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Abstract. We use an effective criterion based on the asymptotic analysis of a
class of Hamiltonian equations to determine whether they are linearizable on
an abelian variety, i.e., solvable by quadrature. The criterion is applied to a
system with Hamiltonian

1 +1 1
H=1/2Y pi+ Y exp( Nijxj>,
i=1 i=1 ji=1
parametrized by a real matrix N=(N;,) of full rank. It will be solvable by
quadrature if and only if for alli=j, 2(NN"), AN NT)}-_j1 is a nonpositive integer,
i.e., the interactions correspond to the Toda systems for the Kac-Moody Lie
algebras. The criterion is also applied to a system of Gross-Neveu.

A completely integrable Hamiltonian system in a phase space of dimension 2/
possesses [ independent commuting integrals. Under a compactness condition, the
system executes linear motion on an [-dimensional torus defined by these integrals.
In most classical cases, the torus is defined by (real) polynomial functions of
appropriately chosen phase variables, and the transformation to the separating
variables is also algebraic. Moreover, the equations of motion in these new
variables are solved by quadrature; it means geometrically that the above torus
has an algebraic addition law and that the solutions are straight lines with regard
to this law. In most examples, the real torus above is part of a complex torus with
algebraic addition law. A Hamiltonian system will be called algebraically com-
pletely integrable if it can be linearized on an abelian variety (complex algebraic
torus with algebraic addition law).

This paper deals with a criterion for algebraic complete integrability, inspired
by work of Kowalewski. In celebrated papers [7, 8], she has shown that the only
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algebraically completely integrable systems among the rigid body motions are
Euler’s rigid body, Lagrange’s top and the famous Kowalewski top. Her method is
based on the idea that if the system is to be algebraically completely integrable,
and if the phase variables of the problem are to be algebraic (abelian) functions,
then the phase variables of the problem must be meromorphic in time. In addition,
the trajectories which blow up (as they must) are nicely parametrized by a
codimension one family of parameters. This implies the existence of enough
codimension one parameter families of (complex) pole solutions of the system so
that all the (abelian) phase variables get a chance to blow up (not necessarily
simultaneously). The sufficiency of this criterion has not been established. We
remark that the parameters of the pole solutions play the role of regularizing
variables when the equations blow up.

This paper breaks up into two sections. The first section deals with a system
governed by exponential non-nearest neighbor interactions, with Hamiltonian

1 1 I+1 1
H=-Ypi+ Zexp( Nijxj),
29 i=1 i=1

parametrized by a real matrix N =(N,;) of full rank. It will be algebraically com-
pletely integrable if and only if for all i¥j, 2(NNT)(NNT);" is a nonpositive
integer, i.e., the interactions correspond to the Toda systems for the Euclidean
Lie algebras. These systems turn out to be the systems first introduced by Bogoya-
vlensky [10].
These systems turn out to be the systems first introduced by Bogoyavlensky [10].
In the second section, the criterion is applied to the classical version of the
Gross-Neveu type model, as suggested by Shankar [11]. This is a Hamiltonian
system with energy of the form

1 1
H= §Zp?+ Y explo, gy,
1

where the second sum extends over the root system of a simple Lie algebra R. We
show that for the case R =sl(3) and sl1(4)~O (6), the system fails to be algebraically
integrable.

In [12], we apply the criterion to a class of geodesic motions in SO (4).
Specifically, we consider a system of differential equations

X =[X,AX] with X +X=0,

where (AX);;=4,;X;; with A;;=A;,. This system is shown to be algebraically
completely integrable with A;;, 1 <i<j<4, all distinct and X;; abelian functions
if and only if

ij>
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1. About the Complete Integrability of an Exponential System of Differential
Equations

This section deals with a lattice governed by exponential non-nearest neighbor
interactions, described in the introduction. As will be explained in Remark 4, the
equations of motion can be transformed into the following set of differential
equations:
1+1
Xi=x; ), ey,  A=ZisI+1,
j=1

(1)

1+1
=) X,
j=1
where E=(e;)) is a real square matrix of size [+ 1 and rank [, having a null vector
with entries all of the same sign. This system defines a Hamiltonian vector field for
a symplectic structure to be explained below, with Hamiltonian

1l+1 I+1
) PIRTED IS
i=1 i=1

The assumption on the rank of E implies that the system has exactly two extra-
invariants leading to zero vector fields. The main point of this section is to show
that the Toda equations related to the Euclidean Lie algebras are the only
algebraically integrable systems with abelian functions u; and x;. They include, in
particular, the well known periodic Toda equations related to the simple Lie
algebras as discussed in Adler and van Moerbeke [1, 2].

The 2(I+ 1)-dimensional system (1) has two trivial invariants; it can therefore
be reduced to a 2/-dimensional system. Let it be linearizable on an I-dimensional
abelian variety .7, for which x; and u; are abelian functions. As a result, the system
must have [ invariants in involution besides the two trivial ones; one of them, of
course, is the energy. Each of these invariants can take on arbitrary values.
Therefore, if the initial conditions are not specified, the solution must depend on
these [+ 2 invariants.

Besides, since x; and u; are abelian functions on .o/, they each blow up along a
piece of a codimension 1 divisor & on the variety .« in a meromorphic fashion.
Hence, for an open set of initial conditions, the system will blow up in a finite time
(possibly complex). This assumes that for a generic set of tori, each irreducible
piece of 2 cannot be an invariant subset of the flow; this will be shown in
Remark 1 below. As a result, the solutions x; and u; of (1) admit Laurent
expansions in t near the divisor & ; since the initial conditions are not specified,
these expansions depend on the /42 parameters mentioned above, and, on the
point where the trajectory hits the /— 1-dimensional divisor &, adding another
[—1 free parameters.

