion (2.12) that expresses any connected
part 5C

+ as an infinite sum of unitarity-type integrals involving only the functions
S~. ([9]) In this sum there is for each Ge &P precisely one term that corresponds to
a bubble diagram that reduces to G when each bubble is replaced by a point
vertex. And in the unique unitarity-type integral there is precisely one point K(P)
in the domain of integration that gives a contribution to the integral at point P.
The pair (P,K(P)) defines a point in the domain of definition of each of the
functions S~ occurring in the integrand of this unitarity-type integral. At these
points each S~ has an analytic background term. The constant parts of these
background terms combined with the conservation law and mass-shell constraints
give a contribution to the integral that is a multiple of the phase-space integral
corresponding to G. There must be a contribution to Sc

+ that cancels that
positive-α part of the singularity associated with this phase-space factor. Our
example shows that the logarithmic factors associated with SG P can be different
from those associated with the phase-space factor, which at least in its simplest
form, has no logarithmic factors at all. However, the remaining power-law
behavior of SG P is the same as that of the associated phase-space factor.
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This equality of the power-law parts suggests that one can formulate in the
following way a small part of the idea that SG P is that part of Sc that is generated
by the unitarίty-induced phase-space factor associated with graph G : Suppose for
some r0 >0 the restrictions to real multispherical domains \pj — Pj\<r0 (ally) of the
phase-space integrals corresponding to the graphs Ge^p have norms bounded by
expressions of the form

DP(CP)
nGrbG p, for all r<r 0 , (2.13a)

where n'G is the number of vertices of G. Then the norms of the similarly restricted
operators SGiP have bounds of the form

DP(ACf

P)
nGrbG'p(logr)NG (2.13b)

for all r <r'0, for some constants C'P and r'0 >0, where NG is the number of internal
lines of G and A is the maximum value of the analytic parts of the scattering
functions S~/(2π)4δ4 in the relevant domains.

This bound on \SG >P\ is far stronger than what is needed to prove the
convergence property RP. To see this observe first that the result of [12] implies
that for any P the set of graphs $p corresponds to a set of space-time diagrams @P

that consists of a finite set of space-time diagrams Q)'P together with the diagrams
that can be formed by taking some diagram D of Q)'P and inserting extra vertices on
special subsets of space-time lines of D. Each of these special subsets consist of a set
of space-time lines of D that are all parallel. Thus the inserted vertices correspond
to zero-energy processes in which all the initial and final particles are at rest in
some frame, namely that frame defined by the set of parallel space-time lines. The
insertion of these zero-energy vertices does not alter the kinematics, and hence
infinite numbers of them can be inserted. The convergence problem arises only
because of the infinite sets of diagrams that can be formed in this way by the
insertion of zero-energy vertices. However, these zero-energy vertices correspond
to operators whose norms fall-off as some power of ρ, the radius of the real multi-
spherical domain centered on the zero-energy point defined by (P, K(P)). For the
simplest case of a 2-to-2 vertex the fall-off is according to the first power of ρ, and
for the general n-to-n vertex the fall-off is like ρ3""5.

There is no essential loss of generality in considering the case in which 2)'P
consists of just one diagram, and in which this diagram has just one set of parallel
lines : the modifications needed to pass to the general case are simple. Suppose the
set of parallel lines consists of N' lines. It is then sufficient for our purpose to use a
single bound of the form C^ρ81 for all n-to-n vertices with n^N' and for all ρ<ρ1?

where ρ1 >0 and e t >0.
Suppose K is the number of ways in which a vertex can connect some subset of

the set of N' lines. Then for some constant C2 and sufficiently small ρ2 >0 one has

for all ρ<ρ2 The sum on the left-hand is a sum of bounds on the norms of the
infinite set of operators corresponding to the infinite set of ways in which the zero-
energy vertices can be inserted into the set of N' parallel lines.
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Let r be the radius of the real multi-spherical domain \p. — P;.| < r (allj) centered
on P. The condition r = 0 forces ρ = 0. Hence it follows - from the Lojasiewicz
inequality - that ρ<(Cr)/ holds for some C and />0, in the domain r<r'ά for
some T"Q >0. Thus for some sufficiently small r0 our condition (2.13a) on the norms
of the phase-space factors associated with the phase space factors GE$P holds,
with each zero-energy vertex contributing a factor C'rε for some ε>0. Then the
resultant condition (2.13b) on the norms of the \SG>P\ give the required convergence
property Rp, since a contraction of the domain r < r0 to a domain r < rf

0 — r0/λ
ίrYί r\N'

converts rε(logr)N> to - log- , which for any fixed ε>0 and N' is smaller than
\Λ/ \ λ)

the original value for some sufficiently large λ. Note that the number of lines NG

can increase no faster than Nr times the number of vertices.

Within the framework of perturbation theory the argument given above is
merely heuristic. Indeed, since the questions at issue involve the convergence of
sums of diagrammatic contributions, the perturbation theoretic framework pre-
sumably fails to provide an adequate basis for rigorous analysis. The essential
point of the above argument is to show that if the analytic background parts are
finite, as they must be for a sensible theory, then the terms in any infinite sequence
of singular diagrammatic contributions should, if these terms are properly
organized, appear with geometric factors that fall off fast enough to ensure
convergence. This result should, in principle, be demonstrable within the frame-
work of axiomatic field theory. Indeed, recent developments within that discipline
should place within grasp a proof of the result in a neighborhood of the three-
particle threshold. That proof should exhibit in this concrete case the relationships
described in a general context in the above argument. A general proof within the
framework of axiomatic field theory lies at present out of reach. Within the
framework of ^-matrix theory, where the aim is to impose the strongest possible
analyticity assumptions compatible with the other general principles, it is reason-
able to take the regularity property ,R as an ansatz and then examine its
compatibility with the other principles. This program leads immediately to the
question considered in the following sections, namely that of the analytic
properties of unitarity-type integrals, under the assumption that the S-matrix
enjoys the regularity property R.

