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Abstract. We show by means of the implicit function theorem that Coulomb
gauges exist for fields over a ball in Rn when the integral Ln/2 field norm is
sufficiently small. We then are able to prove a weak compactness theorem for
fields on compact manifolds with U integral norms bounded, p > n/2.

Introduction

The variational problems for gauge fields arising in physics differ markedly from
many other geometric variational problems due to their gauge invariance. This
paper provides two technical tools for handling the gauge invariance. First
we show the local existence of a "good" gauge (called Lorentz, Hodge or Coulomb)
under very weak hypotheses. Secondly, we prove a global theorem on the weak
compactness of connections given integral bounds on their curvatures. These
technical theorems are very useful for both regularity theorems and direct varia-
tional methods. I am particularly indebted to C. Taubes, who pointed out some
very important generalizations of the original theorems. The strong form 2p = n
of Corollary 1.4 and Corollary 2.2 are essentially due to Taubes.

In Sect. 1, we present notation and state the theorems and a few immediate
applications. Detailed proofs are in Sect. 2 for the local results, and in Sect. 3 for
the global results.

1. Notation and Statement of the Results

In this paper, η is a vector bundle with compact structure group G over a compact
Riemannian ^-dimensional manifold M. Assume the fibers ηχ ^ R* carry an inner
product and that G c SO(ί) respects this inner product. The bundle Aut η is the
automorphism bundle with fiber (Aut η)χ = G. The bundle Ad η is the Lie algebra or
adjoint bundle with fiber (Adη)χ = ©, the Lie albebra of G. Assume the metric
on Aut η and Ad η are compatible with the usual metric on SO(ί).

Let 21 be the space of smooth connections on η compatible with the structure
group. Every such connection D induces a connection on the Ad η bundle which
is also called D. In this case we have the Riemannian connection on the tangent
bundle TM; therefore DeS& induces connections on all bundles associated to
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η and TM. Denote by the symbol D the induced operators (in the sense of exterior
differentiation). The space of connections is an affine space. Pick a base connection
JDOE9I. Then

91 = {D = Do + A:4e C°°(M, Aάη® T*M)}.

Define as follows the Sobolev space of connections 5l£, the Lζ connections. Here
LPk is the Sobolev space of functions with k derivatives which are p integrable.

5Ijp = {D = Do + A:AeLp(M, Aάη® T*M)}.

Because of the affine structure, this definition does not depend on the choice of

If Do e5I, then its curvature or field is

F(D0) = D2

0e C°°(M9 Ad η <g) T*M A T*M).

Lemma 1.1. For fc = 1 and 2p >̂ dim M = n, the curvature map taking a connection
onto its curvature extends to a quadratic map

51? -* LP(M, Ad η ® T*M A T*M).

Proof. If DeWt, D = D0 + A,AeL\(M, Aάη® T*M).

F(D) = D2 = F(D0) + D0A + \_A, A\.

This expression is quadratic in A, i 7(D 0)eC 0 0 and A^D0AeU is linear. Since
L\ c: Lg where \/q ^ 1/p — \jn by the Sobolev embedding theorem, then A -•
[yl, A~\eLq/2 in the quadratic term. To get L9/2 cz Lp, we need 1/p ^ 2/g ^ 2/p — 2/n.
This explains the constraint 2p ^ n.

The C00 gauge group 3) — C00 (Aut ^) acts on the connections by conjugation.
Ifse®

^ ι O ϊ — ^ o /") o c — c i Γ) I /j ic — T) 1 c 7^ c I c A c

The map on the affine section v4 is

The gauge group for a connection is logically the sections of Aut η with one more
derivative than A. This leads us to define the gauge group for 5I£:

®p

k+1= Lp

k+1(M, Aut η).

For p(k+ l ) > d i m M = ft, this is a smooth manifold and Lie group [5]. Also,
by the Sobolev theorem, Lζ+ι(M, Aut η) a C°{M, Aut η) and these gauge trans-
formations preserve the topological structure of the bundle η. Care must be taken
whenever the strict inequality does not hold. We state theorems for k either 0 or
1, only for convenience.