In general, u; or x; must blow up along one or several irreducible pieces of the
divisor & and the expansions of u; and x; may appear very different along these
different pieces. The coefficients of these Laurent expansions are determined by
induction : except for the leading one, the coefficients are given, at every step, by a
linear system of equations, whose right hand side contains the coefficients
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previously obtained. Therefore only a degeneracy in the first (non-linear) equation
or a vanishing of the determinant of the linear systems can be responsible for the
2[4+ 1 free parameters in the expansions.

We conclude that if the system is completely integrable in the sense above, Egs.
(1) must have enough distinct expansions such that each u; or x; blows up at least
once and such that each expansion depends on 2/+1 free parameters. It is needless
to say that this requirement is a highly exceptional state of affairs. Among the
systems (1), only the matrices E (modulo multiplication on the right with an
orthogonal matrix) listed in Appendix 1, or, in other words, the Toda equations
corresponding to the Euclidean Lie algebras, enjoy these properties. We also note
that any formal pole solution to (1) actually converges. For, since Eq. (1) is a
quadratic differential equation, any formal power series solution is a convergent
series, as is easily seen by the majorant method (see [5, p. 57]). Thus quadratic
differential equations are distinguished by this fact.

Remark 1. The criteria explained above depend upon the fact that the divisor
I'={u; ' =0} cannot, for an open set of tori, be an invariant set of the flow. For if
I is invariant and if ¢° is one of the flows commuting with our given one and
transversal to I', then ¢*(I")=1I" would also be invariant. Since I" is a closed set in
our torus, it is compact, as is I'*. Note that I'*nI'* is empty for 0<s=s'<g, ¢ small,
as the vector field of ¢* is everywhere independent from the original vector field. If
a solution starts on I'*, 0 <s <, it remains on I and so, by the compactness of I’
and I, there exists a constant M such that |u,(t)| < M, for all complex t. But a
bounded meromorphic function must be constant and so ujft)=constant. The
3
2
open set and hence P=0 on the given torus, showing that u; is a constant of the
motion for that torus. If the divisor I were invariant under the flow for an open set
of tori, P would be identically zero by analyticity, which is a contradiction.
We now show that (1) is a Hamiltonian system. Let

_(a . )T
Ox, T ox,., ou,” 7 ouyy

same argument holds for any 0< = <s<eg, say. Therefore it;=P(u,x)=0 on an

and
0 F .
¢= (_FT 0)’ Fii=xe, 1SijsI+1;
define the Poisson bracket'

OH OH'  OH OH
(H,H}=(6VH,VHY= Y F, (M OH' _OH _)
iJj

Ou; 0x;  0x; Ou,
_Ye <6H 0H' 0H 8H')
5 7\ouy o, 0o, Ouy )’

1 <, ) denotes the customary inner product



Kowalewski’s Method 87

where v;=Inx;. Note in (1, v) coordinates, the Poisson bracket is defined as above
except that in &, F is replaced by E, turning the transformed & into a skew-
symmetric constant matrix. But such a matrix always defines a bracket which
satisfies the Jacobi identity, as the reader may easily check for himself using the
symmetry of the matrix V(VH). Having proved the Jacobi identity in one set of
coordinates, we have proved it in any set of coordinates.

Observe that for H'=x; and H'=u,,

0H
X—-{HX} xzeua (2)
and
OH
.=4{H uyl=— o
=t ;x’e"axj’
which for
1l+1 1+1
H= Z uiz_ Z Xi
2 1 1

amounts to (1).
Lete;=(e;y, - €;+1) 1 Si=1+1. The matrix E=(e;;) is assumed to be of rank
I, so that for some pand 0#0, Ex=0 and Efp=0; hence

I+1

Zpi i=07
1
(epoy=0, 1=isI+1.

The expressions

I+1 I+1

Hy= ) x* and H,= ) oy
1 1

are invariants, because
T DiyPj~ 1y i3 _
Hy= Zl’jnxi'xj’ X;= [T Zukzpjejk_o
J i*j i k J
and

H, = Zocu = Zoc ij €= ijZoc,eﬁ—O

Moreover, both expressions generate zero vector fields, as follows from substitut-
ing H=H, or H, into (2). The reader may wonder why we impose a two-
dimensional degeneracy of the Poisson bracket yielding the two trivial invariants
H, and H,. From experience, algebraically integrable systems always seem to
come equipped with trivial invariants. The reason is unknown, but may be related
to the problem of embedding families of affine parts of algebraic tori into C*.

For future notation, let u=(u,, ..., 14 ) and x=(x,, ..., x;,); let &; be zero if
e;;=0, and 1 otherwise.
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Theorem 1. Consider the Hamiltonian system

X=xleuy, 1Zi<I+1,
1+1

U=y xpe;,
1

defined by the system of dependent vectors e;eR'™ ' with the property that every
proper subsystem is independent :

Y pe;=0, all p,+0.

It is also assumed that

>.p;*0.

This Hamiltonian system is algebraically completely integrable with abelian func-
tions u; and x;, if and only if
(g<el, ,>>
le,II?

is one of the matrices listed in Appendix 1; each such matrix is the Cartan matrix of
a Kac-Moody Lie algebra.* Then the system linearizes on some abelian variety ; if
0,(1=i<1+1) denotes a specific translate of the 0-divisor on the abelian variety,
then the divisor structure of the x; and u; is as follows:

A:(ai/)

1+1
(x)=— Z aij9j+a positive divisor distinct from the 0.s,
j=1

and

(u)=— Zéﬁﬁ%—a positive divisor distinct from the 0s.