The present work is based principally on the property RP. However, the above
arguments suggest the likely validity of a stronger property Rp that includes also
the condition SG P = a1

G PFG p, where the leading part FG p of FG has the form
(2.10), and is subject to norm conditions of the kind (2.13). This property is
considerably stronger than Rp, since it specifies not only the locations of the
singularities of SG>P but also their nature, to the extent that the nature of the
singularities of the leading parts FG P are specified.

Landau's original suggestion [7] included the idea that the Feynman functions
should determine both the location and the nature of the singularities of the
S-matrix. Thus the property RL can be regarded as a precise formulation of
Landau's suggestion that incorporates an appropriate convergence condition.

This property RL can also be regarded as a very reasonable ansatz in the
framework of analytic ^-matrix theory, which can be regarded as a development of
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Landau's suggestion. For the notion of maximal analyticity is essentially an
instruction to impose the most stringent analyticity properties compatible with
unitarity, macrocausality, and Lorentz invariance. Property RL is much more
stringent than R, yet it appears, on the bases of the many studies done between the
time of Landau's 1959 paper and now, to be fully compatible with these S-matrix
conditions. Further studies like those of [4] examining in detail the compatibility
of RL with unitarity are needed. These demand an understanding of the singularity
structure of unitarity integrals, under the assumption that RL holds.

Although the present work rests largely on RP we do require also the local
integrability of the relevant integrands. This local integrability property appears
plausible in its own right. Yet it does not follow immediately from Rp, which says
nothing about the nature of the singularities. In our examples the required local
integrability is shown to follow from the results of [4], or, alternatively, from the
Landau postulate RL.

A complete formulation of RL would demand the specification of the leading
parts FGP of all Feynman functions FG. Since only very limited use is made here of
RL we shall not develop the general theory but will be content to specify FG P in a
few simple cases. These cases cover those that occur in our examples.

Suppose the Feynman function fG = FG/δ4 has, near P, the form

O)- + b(p) (2. 14a)

(α non-integer)

or

(2.14b)
(v non-negative integer) .

Then the leading part of fGίP(p) is this same function with b set equal to zero.
If a connected graph G can be cut into two connected parts G and G" by

cutting through a single vertex then

where P' and P" are the parts of P that refer to G' and G", respectively. Equation
(2.15) can be used iteratively to obtain the leading parts of the Feynman functions
corresponding to iterated graphs such as those occurring in Fig. 1.

For a triangle graph G, and a point P lying on the intersection of the triangle
singularity surface L\(G) and the two-particle normal threshold surface L\(G'),
where G' is a contraction of G, the analysis of [4] [see Eq. (4.2)] suggests that FGP

should be a non-vanishing analytic function times logO^ +]/— 10) + x2), where
xl and x2

 are tne variables discussed there.

Added Note. After this work was completed we received a communication from
D. lagolnitzer kindly informing us that our assumption that the general solutions
should have the form (2.9), which we extracted from Landau's suggestion, and
which follows also from RL, is entailed in a field theoretic context by a
consideration of the Bethe Salpeter equation. Details can be found in a forthcom-
ing paper by J. Bros, D. lagolnitzer, and D. Pesenti entitled "Non-Holonomic
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Singularities of the S-matrix and Greens Functions". (Saclay Preprint Dph-5/81/8
Submitted to Commun. Math. Phys.) In that work these authors have inde-
pendently examined in great detail the model discussed from a slightly different
viewpoint in beginning of this section. The present work deals explicitly with the
fact, stressed by those authors, that the S-matrix cannot be a single holonomic
function: we assume only that it is locally a convergent sum of regular holonomic
functions.

3. Micro-Local Analyticity of Bubble Diagram Functions

To fix the notations, we first recall the definition of Landau equations associated
with the signed Landau graph G having n external lines, ri internal vertices and N
internal lines. Each internal line Lz carries a sign σt (— + 1 or — 1), which is distinct
from its orientation. In what follows we label each external vertex by the same
index r that labels the (external) line incident upon it. The graph G is assumed to be
partially ordered and connected.

Definition 3.i. A set (pl5 ...9pn'9uί9 ...9un) = (p'9u) consisting of n real four-vectors

pr and n real four-vectors ur is said to be a real solution of the Landau equations
associated with G if and only if there are sets of real four-vectors fcz (/=•!, . .. , N)
and Vj ( / = l j .. ,w') and real scalars αz (/=!, . . . , N) and βr (r=l, . . . ,n) such that the
following relations (3. la) ~ (3. If) are satisfied:

Σ [/:Φr+ Σ [/:% = <>, 7 = 1,...,*', (3.1a)

ur=- \j(r) : r](ϋΛr) - βrpr) , r = 1, . . . , n , (3.1e)

σ/α/^0, /-I, . . . , 7 V . (3.1f)

The relations (3. la) ~(3. If) are called Landau equations. The set of vectors

(p ]/— Iw), where (p M) is a real solution of Landau equations is denoted by <£(G\

Remark 3.2. We regard &(G) as a subset of ]/^ΪT*IR4". That is, M is regarded as a
cotangent vector at p.

Definition 3.3. The projection π(^(G)) of JSf (G) to IR4n is denoted by L(G\ where π

is the canonical projection from ]/^Tτ*IR4" to IR4".

Definition 3.4. [J^(G)]C denotes the set of all complex vectors (p; u) that satisfy the
relations (3.1) except for the inequalities, and (L(G))C is its projection onto (C4n.

Definition 3.5. The set of equations obtained by replacing the condition (3. Id) with
the following conditions (3. Id') is called the set of pre-Landau equations:

vj+(i)-vj-(i)-aιkι = }vι (3 ld/)
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Here w; is a real four-vector. The set of all vectors (p,k ]/—l(w, w)), where
(p, k u9 w) is a solution of the pre-Landau equations, denoted by Jί(G). This set
Jf (G) is called the pre-Landau variety associated with G.