Lemma 1.2. For k = 0 or 1, (k + \)p > dim M, the gauge group $)v

kΛ_ γ is a smooth
Lie group under pointwise multiplication. The induced map
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is smooth. Furthermore, ifD = s~ioD°sfor D, DESΆ^, then
Proof. The Lie group structure is standard. The multiplication theorems in
Sobolev spaces give the smoothness of

If D = D o + A and D = Do 4- Ά, then a gauge transformation carrying one to the
other satisfies

Use | | | | p > k todenoteaSobolevL£norm.Then^
For k = 0, we are done since 5 1 is orthogonal with norm 1. If k = 1, we obtain the
same estimate for L\, where q lies in the Sobolev range 1/n — ί/p + l/q ^ 0. Now
estimate DoseLp using the formula

Dos = sA — As

and the multiplication theorems L\®L\-^ L\. This same type of estimate appears
over and over again in this paper and we assume familiarity with Palais [5, Chap. 9].

We can now state the main theorems. The notation || | | p / c again means a
Sobolev L\ norm, as it does throughout the paper.

Theorem 1.3. Let M = Bn, η = B"xR*, G compact, GczSO{ί\ 2p^n and
D = d + A for AeL\{Bn, Rί x ©). Then there exists κ(n) > 0 and c(n) < 00 such
that if IIF | | ^ 0 = II dλ + [A, A] | | ^ 0 ^ κ(n), then d + Ά = D is gauge equivalent
by an element sEL^(Bn, G) = @p

2 to a connection d~\- A where A satisfies:

(i) d*A = 0

There are more details in Chap. 1. Note that for 2p = n, the multiplication and
inversions involved in gauge transformations are not continuous. This borderline
case follows from a weak limit argument from that for 2p > n.

Regularity of solutions of Yang-Mills equations for connections De(&\,
2p ;> dim M follows rather easily from such a theorem. Since j | F\n/2 * 1 < 00, one

can restrict to a small disk J \F\n/2dx ^ κ(n). (The size of the disk is not uniform.

This is a dilation invariant integral and there always is such a disk. When 2p > dim
M, the size of the disk can be uniformly determined by Lemma 3.4 from j | F | p * 1.)

M

Then apply Theorem 1.3. The system of equations consisting of the Yang-Mills
equation d*dA + [A, dA\ + [A, [^4,^4]] = 0 and d*A = 0 is uniformly elliptic.
Now standard techniques apply (Morrey [4], Chap. 6). This technique applies to
coupled equations [7].

Corollary 1.4. If DsS&p

x for 2p ^ dim M is a weak solution of the pure Yang-Mills
equations then D is locally equivalent over a cover {%} by gauge transformation
seL\{fll, Aut η\°lί) to an analytic connection. If 2p > dim M, uniform estimates
depending on j | F p * 1 exist.

M
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The global theorem is the following. This is proved as Theorem 3.6.

Theorem 1.5 (3.6). Let 2p > dim M and D(ι)e2ϊf be a sequence of connections
with j |F(D(/))|P* 1 ̂  B. Assume M and G compact. Then there exists a subsequence

M

{i'} c= {i} and gauge transformations s(ϊ)e@p

2 such that s{ϊyι°D(i')°s{ϊ) is weakly
convergent in Wt. The weak limit D satisfies j |F(D)| P * 1 ̂  B.

M

2. The Local Theorem

For this section M = Bn = {xeRn: |x | <J 1}. Then a trivialization η = M x R^ can
be fixed, and we use the parameters of this trivialization on all the associated
bundles. Let d be exterior differentiation.

Wk = {d + A : Aelfk{B\ © x Rn)}.

/)P _ TP

Define WUκ = {DeM?: J | F

Theorem 2.1. L^ί n> p > n/2 and assume G compact. Then there exists K = κ(n) > 0
and c — c(ri) such that every connection Z)e2ί^ κ is gauge equivalent to a connection
d + A e Wx, where A satisfies :

(a) d*A = 0.