Remark 2. As a consequence of Theorem 1, we may take all p;>0; this follows
from the Frobenius-Perron theorem applied to the matrix M=EET= {Cenep ).
For then M is a positive matrix such that M;; <0 (i=) with detM =0, and so it has
a unique null vector p with entries p; all of the same sign ; see Carter [3, p. 162].

Remark 3. If we assume the ¢;’s independent, then by a simpler version of the proof
below, algebraic complete integrability occurs if and only if 4 is the Cartan matrix
of a finite dimensional simple algebra. In this case, the algebraic torus should be
interpreted as a generalized abelian variety, with infinite periods (see McKean [9]).

Remark 4. The equations above can also be obtained from the Hamiltonian system
X;==—(x,), y,=— =, i=1,...,], where

1 1 I+1
:522 yi+ Zexp{z N;x J},

2 See also Helgason [4, p. 503] or Appendix 1, for a very succinct description
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where N=(N;) is a full rank matrix of size (/+1,[) whose transpose has a null

vector of the form (p, 1)"=(p,, ..., p,, 1)7; the system is a natural generalization of

the Toda equations (see [1]), allowing non-nearest neighbor interactions. The
1

linear transformation preserving {x,y)= ) x,y,, given by
1

o N
(X, 7)=(Nx,(N)"'y), N= (last rOW)

turns H into
1

1, _ - o
H= §<M)7,?>+ Y efrte DY
i=1
with
M=NN"N'(p, 1)' =0, p=(p,, ....p)"-
Then, upon using the new variables a; and b, defined by
a=(a1, ...,aZ)T :(e)—cl’ e eiz)’r’ a =€ <f)..§->, b=)_1,

0H . oH

i=1,...,[, take the form

the Hamilton equations X,= —, J,= — ——, i

a,=aM(b),i=1,...l,b=—a+pa,,,
dpy=—a;,<{M(D),py.

Clearly these equations are completely parametrized by the positive matrix

(1)

} = NN with null vector (p, 1);

1
observing that (H af") a,,, Is a constant of the motion, it is natural to impose the
1

condition that all p,=0. It is easy to check that Eq. (1) is equivalent to (1'), with
b
M=EE', a,=x,E' (0) =u,H,=<{o,uy=0,

the last condition, H,=0, being imposed for the solvability of the previous
condition. One may view (1') as a nonsymmetric normal form for (1). From this
discussion the integrability condition depends on E through the matrix M only; in
fact 2M;;/M ;;=a;; is the Cartan matrix.

JJ L2

Proof. To begin with, observe that if x; has a pole, then X;/x,= )" e, u; has a simple
J

pole and therefore also some of the u;. Conversely, if u; has a pole, then it,= ) xe;;

J
has a pole and therefore also some of the x;. Let the vectors x and u have the
following asymptotic expansions

x(m) u(k) )
x="—+4... and u=—tk—+... with x™ and u®=+0.

tm
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Then from (1)

X" . x{"™ K

[m+1 + .. =X;= (thrk—i—.‘.)((Eu( ))i+"')3 (3)
and

(k) Ty (m) Tkt 1)

u . E'x E'x

Note that m>k+1; otherwise u®=0. We show k=1; if not, assume k> 1.
Suppose first that m>k+ 1. Then (4) implies E*(x™)=0 and hence x™ =cp, with
c+0; so for all i, x{™=0. But then (3) implies, since k> 1, that (Eu*),=0, for
all i; hence Eu®=0, and so u®=ca, ¢'#0. Finally (4) implies
ETx®" D= _ [y® = — kc'a, but since for any z, {(E'z, &) ={z, Eo) =0, we conclude
—kc'{a, 0y =0, which is a contradiction. So if k>1, we must have m=k+1 and
again by (4), —ku®=E"x™. But since k> 1, (3) implies®
0= Y xM(Ea®), = (x™, Eghy = (ENx™, 705 = — k(u®, 70y =0,

which is a contradiction; hence k=1.

We now show m=2. Since from (4), n=k+1=2; let us assume m>2. Then (4)
implies ETx™ =0, so x™=cp, ¢+0. But then all x! +0, and so (3) implies
(Eu®),= —m for all i, i.e., Eu® = —mé, with §=(1,1, ..., 1)". Equation (4) implies
—ku®=E"x**Y and so mké= —kEu®=EE"x**1; since the range of EE' is
perpendicular to its null vector p, we have a contradiction 0=<4,p) =) p;; thus
m=2,k=1.

For two column vectors z and ye C'™!, define

z:y=(2,91,22)2 ---’Zl+1J’1+1)T‘

With this notation Egs. (1) can be rewritten
x=x-Eu,u=E'x.
Substitute now the following expansions for x and u
x=t2(x°+x't+..) and wu=t"'WlHu't+..),

with x°=(x?)+0 and u°®=(u?)=*0, into (1), yielding

—2x% 734 (k) XRT 3R

=(x%t X" ) (Bt Y Eut T e L),
and

o e SR | § [ L S
=E"™x% 24 .+ ETxFT 24 . (%)

3 Here, and only here, “~” shall denote complex conjugation
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Identifying the coefficients of the minimal power of ¢ leads to two equations and as
a consequence a third one:
x?(Eu® +26)=
E'x°+u®=0, (6)
x®(EE'x°—26)=0.
Identifying the coefficients of the next power leads to

x!(Eu®+0)+x°- Eu' =0,

6/
Efx'=0, ©)
and in general* for k=0
k=1
x*(Eu®—(k—2)8)+x°-Euf=T,_,=— ) xI-Eu*"7J,
j=1
(k—1Du*=E"x*
and so combining expressions for k=2 we find
{xo -EE"™F+(k—1)x* - Eu® — (k— 1)(k—2)x* = (k — I)Fk_l} ©)
(k—1)uk=ETx*