Definition 3.6. If (p;u) = (p; 0) satisfies the Landau equations with some αz Φ 0, then
p is called a ι/ = 0 point for the graph G.

If (p,/c; w, w) = (p,/c;0,0) satisfies the pre-Landau equations (and hence the
Landau equations) with some αz φ 0, then such (p, fe) is called a w = 0 solution for
the graph G.

The set L(G) is contained in the reduced mass-shell variety

^rdefp
R4^J>rPr °>P'2 O a n d / V o > 0 ( r l, . . . ,n,

Here and in what follows εr denotes [;(r):r]. Furthermore ̂  is non-singular

outside J^exc = {peJίr all p/s are parallel}. Hence, if we denote Jiγ — Jt^ by Jl',

then we may regard the Landau equations (3.1a)~(3.1f) as defining a subset of

]/— \T*Jl' under the convention that (p; ]/ —\u) and (p'; ]/— lu') define the

same point in ]/— 1T* '̂ if and only if both

P = P' (3.2a)

and

^-t^-ε^-y^ (r=l, . . . ,n) (3.2b)

hold for some real four-vector a and real scalars yr (r=l,. . . ,π). (See e.g. [13,
p. 115] for the detailed arguments.)

To state our main results (Proposition 3.16 and Theorem 3.17) we fix our
notations concerning the bubble diagram function FB(p\ and the bubble diagram
amplitude fB(p). This latter function is obtained from FB(p) by factorizing out the
over-all energy-momentum conservation (5-function factor δ4 /Σ [/(r): r^pr\ FB(p)

: r~\Pr\ See [4] for the definition of FB(p) and the notations which
are not explained here.

Each bubble of the bubble diagram B is labelled by an index b (1 ̂ b^b0), and
each (explicit) internal line of B is labelled by an index i (1 ̂ z :gί0). The mass and
the energy-momentum four-vector associated with the i-th internal line of B are
denoted by μj and qi9 respectively. We denote by G(S) the Landau graph obtained
from B by replacing each bubble with a point. For any set of Landau graphs Gb

(I^b^b0) we denote by (X)G& the Landau graph obtained by inserting Gb into
B

the b-ih bubble of B. And define σ(b) to be + or — according to whether the fc-th
bubble is a plus-bubble or a minus-bubble. Each graph Gb must have the same set
of external lines as bubble b. We denote by &(B) the set of all sets {Gb}

b

b°= 1 that fit
into B. For {GJJ°=1 in &(B) we denote by #({GJ) the set of Landau graphs
{G'b}l°=ί9 where Gb is Gb or its contraction.
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Example of B, G(B\ and (X) G

Fig. 2. A bubble diagram B

G ( B ) :

when

Fig. 3. Some Landau graphs

and Go=

In what follows we denote by ΦG(B}(p,q) the integrand of the phase-space
integral associated with G(B\ with the over-all energy-momentum conservation
(3-function being factorized out:

)= Π <
1=2

ED' :(]«,) <
ί / i = l

(3.3)

where p lies in the reduced mass-shell variety Jiγ and j0 denotes the number of
internal vertices of G(B). We denote by JfG(B) the sub variety ofj(r x R4ί° outside of
which ΦG(B)(p, ̂ ) vanishes. The complexification of ̂ G(B) is denoted by Jtξ(By If a
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point (p, q) in JtG(B} is not a u = 0 point for G(£), then JίG(K) is non-singular near
the point. We denote by JίG(^ reg the set of all such points. If a point p in Jlγ is not
a w = 0 point for G(#), then the bubble diagram amplitude fB(p) takes the following
form by definition :

/» = ί Π s6(P. <Z)ΦG(B)fe «) Π A, , (3.4)
6=1 i= 1

where sb(p,q) denotes the scattering amplitude [or its complex conjugate if
60

ε(b)= — 1] associated with the fc-th bubble of B and the product Y\ sb(p,q) is a
distribution on JtG(B).

 b = 1

Before beginning the study of the singularity structure of the bubble diagram
functions, we introduce some notations concerning a bubble diagram B and
present some preparatory results.

Definition 3.7. (i) R(b) = {r; l^r^n, [b:r]Φθ}.

(ii) /(6) d= f{i;l^i2 fi 0,[fe:i]ΦO}.

(iii) p(b): the 4(=tt=jR(fc)) vector obtained from (p1? ...,pn) by deleting those pr

such that [b : r] = 0. Here ( ψ R(b)) denotes the number of elements in R(b).
(iv) q(b): the 4(φ/(i>)) vector obtained from ( q ί 9 ...,qio) by deleting those q.

such that [b:i]=0.
(v) Let w(b) denote the map from (Cfp

("g|
ίo) to (C4(*K(b)+ */(b)) defined by assigning

Let Jίf(V) denote the sub variety of C(

4

p%jio) defined by

Σ[^Φ,+ Σ[^ ̂  = O, (3.5a)
f i

p,2 = m2 for r such that [fc : r] Φ 0 , (3.5b)

qf = μl2 for i such that [ft : z] Φ 0 . (3.5c)

We denote w(b)Jΐf(b) by J(£d(b). It follows immediately from the definition that

)^ Π ^f(b) holds. Throughout this section we always assume that the
6=1

bubble diagram B satisfies the following additional condition:

For each bubble b of B, there are at least two incoming lines

and at least two outgoing lines incident upon b.

Lemma 3.8. Let B be a bubble diagram and let P0 be a real point in M^ (b^) for a
bubble bί of B. Let % be a sufficiently small neighborhood of P0, and let φ(p, q) be a
holomorphic function defined on °U. Assume that φ has the form φ(p(b1),q(bl)) and
that L(b1) = 0"1(0)n^n^:(fe1) is a hypersurface of WnJtflbλ Then

def

Π ^F(b)\ does not contain an open subset of
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Proof. It suffices to show the following property P: there exist an open
neighborhood ^(b^ oϊwφ^Po) in Jί^b^ and a continuous map /(b:) from
^(foi) to Jt%(B} such that tσ^)/^) is the identity map id. For the relation
w(bί)f(bί) = id implies that sQtwφ^LφJ) contains f(b1)~~ί(L(bί)r\J?$(B)), while
the continuity of f(b^ implies that f(b^~^L(b^)r^J^^(B) contains an open set of
Wφί) if L(bi)r^Jt%(B} contains an open set of J^ξ(Bγ Since τπφ^Lφi)) is a proper
analytic subset of ^?ed(fe1) the theorem follows from property P by contradiction.