(b) (xΆ) = 0 on Sn'ι = dB\

(c) \\A\\nl2Λ^c(n)( f

(d) \\A\\pΛ^c(n)( J \F(D)\p/2dx

Before we give the proof, we state a corollary.

Corollary 2.2. Suppose AeLn(2{B\ Rn x ©) and F{A) = F{d + Ά) = dΆ + \

ί/zβr̂  exists seLnJ2(Bn, G) such that A~s~ldsJ

rs~~lAs satisfies (a)-(c).

Proof Approximate A by smooth A. -> A in Ln/2(Bn, i^n x ©) with J |F(X) | n / 2

dx^κ(n). Then we may apply Theorem 2.1 to the A.e 1,^(8", Rn x ©). Since
Lemma 2.4 holds for p = n/2, we are finished.

The outline of the proof of Theorem 2.1 is straightforward. We show Wγ κ is
connected. The set of connections in 9ίp

 κ satisfying (a)-(d) of Theorem 2.1 is both
open and closed. This is quite different from the approach used for solving the
Dirichlet problem [8].

Lemma 2.3. 2ίf )IC c Wx is connected n> p> n/2.
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Proof. Let D = d + A. Define the one-parameter family Dσ = d + σA(σx) for
0 ^ σ S 1. Then the curvature F(Dσ) has the formula

F(Dσ)(x) = σ\dA)(σx) + [A(σx\ A{σx)~\ = σ2F(D)(σx).

I I W K o = ί \FΦ.)\nlldx= J \F(D)\^dx.

This formula is perhaps easier to understand by observing that it comes from the
pull-back of D under the map x -> σx. Clearly Dσe2I^ κ for 0 g σ ̂  1 if 2p ̂  n
and D G 2 I ^ K . For fixed D,Dσ = dJr σA(σ) is a continuous curve in Slξ κ . Z)1 = D
and Do = d.

Lemma 2.4. The set of De<ϋip

lk satisfying (a)-(d) is closed for K sufficiently small
and n> p^. n/2.
Proof Let Dt = d + Ά.-+d + Asty? be a sequence of connections convergent in
W[ such that D. is gauge equivalent to d + A., where conditions (a)-(d) hold on ^4..
Choose yl = weak limit of A. in L\(Bn, Rn x (5). Conditions (a)-(d) are preserved
under weak limits, provided we can show a gauge transformation from A to A
exists.

s. ds. -h s. yl.5 = >1. or

ds. = s.v4. — v4.s .

For 1/n — 1//? + \/q = 0, since s. is orthogonal,

Since G is compact, || s. \\qΛ is uniformly bounded and we can pick a subsequence
s. —̂  s in L\(Bn, G). The equation

ds. = s.A. — A.s.

is preserved under weak limits.

ds — sA — As.

From Lemma 1.2 seLP2(Bn, G) = 9P

2.

The next step is to show that (c) and (d) (which are closed conditions) are a
priori valid estimates on solutions to equations (a) and (b).

Lemma 2.5. There exists £(jί) > 0 such that ίf\\A\\n^^ £{ή) and (a)-(b) are satisfied,
then for n> p^n/2

j \F{A)\>dx)

Proof. The pair of equations (d*A = 0,dA + [A, A] = F(A)) form a non-linear

overdetermined elliptic system for which the Neumann boundary condition

{x-A)\Sn~1=0 is elliptic. By simple integration by parts, if d*A = 0 and

(χ y l ) |S I | - 1 =0,then

j |V^ | 2 dx+ j \A\2dx= i \dA\2dx.
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Here V denotes the full derivative of the one-form A. This can be seen by noting
that

Ml

i Uj J"χJ i,j,k

and the equality is proved. Elliptic systems are well-behaved on Sobolev spaces.
So if d*A = 0 and {xΆ)\Sn~1 = 0, for the closed range n^p^n/2

\\A\\pΛύkf(n)\\dA\\p9θ.

From the equation F = dA -h [A, A] for curvature

The number q given by \/p = l/n + l/q is identical in the Holder inequality

MIILo^MIUMIL
and the Sobolev inequality

\\A\\qfi^k"(n)\\A\\pΛ.