If for all i, x? %0, then by (6), Eu®= — 2§, and so
—2) pi=—248,p> ={Eu’, py=<u’, E'p) =0,

which is a contradiction. Let (after possibly relabeling) x9,...,x%=0,
x0, 1, xph =0, 1=<s<L For any vector z, introduce the notation z=(z, ..., z,),
z=(z,,4»-»2+,), and for any matrix B, let B be the upper-left s by s minor. With
this notation and after some manipulation, Egs. (6), (6), and (6”) become :

a) (Eu%)+25=0,
b) E'x0+u=0, (7)
¢) (EEN%,=25,x°=0,
a) —x'+x°(Eu')=0,
b) x'-((Eu®)+9)=0, (7)
c) Efx!=0,
a) J?O-(m)—k(k—l)"‘:(k—l)_ k=2,

b) x*:(Eug)— (k—2)x"* Z - (Eut ) (7")

¢) (k—1u*=Etx*.

4 The case k=0 is to be properly interpreted
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Since any proper subset of the e;’s are independent, (EET )={<epe}1<ijzs 18
an invertible matrix, and so (7) defines x°, u° uniquely, by first determining x° from
(7c), and then u® from (7b). Equation (7'c) forces x! =cp, which breaks up into the
cases ¢+0, ¢=0.

Case 1. ¢#0. Observe (7'a) implies (Eu')=(x°)"! X!, yielding [+ 1—s degrees of
freedom in the determination of u!, and one degree of freedom ¢ in the
determination of x' =cp; hence [+ 2 —s degrees of freedom in all. Since x! =cp, all
x{ #0, and so (7'b) implies Eu®= —§; hence (7"b) becomes x*(k—1)=—1T",_,,
which_we may solve immediately and substitute into (7”a). This® yields
(X°-(EE")— k(k—1))x*=(k—1)T, _,. The expression I, _, depends on x°, ..., x* ",
u®, ...,u*~ 1. Since a degree of freedom appears in the determination of x* precisely
when k(k— 1) is in the spectrum of X° -(EET), we pick up at most s degrees for k=2,
and thus at most a total of (/+2—s)+s=1[42 degrees of freedom in the power
series. But [4+2=<2/+1 and equal only if /=1, a case which is automatically
integrable.

Case II. ¢=0. Then x'=0. Equation (7'a) implies (Eu')=0, yielding [+1—s
degrees of freedom at k=1. For k=2, we first solve the diagonal system (7"b),
producing at most [+ 1—s degrees of freedom for all k=2. After substituting x*
into (7”a), we need only solve

[X°-(EE")—k(k—1)]3*=(k— 1) [, _,, k=2,

in X*, which together with x*, yields u* by (7"¢c). As before, this equation pro-
duces at most s degrees of freedom. In total, at most
(+1=95)+(+1—95)+s=214+2—-5=21+1 degrees of freedom may arise in our
power series; so, unless s=1, the number of degrees of freedom <2I+1.
Incidentally, since X°-(EE")X°=x°-(25)=2%, holds, k(k—1)=2 is always an
eigenvalue of x°-(EE"), picking up a degree of freedom at the k=2 stage. Thus,
only in the case s=1, it may be possible to find exactly 21+ 1 degrees of freedom.
Equations (7) and (7') can then be rewritten:

xJle,l2=2,
X0=0,25j<I+1,
W0 =—x%, =—2le, | "2, , (7"

and
xi=0,1<jSI+1,

<e1au1>:0'

Hence u' is determined up to [ degrees of freedom. An additional one comes from
the fact that

x0ey 17— k(k— 1)

5 (%°-(EEN)x*=%"-EE'%
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vanishes for k=2 by (7). The required degrees of freedom will then exactly be
achieved by having [see (7"b)]
(Euo);=<e,u’)=k—2 for some integer k=2,
forall 2=5j=<I+1
or, what is the same,®

2{eje,)

T el

I

a e—Z" for 2ZjZI1+1,

provided at least the system of equations for (7”) is compatible. But (7") implies
that for a given admissible asymptotics for which x, oo, the other variables x;
remain finite. Therefore, the same argument must be repeated for each x;7 o0,
leading to the same relations as in (7”) with the index 1 replaced by i and thus
leading to the general condition

_ 2{e;, ej>

a;=——Se—Z" for 150, j<I+1,i%j.
T el

Remember we have assumed that the ¢;’s are linearly dependent, while any proper
subset of them is independent. Then, according to Helgason [4, pp. 498-503], the
matrix A is the Cartan matrix of a Euclidean Lie algebra.” There are only a finite
number of them; their Dynkin diagrams are listed in Appendix 1.

Note that by (7"b), x%, k=2, j+i, stays zero until k—2= —a,, at which point it
becomes a free parameter; the usual compatibility conditions are automatically
satisfied in this case. Also remember that x! =0 and that x? is free. So summing up,
for x; 700, we have that

2
Xp= st 2 Bt

T el
X;=Bt L i,

with fe C'*! arbitrary and by (7b), and (7') with x! =0, we find

u=— et 'ty +utt+ ...,

2
”ei”2
where ye C'*! satisfies (y, ¢,> =0. Then®, using u'® = E*x'? and (7"),

uP=efi+ Y ef;.
1<j=1+1
{e;,ei»)=0

The vectors, B, ye C'* ! with (y,e,> =0 account for the 2/+ 1 degrees of freedom.
They are in fact the regularizing parameters for the flow (1) near t=0.