In what follows, we say a bubble b of B is downstream (respectively, upstream)
from bί if b can be reached from bί by moving in G(B) in the direction
(respectively, anti-direction) of the lines of G(B). The map /(ί^) is constructed by
just allowing any change in the final ( = outgoing) pjs and q?s of bί to propagate
downstream through the bubbles b of B, and allowing any change in the initial
( = incoming) p/s and g/s of b1 to propagate upstream through the bubbles b of B.
To show that this propagation is possible we allow all of the change of energy-
momentum coming into each bubble b that is downstream from b1 to go into the
energy-momentum vectors associated with some two preferred lines outgoing
from b. The existence of such lines is guaranteed by (3.6). Then what we have to
show is the existence of a solution (p,pf) of the following Eqs. (3.7a)~(3.7d) that
depends continuously on (E, P) for (£, P) sufficiently close to some original value,
which by a suitable choice of coordinate system can be taken to be (μ, 0) with μ a
strictly positive number. In the following equations m1 and m2 denote the relevant
masses.

p2»-V2 = ml (3.7a)

(3 7b)

(3 7c)

(3.7d)

Denote ml + pi + pi [respectively, m2

2 + (P2--p7)
2 + (P^ -p^2'} by A

(respectively B). Then it suffices to show the existence of a continuous solution
(Po>Pι) °f tne Eqs. (3.8) and (3.9) below, where a continuous solution is required to
depend continuously on the parameters (A,B,E,P^):

pl-p\ = A, (3.8)

(E-pQ)2-(P,-p,)2 = B. (3.9)

From (3.8) and (3.9) one obtains

4(Pl-E2)pl + 4P1(E2-Pl + A-B)p1+(E2-Pl + A-B)2-4E2A = Q9 (3.10)

p2o = pl+A. (3.11)

Since P\ φ E2 holds on sufficiently small ,̂ the existence of a continuous solution
of (3.10) and (3.11) follows. This implies the existence of the required
/(&!>. Q.E.D.

The following lemma is a variant of Theorem 2.8 of [14], designed to be
suitable for our purpose.
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Lemma 3.9. Let V be an open subset of <Cl and let <% be defined by ^nlRλ Let χj(x)
(j = 1, . . . , m) be holomorphic functions defined on ̂  which satisfy the following two
conditions :

Xj(x) is real-valued on <% , (3.12)

(j = 1, ... ,m) are linearly independent at each point
={xεW<c;x = V=l...m. ( }

def

Let Jί be the manifold given by {XE% ;χj(x) = ΰ (/ = !, ..., m} and let f be a regular
holonomic hyperfunction on M which is locally summable and with characteristic
variety A. Let φ(x)(φO) be a holomorphic function defined on ̂ c which is real-
valued on % and vanishes on n(Λ\ Let Jf be a submanifold of^lί defined by {XE%I

*ιM= " =XdM = 0 (d<m)}. Then g = fδ(χd + 1(x))...δ(χm(x)) is a well-defined
def

hyperfunction on Jί ana its singularity spectrum is confined to the following set :

{(x ξ)ε ]/ — \$*Jf there exist a sequence x(v) in Jί^, c(v) in C and Cj(v) (/ = !,..., m)
in Cm which satisfy the following :

x(v)^x, (3.14a)

c(v)φ(x(v))^Q , (3.14b)

φ) grad(/>(x(v)) + f c/v) gradχ/x(v))-^ξ . (3.14c)
7 = 1

The vector ξ in (3.14c) is identified with a cotangent vectors of Jf at x by the usual
d

rule, namely, by being considered modulo vectors of the form ^ a^ grad Xj(x) with a 3

This lemma follows immediately from Theorem 2.8 of [14]. In case π(Λ) is of
codimension 1 in ̂  the function φ can be taken to be a defining function of π(A).
Then the result is independent of the choice of φ.

In what follows we choose J?G(B}>rQg as Jί and Jί' x IR4l° as Jf . Thus we choose
i0l (p,q) as x,

d = n + 4m = n + i0 + 4fe0 ,

Ir(x) = P2r-m2r (r=l, . . . ,w) 5

n

*„+/*)= Σ Wrj-ί (7 = 1,2, 3, 4),

and

l*j-ι (& = 2, ..,60J=1,2,3,4).
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Definition S.iO. For a bubble diagram B and a set of Landau graphs {Gb}^L 1 that

fits into β, KQ({Gb}) is, by definition, the following subset of }fΛ$*(M' x !R4ί°) :

{(p, 4 /^(tt, w)e ]/^ΪS*(Jlf x IR4'°)

(i) (p,g)eA?(β),reg
(ii) (p,q) is a w = 0 point for some (g)G'b with {G;}£°=1 in ^({Gb}).

(iii) For any function φ that
(a) is holomorphic but not identically zero on a complex neighborhood Ω€

of (p, q) in ^(JB),
(b) is real valued on ^G(J3),regn^£, and
(c) vanishes on

where /G is the Feynman function FG with the conservation δ4 factored out, there
exists a sequence of complex numbers c(v), βr(v) (r = l,...,π), α f(v) (z = l, ...,i'0)5

complex four-vectors vb(v) (fc = l, ...,60) and complex vectors (p(v), g(v)) which
satisfy the following conditions (3.15α)~(3.15ε).}

)e^(B)9 (3.15α)

))-*(p,ί), (3.15β)

,ί(v))->0, (3.15γ)

(p(v)^(v))->^, (r = l,. ..,«), (3.155)
r

WvX^vW-^w,, (i=l, ...,i0). (3.15ε)
& ^i

Remark on (iii). Since π(Ch(/GJ) is a proper analytic subset of Jt^(b\ Lemma 3.8
guarantees the existence of functions φ that vanish on £f and are not identically
zero on i2cn^^(B). If for any such φ the reality condition is satisfied and (3.15)

cannot be satisfied then (p,qι ]/— l(w, w)) does not belong to K0({Gb}).