The last four inequalities combine naturally to give the inequality (putting the
quadratic estimate on the left)

It is sufficient to choose || A \\n ̂  i{n) == \j2{k"{n)k'{n)Y \
The next two lemmas are preparation for the openness result. Lemma 2.6

is probably well-known.

Lemma 2.6. There exists a linear operator P : L\{Bn) -* Lp

2(Bn) such that iffeL\{Bn\
P(f)eU2(B"\P(f)\Sn-1 =0and(x-dP(f)~ {f))^'1 =0.
Proof. Let P(f) be the solution of an inhomogeneous heat equation 0 < r ^ 1
with zero initial conditions at r = 1 multiplied by a smooth cut-off function φ
with φ(0) = 0, φ(x) = 1 near \x| = 1. Invert the heat operator with r as time, Sn~ι

as space.

The regularity theorem gives P{f)eLp

2(Bn - {0}) ioτfelF^W1 - {0}) [2]
The equation for ss2p

2 = LP2{M, G\ the gauge transformation, is
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To get (x - A) I Sn ~* = 0 (assume for the moment x A \ Sn"1 = 0), we use the Neumann
conditions (χ-ds) = dvs = O on S"'1.

*2tV = {seU2{B\ G): (x-dsJlS""* = 0}.

Lemma 2.7. Suppose d*A == 0, d + ^eSl* c: || A fl^ = fc(n). T/zen ί/zere exists ε > 0
that for \\λ\\pl ^s,λeLp

lvthe non-linear equation

has a solution s(λ)e@p

 va@p

2. The solution s depends smoothly on λeL\ v .
Proof. Define the spaces L\ v as above.

\ ©): f Udx = 0,x'dU\Sn~1 = 0}.

Lg1 - {FGL P (JB, (5): J Fdx = 0}.

β«

Then the operator

(I/, A) -> d*(e~udeu + β"

is a smooth map

Moreover at (17, A) = (0,0), the self-adjoint linearization

iftfr = d * ( # -f [A, ψ~]) = d*dψ + [̂ 4, # ]

is an isomorphism from LP2\ to Lξ1 if || A || M 0 is sufficiently small. (For the same q in
Holder and Sobolev inequalities as before,

Now we may apply the implicit function theorem to get the result.

Lemma 2.8. Suppose DeSJXp

lκ is gauge equivalent to d+ A, where A satisfies
(a)-(d). Then ιfκ is sufficiently small, there exists an open neighborhood ofDeWlκ

satisfying (a)-(d) of Theorem 2.1.
Proof We show there is a neighborhood of d + A which satisfies (a)-(d) and pull
it back to a neighborhood of D by the gauge transformation taking D to d + A.
We would like to apply Lemma 2.7. However, we cannot assume χ-λ = 0 on Sn~1.
First we use Lemma 2.6 to get the problem into a framework where we can apply
Lemma 2.7.

Let U = U(λ) = P(χ-λ) where P is the linear operator constructed in Lemma
2.6. Make the gauge transformation

e~u(d + A + λ)ev = d + e-ϋdeu + e~LJAeu + e'uλeυ = d + A + l

Since I - eju Aeu - A + e~udeu + e~uλeu and U | | Λ 2 ^ c \\x'λ\\pΛ, it is possible
to make || λ\\pΛ as small as we need by taking \\λ p l sufficiently small. Since [7 = 0
on Sn~ \ άeυ - dU on Sn"x and x-λ = 0 on Sn~
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We may now apply Lemma 2.7 to d 4- A + 1. This completes the proof.
The proof of this Lemma 2.8 could be done more elegantly using boundary

value spaces. However, these are not as well-known as the methods of treating
the usual Dirichlet and Neumann boundary value problems. For this reason we
avoided them.

3. Construction of Global Gauge Transformations

In the previous section we proved an essentially local theorem, which we now
piece together. To do this, we work with connections presented in terms of the
local trivializations obtained from Theorem 2.1 in an open cover {̂ α} of M. We
extend a theorem on the equivalence of bundles with C° close overlap functions
from the topological category to the Sobolev category. We use this to go from the
local trivializations obtained in Theorem 2.1 to global gauge transformations.
A certain amount of effort was spent in finding a more elegant procedure so
far this has failed.