6 —Z'={0,—1,-2,..}
7  See Appendix 1
8  We now use a bracket in u®, etc., to avoid later confusion
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In Adler and van Moerbeke [2], it was shown that the Hamiltonian systems
corresponding to the Kac-Moody Lie algebras are all algebraically completely
integrable: they linearize on abelian varieties. Each asymptotic expansion cor-
responds to some translate of the 8-divisor on this abelian variety ; let 6, be the one
on which x; blows up and where the other x; (j=i) remain bounded. Then the
divisor structure of x; is as follows

(xj)e,. == ajiei
and

(u),=0-0, or —0,,

depending on whether e;; is zero or not, hence leading to the conclusions stated in
Theorem 1.

The set of vectors e; are determined from the Cartan matrix, up to a common
multiplicative constant, and up to a common [+ I-dimensional rotation, because
the Cartan matrix determines the inner products and the norms of the ¢s up to a
common multiplicative constant. Observe that also the flow induced by Egs. (1)
remains unchanged under a common dilation and under a rotation O of the vectors
e;; that is to say if ¢;,~0e,;, then x—x, u—Ou; indeed x;=x,{O0e;, Ou)=xe,
0'0uy=xe,uy, 1<i<I+1, and (Ou)= ) x(Oe)).

In Appendix 1, we exhibit, for each Cartan matrix, a set of root vectors e;. As is
well known

Zpi ;=0

can be realized with integers p,>0. The ¢,’s are picked such that the columns of E
are the dual root vectors and hence

{e;ay=0

for integers «;>0. These integers lead to the two trivial invariants

+1 +1

Hy= [[x* and H,= ) ou,.
1 1

The theta-divisors on each abelian variety can be computed as follows: the
systems of differential equations above have besides the two trivial invariants and
the energy

I+1 I+1 11+1

H,= Hxlp’> H, = Z“i”i’ H2=§ Z (u? —2x)),
1

1 1

I—1 other invariants H,, 2<i<[+1. Along each divisor 6, each invariant H, is
finite and can be expressed after substitution by the expansions u; and x;, as a
polynomial function in f,, 1Sk=<I/+1 and y,, 1<k=I+1, k&i+1. This recipe
provides [+2 equations between these 2/+1 parameters, defining an
[—1-dimensional variety or, what is the same, a codimension 1 subvariety of the
abelian variety ./ on which the equations linearize.
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Fig. 1 0

Example. We study the case of the Kac-Moody Lie algebra a'. For instance, at
the divisor 0, say,

Ho=xx,X;3=p,B;,
H =u,+u,+u;=2y,+7;,
H,=3ul+us—2x)+5ui—x,—x3=02—3B,)+73/2,
Hy=us(uuy +X,) + 1%, %3 =3B, +91)73+,— B @®)
So, at (¢4, after elimination of y,, 75, f,, and f5, we find that
H,
B,
where P; is a cubic polynomial with coefficients depending on H; (0<i=<3). This
equation describes a hyperelliptic curve of genus 2; in fact this curve is a copy of
the hyperelliptic curve, of which .7 is the Jacobi variety. We conclude that for [=2,
the divisor & consists of three hyperelliptic curves, pairwise intersecting according
to double points (see Fig. 1); indeed one curve @, has a point in common with
another one, only when f#, =0 or oo and two such curves always intersect doubly.
It will now be shown that the coefficients of the Laurent expansions of u and x
actually provide regularizing coordinates of the flow, (1), in a neighborhood of €.
The variables y and f parametrize the point of intersection of the trajectory with
¢,, while x, measures time along the trajectories, and together these data
parametrize a neighborhood of ¢, in .. To see this, define on the hyperplane

u, +u,+uy=H,, the following birational map as suggested by the Laurent series
for u, x:

ﬂZ _P3(y1):07

(g U g U3, X, X g, X3 ) (U X, UpX g, Us, Xy + U Uy, Xy, X3)
E(ﬁz: _335?37 331 +f’%sx25x3);
putting 29, = H, —j;, the inverse map reads
Uy :ﬁZ/xza Xy =3B1 +§’%+Bzﬁ3/xzxs >
u2=——33/x3, X2 =Xy
U3 =73, X3=X3.

Now using 3 HT — H, =(u,u, +x;)+us(u, -+u,)+ X, +X,, in the fourth line below,
express the constants of the motion in these new coordinates:

Ho=3p, +92)x,%;5+ BB,
H, =(Bz/x2"‘B3/x3)+”?3 s
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hence

x,H, ﬁz ﬁ Xo/X3)+73%,, (10)
%H% —3/31 71+/3 Hy—73)+x,+x5,
3=7)3(3ﬁ1+/1)+ﬂ2—53-

The divisor @, is given, in the new coordinates, by setting x, =0 and x,=0in
(10), which leads to the same expression (8) with B, % replacing f, 9, and thus the
same variety ﬁ2 Ho/ﬁ2 P4(93;)=0 and x,=0.

We shall use the expression for H, in (10) to show that x, =0 forces x; =0, and
conversely, and also to extend the function 6=(x,/x;) to @,. Rewrite the
expression for H, as x,H, =f, — ﬁ35 +73%,. Upon setting x, =0, we find B,=Ps0.
This equatlon extends the expression d to @y, by defining (d)|,, = (ﬁz/ﬁ3)|(9l Since
X3=0""'x,, x, =0 forces x, =0, and conversely ; hence in these new coordinates 0,
is spemfxed by x,=0 or x;=0. Since from (9), u,/u, = B3/[32)5 the above
expressions continue u,/u, to ¢; by the formula (ul/uz)|@ = — 1. Besides, in the
expressmn appearing on the thlrd line of (10), ([32/x2 ,83/x3) [(1/x,) (ﬁ2 ﬁ3 )1,
is identically equal to H, —9,=27,, and so is continued on @, to equal 29,.