Definition 3.11. For a bubble diagram B and a set of Landau graphs {Gb}
b

b°= ί that
fits into B, ̂ ({GJ) denotes the set of all points (p, q) that satisfy the following two
conditions:

The point (p, q) is a w = 0 point for (X) G^ with
B

(3.16)

There is no open neighborhood ω of (p, g) in ^G(B) such that the product
bo

Π sb,Gb,(p,q) ^s an integrable function on ω. Here sb j G b 5 ( p > ί Z ) is the function obtained
& = ι
by factorizing out the conservation ^-function from the function associated with
Gb and point (p,q) that appears in the expansion (1.2a) of sb, the scattering
amplitude, or of its Hermitian conjugate if

σ(b)=-ί. (3.17)
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Definition 3. ί2. A point (p,q) in JίG(E) is called a tame point with respect to a
bubble diagram B, if it belongs to ̂ G(β)>reg and if it is not contained in ̂ ({GJ) for
any {Gb}

b

b°=1 in $(B\ We donote by ^G(B}>tame the set of all tame points with
respect to B.

Definition 3.13. Jίgood(B) = {peJί' p is not a u = 0 point for G(B), and for each q

such that (p,q) is in ^G(β), the point (p,q) is contained in ^G(B}ΛΆmQ}

Definition 3.14. For a bubble diagram J3, j£(5) is, by definition, the closure of

in ]/̂ IS*(̂  x IR4ί'°).

U
{Gb}EG(B)

Definition 3.15. For a bubble diagram B, /L(£) denotes the subset of ]/ — \.S*Ji'

given by {(p ]/^ΪU)E }f^iS*J{' there exists <?e!R4ίo such that (p, 4 ]/^i(u9 0))
belongs to J£(B).}

Now our main results are stated as follows:

Proposition 3.16. Let B be a bubble diagram that satisfies the condition (3.6), and let
{Gb}

b

b°=ι in &(B). Let (p,q) be a point in J^G(B)>reg that is not contained in ^({G^}).
/ b0 \

Then Y\ sb>Gb}(p>q}\ΦG(B) is zero as a microfunction on

for an open neighborhood ω of(p, q) that does not intersect ^({GJ). Here π denotes

the projection from ]/^ΪS*(Jΐ' x IR4'°) to Jt' x IR4'°.

Theorem 3.17. Let B be a bubble diagram that satisfies the condition (3.6). Then, on
the condition that the scattering amplitude has the property jR, fB(p) regarded as a
microfunction is zero on π~1 Jίgood(B) — Λ(B), where π denotes the projection from

y^ίS+Jr to M'.

Proof of Proposition 3.16. First consider a point (p, q) close to (p, q) and that is not a
M = 0 point for any (χ)GJ, with {GJ,}J°=1 in #({GJ). It then follows from the

definition that (p, q) is not a u = 0 point for any Gb. Hence

' b'(P> 9) G'be%(Gb)

holds in a neighborhood of (p,q). In this case, by the general theory of
microfunctions [15, Chap. I], or, essential support [16], we can conclude that

bo \ I

Π sb,Gbί(P,q)}φG(B)\ is confined (J ^/(X)GΛ in a neighborhood of
> = 1 / J {G'b}e^({Gb}) \ B ]

(p,q). (See lagolnitzer [17] and Kawai and Stapp [4] for the detailed argument in
this case.) Next consider a point (p,q) which is a u = Q point for some (X)G£ with

B
{Gb}l°= l in ^({Gb}), but is not in X1({Gb}). Lemma 3.9 applies to this point. That is,

SS
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the singularity spectrum of ίγ[sb Gb (p q}\ ΦG(B} is confined to K0({Gb}) at that point.
\b )

Thus we have verified that (\\sb Gb (p q^ΦG(B} is zero as a microfunction outside

{G'b}e<$({Gb})

This completes the proof of Proposition 3.16.

Proof of Theorem 3.17. Since p is not a u = Q point for G(£), fB(p) has the form

Since we may change the order of summation of absolutely convergent series, we

may assume, on the basis of the property R, that ΠsbΦG(B)

 nas *ne f°rm

b

L i.[Sb,Gb(kb),(p,q)ΦG(B)

(kb) b

in a neighborhood of a point (p, q) in JίG(Bγ Since (p, g) is a tame point with respect
to B by the assumption, Proposition 3.16 implies that

L [[Sb,Gb(kb),(p,q)ΦG(B)
(kb) b

is zero as a microfunction outside K(B). Then it follows from the general result on
the integration of microfunctions [15, Chap. I, Theorem 2.3.1] that/B(p) regarded
as a microfunction is zero outside Λ(B). This completes the proof of Theorem 3.17.

Remark 3.18. The above proof shows that what is needed is not the full property R,
but merely R(p>q) at each point (p, q) in JtG(B} that is a u = 0 point for some (X) Gb

We do not presently have much detailed knowledge about the geometry of
Λ(B), particularly because of the need to consider the closure of the union of
infinitely many varieties. Note, however, that only finitely many terms are needed
in the expansion (1.2a) if no n( ̂  3)-particle threshold is relevant at the point in
question. (Zimmermann [18], cf. [4] and references cited there.) In such circum-
stances the singularities oίfB(p) can be attributed to each Landau graph (X) Gb, on

B

the supposition that the scattering amplitudes satisfy the property R.
The following examples illustrate the effectiveness of our results in resolving

u = 0 problems. A geometric study of Λ(B) will be given in Sect. 4.