In the new coordinates, the differential equation (1)

Xy=x(—u;+u,), Uu;=-—x;+x3,
Xy =Xy(—uytus),  Uy=X; =Xy, (11)
Xy=X3(—tz+uy), U3=x,—Xj,
takes the form:
Ezzﬁz?a_xz(3gz +97) +x,%5,
33 = *Bs?s_xs(:sﬁl +9D)+X,%5,

?3=x2—x3,
.31 = _%(ﬁ2+ﬂ3)+%(H1 ‘733)(X2_x3),
=(x,/x3) B3+ X593,

Xy = (/%) By = X373

which on 0, (x, =x,=0) defines the vector field

ﬁg ﬂz%» 51 (ﬁ2+ﬁ3)’

Bs=—B37;. x2=B2 >

73=0, X3=P;.
Since 0= H, = f3,f, on (91, we have x, and X5 0 there. As a result, the flow (11) is
transversal to 0, i.e., 0, is a section for the flow and Z =(f,, B, 75, B,. x,) is a set
of regularizing Varlables for the flow near ;. The set of coordinates Z =(B,, B, 7,,

B,, x,) as illustrated in Fig. 2 is very close to the coordinates Z used previously:
Z—7Z=0(t)=0(x,), where O(x,) depends on Z.

Each divisor ¢, and @, intersect ¢, in exactly one double point, given by
B =o0 and 0O respectlvely This will now be discussed. These two points
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H
Op: | Py~ =2 -Py(yy) =0

*x,:=0

(By.B3.¥3.84.0)

trajectory

By, B3 ¥3.By, %)

Fig. 2 (ﬁ2133n§3.31.12)

correspond to the two points at infinity of the curve @, given by
Bz-HO/[S’2 —P,4(y,)=0. That the flow passes through these points can be
shown by picking a new set of regularizing coordinates about these points. The
flow is regular at 0 n0,, and similarly for ¢;n0O,, hence it is regular for
2=0,00,00,.

This process of regularization amounts to the compactification of the affine
part of o7 by glueing on the divisor Z=0, + ¢, + ¢ ; each ¢; sits in a coordinate
patch whose coordinate functions are ratios from #(2)°; this process can also be
interpreted as completing the flow. The functions in .£(2) also serve to embed .of
in projective space. By the Riemann-Roch theorem, dim.#(2)=9; below we
present a set of functions in .#(2)

Uy + Xy, Uyly+ Xy, Uzl + X5,
U,y 1/x4, 1/x,, 1/x4, 1,

which suffice to embed ./ in projective space.

2. The Systems of Gross-Neveu

Recently a new set of Hamiltonian systems have been a subject of interest in
particle physics [11]. The equations have the form:

0H | 0H

._=——, ~=—_,’=17'“7 bl
%) dy; Vi 0x; / "
where
1 g ;
Hix,y)=5 ¥ yi+ 3 e, W
2j=1 aeR

n
with a constant ¢, a=(x,,...,a,), {0, x)= Zocjxj and i=]/—1; the sum in «
1

extends over the entire root system R of a simple Lie algebra L, as opposed to the

9  Z(2) are the algebraic functions on &/ which have at worst a simple pole on 9
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Toda systems, where the sum in o only extends over the simple roots. The case of
most immediate physical interest is when L=o0(2n), especially for n small. In this
case, the quantum analogue of these systems is thought to be completely integrable
when c=]/4_7r [11]. Naturally in the classical case, ¢ may be removed from the
Hamiltonian by rescaling, and so its value has no bearing on the question of
integrability, and we may set ¢= 1. It is a natural question to ask whether (1) leads
to an algebraically completely-integrable system. Evidence of pair production [in
the 0(2n) case] for c+ ]/ﬂ indicates the answer is no. We shall apply our criteria
to this system for the case L=sl(3) and show it is not integrable.

o0H oH
Theorem. The Hamiltonian system x,= —, y,= — —, j=1,2,3,
oox; x;
JLH T e,
1=, k<3

is not algebraically completely lntegrable, with abelian functions y;, e, 1<j<3.
Hence the Gross-Neveu model for L=sl(3) is not algebraically integrable.

Proof. For ease of manipulation, we transform the Hamiltonian (1) and hence the
Hamilton equations. For later use, the case sl(/+ 1) will now be considered. Since
we shall be working over the complex, we can rescale (x, y, t =time)~(ix, y, it) and
so i has been removed from (1). As in Sect. 2, we shall transform (x, y)—(X, y) as
follows: first set X, =<{a;, x), j=1, ..., 1, for {ocj}é=1 = B, a simple root system of R.
Then define %;={f;,x), [+1=j<n, with the f;’s picked so that for all o, f,

{oy, ;> =0, and s0 X=Ax (this defines A) is an mvertlble map. Note that every

root o€ R is of the form o= + (Z njocj), with n,=0 or 1. Now define y=(4")"1y,

n

so that ijy] ijyj, therefore the map (x, y)—(X, J) is canonical. Observe that

the Hamlltoman decouples in these coordinates, i.e., it takes the form

1 .
H H0+H1,H 2 <)B])ﬁk>y1yka
2l+1<]k§
1 ~ X -5 nXx —<{n,X
Hy=5 2 <opm0iict P (e XD —e ),
1£j,k=1 i=1 neP

with the sum in n=(n,, ...,n,) extending over the set P={n|> nx;e R—B, all n,=0
or 1}. It thus suffices to work with the Hamlltoman H,. Now define the [ by l
matrix M ={{a; %>}, new coordinates a,,=e*™, a+,,—e—<" b=y, 1Zi<],

. - 8H N 0H
ne P, and the vectors, a=(a;), b=(b;); the Hamilton equations X, = @, Vi=— v
i=1,...,1 expressed in these new coordinates, take the form!°
a=a M), b=a_—a;+ Y nfa_,~a,), (2)

neP

i=1,...1.

10 Given the vectors x, y, the symbol x-y denotes a new vector with components (x-y);=Xx,y,
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For the case L=sl(3), Egs. (2) take the form

. fa\ _(a)) (b (2 -1

0 (o) =)l o= 2,5
(b fart  (ay 1 s (1
) = (o)~ () +olag —mesfo= (i)

We think of (3) as a differential equation in C*; to prove the theorem, it suffices
to show that (3) has no 3-parameter pole solutions. First observe that if any of the
a; blow up, some of the b; must blow up by Eq. (3i), and conversely by Eqg. (3ii).

0

Note b has at most a simple pole, for if not, b= ra + ..., k=2, and since a, and a,

have the form

ay=e N+, ay=e&t+ ...,
(3i) implies
. - ; Mb
a; =g t" 1+...=(81t“—|-...)((—tko—)i-I-...);

hence (Mb°),=0; similarly (Mb°),=0, i.e, Mb°=0, but since M is a positive
definite matrix, b°=0.

We also claim that a,, a, cannot blow up simultaneously with three degrees of
freedom. For since b has at most a double pole, both a, and a, blow up only with
simple poles as a consequence of (3ii). So assume

1 . 1 -
b=;(b0+b1t+...+bjt’+.‘.), a=l—(a°+(z1t+.,,+a’t’—|-...), (4)

0

with a®= (a})), and a9, ad=+0. Equating the coefficients of the ¢t~ 2 terms in (3)
a;

yields —a®=a®-Mb°, i.e., Mb° = —§, and b° =aal. Since M6 =6 and b° = — 5, we
have alaj = — 1. We next equate coefficients of the ¢ ™! terms in (3), concluding
0=a® Mb*+a'-Mb°, 0= —a°—6(alal +ajal). (5)
The latter equation implies a®=cd for some ¢, hence a$=a9, and so, since
a%ad=—1, a®=is, and by (5), <a',8>=—1. Since Mb°=—4 and a®=is, (5)
implies a' =iMb?, hence b! is determined by a?, and so at this point we have one
degree of freedom in (4). Substituting (4) into (3), using b, = —¢ and a,=1id, and
upon equating the coefficients of the /=2 terms in (3) for j=2, we find !
(i) G—1)a'—ay-Mb'—a’-Mb° =ja’ —iMbI =k;_,, j=2,

(i) (j—1)b'—=03<id, ) =(j— )b/ —id@da’=k;_,
where k; is a generic symbol for an expression depending on terms with index at
most j. Substituting (ii) into (i), we find

[M-0@3+j(—1)]a'=[0@+j(—1)]a'=k;_,, j=2.

11 (v®w);;=v,w; hence v@w(u) =v{w,u
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The operator 0®06 has spectrum {0, 2}, and so for j=2, there is no degree of
freedom in the determination of @/ and of b/ as well, since from (ii) b’ is uniquely
determined by a/. We thus conclude there exists a power series solution, with
precisely one degree of freedom (which enters at j=1).

If a, had a triple pole, then since b has only a simple pole, and a, cannot blow
up, the expression for b in (3) implies a, has a sixth order pole in order to cancel
the triple pole of a;. But then the expression for b, is inconsistent, and in general
this argument shows a, has at most a double pole If, on the contrary, a, has a
simple pole and a, =c+ 0(t) or t(c+ O(t)), c+0, then since b, has no 1/t terms, the
expression (3) for b is inconsistent. Also, since the transformatlon a;—a; ! has
only the effect in (3) of reversing time, t— —t, we need only consider the followmg
three cases

NSRS
c
al-——t—éﬁ-..., a,=1ct+... ¢, ¢ F0.
Cyt ...

At this point it is convenient to change the variable a, into —a; ', and so (3)

becomes
. al'_al'_b1 -_2—1}
o (o) =) ) =l )

) ) (6)
.o (b (ay ) (al) (al az)
(1) <bz) _<a2'1 a, o a, 4 .
We shall deal with all three cases at once. Let
1/t? 1
=(t4t2)-(a°+a1t+...), b=;(b0+b‘t+...), 7N

where ¢=0 or 1 or 2; define n(x)=1 if x=0, and 0 otherwise. Equating the

coefficients of order ¢~ 3, t73** in the respective equations (6i) for a,, a,, we find
_ -2

A )
e—2

since M is invertible, this uniquely determines b° #0. Equating the ¢~ 2 coefficients
in (6ii) yields

b= ())+5(a°(az) (e—2).

If £=0, 2, it uniquely determines a° and if e= 1 it determines a? =b9. To determine
a3 in the case ¢=1, we need to equate the ¢~ coefficients in (6ii), concluding

al
0=— (a‘1)> +8(af(ad)™ 1),

2
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and so a3 = |/a}. We now substitute (7) into (61) and equate respectively the ¢/ 73,
ti73%¢ j>1 terms in 4, a,, yielding

j—2 . -
QJ2+8)-a’——aO-Mb’——af-MbO=kj_1, j=1,
and so substituting (8) into the above, we find

jad—a®-Mbi=k;,_,, j=1. 9)

Equating the /=2 coefficients in (6ii) yields

(- )b’+( jl()>_”(2—8)5<00’aj>=kj—1’ jz1,

0
_ a .
with vo=(ag)-2( 20>; we may rewrite the latter as
—

(- Dbi~Nai=k;_,,jz1, (10)

with N determined from the above expression. Substituting (9) into (10) yields
[UU—l))—C]bj=kj_1, C=N-a"M, jz1,

and thus we have at most two degrees of freedom in the determination of b/, j>1.
Since by (9), o’ is determined uniquely from b’/ for j=1, we have at most two
degrees of freedom in our series solution (7), proving the theorem.