Example 3.19. Let B denote the following bubble diagram.
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Let G1 and G2 be the following Landau graphs.

P3

233

Fig. 5. Several Landau graphs

Suppose that the masses associated with pr(r = 1, . . ., 6) and the internal lines of G1

and G2 are all equal to ra(>0). Suppose further the following conditions on
//;(/ = 1,2, 3) and m

(3.18)

(3.19)

9m2 - μ'f <%μ? . (3.20)

Define M by μ\ ( = μ'2) and μ by //3, respectively. Since ql = μ2 holds, the sets
[and L(G2J] can be described in the (s, σ)-plane as below (e.g. [19, p. 60]). Here

s = (Pι+P2+P3)
2 = (P4 + P5+P6)2 and σ = (qί+q2)

2.

In Fig. 6, L^Gi) (==Lj"(G2)) denotes the leading positive-α Landau surface
(i.e., all αz are strictly positive) corresponding to G1 and the coordinates of the
points A, B, . . ., F are given as follows :

A: (9m2, 4m2), B: (10m2-//2, 4m2),

C: (9m2,(9m2-μ2)/2), D: (9m2, 4M2),

: (50,4M2), F: ,4m2).

Fig. 6. Singularity surfaces
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Here s0 is the smaller root of the following equation in s :

(s + 5m2)2 + aβ(s + 5m2)/m2 + tt2 + 4β2-16m4 = Q, (3.21)

where a = μ2 — 5m2 and β = 4M2 — 2m2. Here we note the following:

(i) The condition (3.19) guarantees that the s-coordinate of B is greater than
that of A.

(ii) The condition (3.20) guarantees that D is located in the segment AC and
that the s-coordinate of F is smaller than that of A.

Now let us consider the analyticity of the function / defined below in the
domain Ω = {peJίr;9m2 <S<SQ}:

f = $ sGί(p', q)sG2(q, P"}<Ϊ>B(P', P", tidq , (3.22)

where p' = ( p ί 9 p 2 , P3) and p" = (p4, p5, p6). Note that every point in Ω is a u = 0 point
for the graph G^G2. Define N by

and define Npaτ by {(p,q)eNι q1 is parallel to q2}. l ί ( p , q ) belongs to Λfpar, then
(p', q) must lie on the open segment DE. Hence (p', q) does not lie either on L^GJ
or on the half line {(s,σ); s = 9m2, σ^4m2} or on {(s,σ)_; s^ 9m2, σ = 4m2}. In other
words, (p', g) does not lie on the singularities of /Gι or /G2, the complex conjugate of
fG2. Therefore these points (p', q) can contribute to singularities of the integral /
only at s = (2M + μ)2. However, (2M + μ)2 is smaller than 9m2 [by (ii)]. Thus this
singularity of / lies outside the domain Ω.

Next consider the case where (p', q) does not belong to Npar, but lies on
singularities of the integrand that can lead to u = 0 points of the integrand. In this
case (p',q) belongs to the open curve EC. Since the singularities of /G. [z = 1 or 2]
are contained in the nonsingular hypersurface L^G^ the set π(Ch(/G.)) is
confined to the complexification Lc(Gf) of L^(Gt\ in a complex neighborhood of
EC. Furthermore, the function SG. has near EC the form α(p\ q) (φ(pr, q)

+ |/— 10)3/2 + fc(p/, q) for some holomorphic functions α and b, where φ is a
defining function of L^(Gt) [4, Corollary in p. 222]. Hence the point (p,q) in
question is a tame point : i.e., the local integrability requirement is satisfied. Since
gradq0(p'?q) never vanishes on the open curve EC, A(B) is void. Thus we have
verified that / is analytic in Ω.

Although we have used here a result of [4], which is based on the discontinuity
formula, in order to guarantee that the point (p, q) in question is a tame point (i.e.
that the local integrability requirement is satisfied), we could have used the
property R^itP(PeL^(Gt)) with the definition of F^. P given at the end of Sect. 2.
That is, we do not need to use the result in [4] if we accept #GlfP.
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Example 3.20. Let B be the following bubble diagram and suppose that all the
relevant masses are equal to m.

Fig. 7. A bubble diagram B

Let Gb (b = l,2,3,4) be the following Landau graphs.

q3

P7

Fig. 8. Several Landau graphs

Ps
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Let p be a point such that some point (p, q) belongs to JίG(Bγ Then p is a u = 0 point
for (X)Gfc. However, if the local integrability requirement is satisfied, then

β 4
Theorem 3.17 and property R ensure that the singularities of J f] sGbΦG(B)(p,q)dq

b=l

are restricted to a hypersurface H of Jtr.
The validity of the local integrability requirement (and also of RP at the

relevant points P) is ensured by the results of [4, Sect. 3.1], or by Zimmermann's
result [18], or by assumption RGP applied to the two-particle threshold graph G
and the two particle threshold points P.

Example 3.21. Let B be the same bubble diagram as in Example 3.20. Let Gb

(fc = 2,3,4) be the same Landau graphs as in Example 3.20 and let G t be the
following.

Fig. 9. A Landau graph

Let G\ denote the graph obtained from Gl by contracting out the internal line L t.
Again each point (p, q) in MG(^ gives a u = 0 point for (X) Gb. In this case, /Gι is a

locally integrable function near L^G'JnL^GJ, and the functions fGb (6 = 2,3,4)
are bounded. The form of sGί near the point in question has the form demanded by
RL (see [4, Eq. (4.2) and Eqs. (2.13) and (2.14) of the present work]). And again the
results either of [4] or alternatively, of the Landau postulate RL, ensure the
validity of the local integrability requirement. Then Theorem 3.17 again shows

4

that the singularities of j ]~J sGbΦG(B}dq associated with the indicated graphs are

confined to a hypersurface of Jir

4. The relation Between Λ(B) and the Extended Landau Variety

The purpose of this section is to study in the simplest case the relationship between
the set Λ(B) (Definition 3.15) and the set
p.114].1

introduced in [13, (1.50),

1 [13] uses the notation J'(D)
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In what follows, we consider exclusively a bubble diagram B such that
φR(b)^2 holds for every bubble b of B. For simplicity we consider the problem in
the subset Jt± of Jt' where the following condition is satisfied :

For each bubble b of B there exist two external
(4.1)

non-parallel energy-momentum four- vectors touching upon b.