The first case of physical interest is really L=0(6)=D,, which however is
isomorphic to L=sl(4). We have

0H 0H
Theorem. The Hamiltonian system X ;= 5)7 y=- é;,j= 1,2,3,4,
J j

z z(x, — Xk)
2
J.k

4

14
H=3 2 v+

II/\

is not algebraically completely integrable, with abelian functions y,, e 1<j<4.
Hence the Gross-Neveu model for L=sl(4)xo0(6) is not algebraically integrable.

Sketch of Proof. Using Eq. (2) for L=sl(4), the differential equations take the form,
with

a:(al, (12, (13)1‘, bz(bla bza b3)T ’

2 -1 0
a=a-Mb), M=|-1 2 -1

0o-1 2
) (11
by=a;'—a,+e+yg, e=a;'ay; ' —a,a, f=a; " a;' —aya,,

b2=a2_1——a2+e+f+g, gzafla;lagl—a1aza3‘

53=a3_1—a3+f+g,
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Using the fact that (11) possesses the symmetries
(b,a,,ay a5, t)—>(b,a; t,a; a3t —1),
(b, by by, ay,ay,a3)=(bs, byybyas,a,,a,),
an hours reflection shows that the only possible pole solutions of (11), with

¢,¢5¢5 %0, are of the form b= %(b°+b1t+ ...), and

. ¢ c
(1)a1=—tl—+..., a,=c,+ ..., a3=—3+.,.,

t
(ii)a1=cT‘-l-..., a2=672+..., ay=c3+...,
(iif) al=%1—+..., ay =t eyt ., a3=c?3+...,
e=0 or 1,
(iv) a1=j—;+..., a,=t""Yc,+...), a3=cT3+...,

e=0 or 1,

C
(V)a1=zé—+..., a,=c,t>+ ..., aG=3+.

. c c
(vi) alzt—,i+..., a,=c,t"+ ..., a3:t—,f+..., k>2,
.. c ¢
(vii) a1=71+..., a2=72+.‘., a;=tic,+...),

e=0 or 1 or 2,
c
(viii) a1=t1+81+..., a,=t*c,+..), az=c3+...,

g,=0 or 1,6,=0 or 1 or 2,

. c
(1x)a1:t1_+187+..., ay=cyt .., ay=t"""(c;+..),

£,6,=0 or 1.

Except for (vi), we now analyze these cases exactly as in the last example. It
turns out that some of the cases cannot occur because of a contradiction in the
equations for the first terms b°, a°. The remaining cases do not permit five
parameter solutions. We thus only need analyze case (vi). Equating the coefficients
of the highest terms, in the equations a,=a,(M(b)),, i=1,2, 3, respectively, implies

—k\ 1
M%) = k|, hence b°=—(k/2) |0
—k 1
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Thus b, doesn’t blow up in this case, nor in any symmetric reflection of this case,
which concludes the proof of the theorem.

Remark. Case (vi) still bears further scrutiny. In fact, it is easy to see that one has
genuine k—2 parameter formal solutions of the form (vi); however, as (11) is a
cubic equation, they need not converge, indeed, for k=8, they certainly cannot
converge as the formal solution genuinely depends on all the k— 2 parameters. One
suspects that the solutions don’t converge for any k, but for k=7 they lead to a
pair of five parameter formal solutions in which only b, has no formal pole. This
implies that b, could never be an algebraic function, a fact which we used above.
This example illustrates the difference between quadratic and higher order
equations, and further suggests their preferential role in this theory.

Acknowledgements. We wish to thank Michael Artin and R. Shankar for many fruitful conversations.
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Appendix 1

The Cartan matrices above correspond to so-called Kac-Moody Lie algebras. The reader will find
information about them in Helgason [4, pp. 490-515]. We sketch a few of the ideas here. Consider a
simple Lie algebra g over € and let ¢ be an outer automorphism of g satisfying ¢™ =identity. Then each
eigenvalue of o has the form & (i, modm), where ¢ is a primitive root of unity. Let g, be the eigenspace of
o for the eigenvalue ¢'. Then we have the finite gradation

g= @D g

0<i<m
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the inclusion [g;,9;]1Cg;.; holds. The Lie algebra

M. Adler and P. van Moerbeke

L(g’ J) = @ xjgjmodm
JjezZ

is infinite-dimensional. The analogue of the weight theory can be developed for these Kac-Moody Lie
algebras. It is shown that L(g, o) is isomorphic to L(g, v), where v is an automorphism induced by an
automorphism of the Dynkin diagram of g. As is easily seen from inspection, only Dynkin diagrams
connected with the algebras a,, d,, and es admit an automorphism of order 2 and the diagram of d,
admits an automorphism of order 3; the other diagrams have no automorphisms but the identity.
We now explicitly exhibit the Dynkin diagrams, the Cartan matrices, a choice of E and the

corresponding p.
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2) Order 2 Automorphisms

2 =2
0 —1
iye=>0—0— —0=>0
€y €ty
(2 -1
2 0
o 0 2
¢ -1 -1
D e, 00— —0<=@ 0 0
€ €y
3

d’, @< -0=0
€y €41

oe—0=>0—-0—0
e, e, e; ey es

3) Order 3 Automorphism
2 -3
-1 2
0 -1

) e=e—e
e e €3

2 —1
- 2
0 -1
0 0 -1
0 0 0

-1

0
-2
2

0
-1
2
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2 00 1
1 10
0 -1 1
2-1 0 £ 00 2
1 2 -2 1 0 2
0 -1 2 0 -1 0 2
{1 00 1
1 10 1
0 -1 1 1
2 -1 0 1 00 1
1 2 =2 -1 10 1
0 -1 2 0-10 1
0 1 1 00 1
0 1 1 00 1
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