It is readily verified that no point of Jtl is a u = 0 point for G(B). Furthermore,
under the assumption (4.1) we can choose a local coordinate system on MG(^ in an
explicit manner as follows: Let (p°,q°) be a point in JfG(E) such that p° is in Jt±.
Then there exists a neighborhood ω1 of (p°,q°) where the following condition is
satisfied :

There exist r(b) and r(b) (fc = l, ...,b 0) such that pr(b) and p~(b} are not parallel
on ω1.

By shrinking ω l 5 if necessary, we may assume further that

Pr(b), v(b)/Pr(b}, 0 ̂  Pf(b), v(b)/Pf(b), 0

holds in ω for some v(b)( = 1, 2 or 3). Define K0 by [r r Φ r(b), r(fe) for b = 1, . . . , fc0}.
Let p }̂ (b = 1, . . . , bQ) denote the two- vector

(Pr(f,), v l ( b)> PrUO, v2(fc)) I>l(&) < V2W, V^fc), V 2(fc) Φ 0, V(b)] .

Let pr and qf denote the three-momentum-vector part of pr and qi9 respectively.
Define p' to be the (3n — 4£>0)-vector obtained from (p1? ...,pπ) by deleting pF(b),
replacing pr(b) with p }̂ and replacing pr (rφR0) with pr Then we can choose
(p/,q)( = (p/,q1, ...,qίo)) as a local coordinate system on ωr We call it a preferred
local coordinate system. The corresponding cotangent vector is denoted by (u', w).
This is a [3(n + i0) — 4fo0]-vector and, as usual, it can be identified with a
representative of the 4(n + i0)-vector (u, w) modulo vectors of the form

(4.2)

for some four vectors vb and real numbers βr and α f. In what follows we denote by
(0, u', 0, w) the 4(n + z0)-vector which is canonically assigned to (u', w) by setting to
zero the components ur> 0, w~(b), ur(b)t v(b), and w/; 0 of the 4(n + i0)-vector (u, w).

We note that the above procedure for constructing a preferred local coordinate
system works equally well for the construction of an explicit local coordinate
system on Jl' . Such a local coordinate system is also called preferred local
coordinate system and is denoted by p'.

We now discuss, under the assumption (U) given below, the relationship

between & /(X) Gb\ and the part Λ({Gb}) of Λ(B) to which (X) Gb contributes. This
\ B I B

part Λ({Gb}) is, by definition, the following subset of ]f^Λ^Jί'\

{(pi }/^ϊu)E]^ΪS*J(':
(i) There exists geJR4l° such that (p,q) is a w = 0 point for (X)Gb.B

(ii) For any point (p, q) that is a u = 0 point for (X) Gb, (p, q ]/— l(u, 0))
belongs to K0({GJ)}. B
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We shall examine cases that satisfy the following assumption :
(U) If a point (p0, q0) is a u = 0 point for (X) Gb, then (pθ9 qQ) is in Z,0(G£(5))2 for

each b (1 ̂ b^b0) and the variety π(Ch(/Gb)) is contained in L(Gbf in a complex
neighborhood o ΐ ( p 0 , q0) for each b (1 ̂ b^b0).

The situations considered in Examples 3.19 and 3.20 are simple examples that
satisfy the assumption (U).

Now we show that Λ({Gb}) is contained in 0? /(X) Gb\ . We begin our discussion
(B >

by preparing a geometric result on Landau surfaces. Until the end of the proof of
Lemma 4.2 we abbreviate Gb by G, for the sake of simplicity of notation. Further
we denote G by G(mf) to emphasize its dependence on the mass mf associated with
some particular internal line Lz. As a mathematical device we allow ml to be a
complex number.

In what follows we use a preferred local coordinate system (p') on Jt' . Note that
its dual vector (u') is in a one-to-one correspondence with a 4n-vector u modulo
vectors of the form -[j(r):r]a-βrpr (αeR4,βreIR).

Lemma 4.1. Let p'(v) be any sequence of (3n — 4)-vectors converging to a point P in
L0(G+)CJ%' and let Lv be any single specified internal line of G. Then there exists a
sequence of complex numbers mx(v) that converges to m1 and that is such that the
point p'(v) is contained in L(G(m1(v)2))(C. Furthermore, we can find a complex
neighborhood ω of P and a holomorphic function /(p',ra2) defined on ωx {me(C;
\m — m1 | <ε} so that

{p'eω;/(p>2) = 0} (Im-m^ε) (4.4)

and

grad(p,>m2)/(p>2)Φθ on L(G(m2))nω. (4.5)

Proof. Let α be the set of Landau constants corresponding to the solution P of the
Landau equations. It follows from the definition of L0(G+) that a1 is strictly
positive. Now, a result of [20, Theorem 6] (see also [4, pp. 197-198]) guarantees
the existence of a holomorphic function /(p',m2) defined in a complex neigh-
borhood of (P,m2) which satisfies conditions (4.4) and (4.5). Furthermore, it
follows from the definition of the Landau equations that

Λ Γ

2 (Po» mo) = 2ΦΌ, moK, o > (4 6)

where αz 0 is the Landau constant corresponding to a solution p'0 of the Landau
equations associated with G(m%) and d(p', m2) is a holomorphic function that does

r\ f

not vanish in a neighborhood of (P, mf). In particular, — —^ (P, m2) φ 0 holds. Hence

the implicit function theorem guarantees the existence of required m t(v)2 for p'(v)
sufficiently close to P. Let fez(v), Vj(v), ur(v), α^(v), and βr(v) denote the quantities
giving the solution p'(v) of the Landau equations associated with G(m(v)2). We now

2 See Chandler and Stapp [20] for the definition of L0(G+). The definition of L0(G~) is the same
except for a change of sign of all α's. Chandler and Stapp use a script L
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use a (3n — 4)-vector u' to represent a 4n-vector u, so that u' may be the dual vector
of p'. Since we are concerned with quantities on S*Jf', we may further normalize u'
by imposing a normalization condition |u'| = l. Under this normalization con-
dition the quantities α,(v) (/= 1, . . . , N) and u'(v) converge to αz and u', respectively.
In accordance with this normalization we normalize /(p', m2) so that

l (4.7)

holds. Furthermore we have the following

Lemma 4.2. Let /(p', m2} be the function given by the preceding lemma. Let φ) be a
sequence of complex numbers which satisfy the following :

X)-X). (4.8)

Then we have the following :

ΦKίvXMv^-mίHO, (4.9)

c(vXgradp,/(p'(v), m2)- gradp,/(p'(v), m1(v)2))^0 . (4.10)

Proof. Let us first prove (4.9). Since k1(v)2 = m1(v)2 holds by definition, it suffices to
show

C(v)α1(v)(m1(v)2-m2)^0. (4.11)

On the other hand, by the Taylor expansion of /, we find

>'(v), m2) — /(p'(v), m1(v)2) = —j (P'(VX mι(v)2)(mι ~~ mι(v)2)

+ ί?(p'(v),m2,m1(v)2), (4.12)

where

Since

and since /(p'(v),m1(v)2) = 0 holds, (4.12) combined with (4.8) entails

Φ)^r(P'(v),m1(v)2X/nϊ-»ι1(v)2)-»0. (4.13)

In view of (4.6), we obtain the required relation (4.11) from (4.13). This completes
the proof of (4.9).

We next show (4.10). For that purpose we first note that (4.11) actually implies

φ)(m1(v)2-m2)^0, (4.14)

because the limiting value of α1(v), i.e. α l 5 is different from zero. Again, by the
Taylor expansion, we find

φ)(gradp,/(p/(v), m2)- gradp,/(p'(v), mφ)2)

), m2, m^y)\ml - m^v)2) (4.15)
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with a vector h of holomorphic functions. Then (4.10) immediately follows from
(4.14) and (4.15). Q.E.D.

Let us now reinstate the index b of Gb and denote by fb the corresponding /
given in Lemma 4.1. Let /b°(p', q) denote /b(p', q, mf(b)), where Ll(b} is an internal line
of Gb. Then we may take the function φ in Definition 3.10 to be ΠΛ° Using the
set of numbers c(v) given there, we define cb(v) by b

cb(v) = c(v) ΠΛ<(P'(v),q(v)). (4.16)
b ' Φ b

Then the condition (3.15γ) implies that

Thus the condition (4.8) of Lemma 4.2 is satisfied for the pair (cb(v), /b°(p'(v), q(v))).
Then (4.10) guarantees that we may replace grad(p,>q)/6°(p'(v),q(v)) by

m/(b)(v)2) in (3.155) and (3.15ε) without changing the limiting point (u'5 w). Here we
have used the fact that

φ) grad Π ΛV(v), q(v)) = £ Φ) grad/b°(p'(v), q(v)) .
b b

Now let us denote by pb

r(v\ fef(v), αf(v), j8^(v), ι J(v), and w£(v) the corresponding
quantities which appear in the Landau equations associated with Gb(raί(b)(v)2). We
expand w*(v) to a 4(π + z0)-vector by setting the components irrelevant to Gb to
zero. For the z-th explicit internal line of B, there exists a unique b + (ί) [respectively,
b~(i)~] such that [fe + (ί):f]=+l (respectively, [&~(z):f | = -1) Denote by y+(ι)
[respectively, j~(ij] the unique vertex of Gb + (ί) (respectively, Gb-(ί)) that L f

terminates upon (respectively, starts from). Then it follows from the definition of
fb and the normalization (4.7) that (see [20, Theorem 6])

(0, gradqι/b°+(i)(p', q)) = vj+(i} + j8ί§ +(v)4i(v)) (4.16)

and

b°_(^q)) = (ι;r(/) + ^_(vk ί(v)) (4.17)

hold with some constants βit +(v) and βit _(v). Here (0, gradqι/b°+(0(p',q)) denotes the
four-vector

%%•> %%, <±(;)

° ? f f and ^-i^ ^
Since

Σ c6( v) gradqί ̂ (p'( v), q(v)) = cb + (/)(v) gradqi /£ (i)(p'( v), q(v))
&

+ cb - (ί)(v) gradqι /b°_ (ί)(p'( v), q(v))
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holds, (4. 16) and (4. 17) entail

(0, Σ Φ) gradqf Λ°(p'(v), q(v)) = (cb +(ί}(v))(v . + (i)(v) + βit +(v)^(v))
V b I

-(WV)XWV) + A, -(v)Φ)) (4-18)

We now note that

2-χ.2HO (4.19)

holds, because ^-(v)2 — μ 2=0 holds by the definition of ^(v). Note also that the
left-hand side of (4.18) tends to zero by the definition of Λ(B). Thus we assign
(«i(v), cft + (ί)(v)Af Λv)-c f t-( ί }(v)ft f _(v)), (^vXc.Mα^M^Mt /v)), and (c,(vK(v)), re-
spectively, to the z'-th explicit internal line of B, the internal line Ll9 the vertex FJ. of
Gb, and the external line Le

r of Gb that is not an external line of B, and obtain, by
virtue of (4.9), (4.18), and (4.19), a sequence needed to define &(®GQ

b] [13, p. 114,

(1.50) and p. 115(1.50h.l) and (1.50L2)]. This proves that Λ(B)- (J &(®Gb\ is
&(B) ( B /

contained in & /(X) Gb\ on the assumption (°U\ This is what we wanted to prove.B
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