Let M be a compact manifold and {^J a fixed finite set of smooth open
disk neighborhoods covering M. Then any set of continuous maps

satisfying the consistency conditions

gives a topological description of a principle bundle. If the ga β are C00 maps,
the bundle is smooth. We are interested in the intermediate Sobolev case gaβe
Lp

2(<WanWβ,G)for 2p > dim M.
Given the total space of a vector bundle in the abstract, the overlap description

is obtained from a set of trivializations (Gauss maps)

Then ga>β(x) = σa{x,σβ

ι(x, )): R'-+R* for x e ^ n ^ . Here the inclusion G c
SO(£)(ί) in a fixed canonical representation is assumed, so gaβ(x)^Gcz

a R* x R* is a natural identification.
Two sets of overlap functions ga β and ha β can represent the same bundle

(or equivalently, they are the overlap functions for different trivializations of the
same bundle). This is true if there exists a subcover Ψ*Λ cz ̂ α , M c (J f̂ , and

Pa ra - » G satisfying haβ = PagaβPβ ι.
We first prove a technical lemma. Fix a neighborhood G of 1 in G in the domain

of exp" \ where exp: © -• G is the usual exponential map in the group. The notation
exp ~1 g implies g e G.

Lemma 3.1. Let G be a compact group with an equίvarίant metric. Then there
exists / 0 > 0 such that if Λ, ̂ ,peG, lexp"1 hg\^f0 and \exp~1 p\<f0, then
hpgeG and

1 hpg\ ^ 2( |exp- 1 hg\ + |exp~ ι p\).
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Proof. The map Q given by the formula

exp(g(/c, u)) = exp k exp u

is defined and smooth for (k, u) in a neighborhood of 0 in (5. We have g(0,0) = 0
and |dβ(0,0)| = l. Choose Θ = {χe©: |x ^/ o} such that \dQ(k,u)\^2 for
keΘ,ueΘ. Since (5 is convex, by the mean value theorem | Q(k, u)\ ̂  2(|fc| + | w|)
for |fe| ^ / 0 , | w | ^ / 0 . The lemma follows if we set /c = exp" 1 (%) and u =

Q{k, u) = exp~1 (/*# exp (Ad #(exp~1 p))) = exp~1 (hgp).

In the following proposition, the finite open cover {%a} is fixed and has /
elements {α} = {1,2,...,/}. We prove this proposition carefully so the proof
extends to the Sobolev category.

Proposition 3.2. Let haβ MΆ n^β^G and ga β'Man<%β->G be two sets of continu-
ous functions describing vector bundles over M. Then there exists f£ such that if

ro = max lexp ' 1 haβ(x)gβa(x)\ ^fΰ

+ 1 f 11 • 1 1A xeWanWβ

the following holds:
There exists a smaller cover i^a c= °Ua, M c (J Ψ*a and continuous pα : ya -> G

α

such that haβ = paga βpβ

ι on i^a n Y β. Moreover, m a x | e x p ~ γ ρ a \ ̂  c^m.
xeΨa

Proof The proof is inductive on the number of elements in the cover.
To start the induction, let p ^ l e G . Suppose we have constructed
Φ Λ f k c %a and p β : Φ β f k - G satisfying Aβf/Ϊ = Pα^α > / ?p; ' on Φ β f k n ^ , for 1 ^ α ̂  k,

l<,β^k. Furthermore, assume M a I \J <%^k J (J ( \J^Λ and | e x p " ι pα | ^ cfcm.

If m is sufficiently small, we claim we may continue the construction from j = k
toj = k-\-l. This will prove the proposition by induction.

Use the equation u. = exp ~1(hja pα ga ) to define a continuous w.: ^ α k n ^ . -• ©
for a^k=j — \. If m^fo/ck, we have lexp" 1 pα(x)| ^c Λ m ^ / 0 and
exp" 1 hJA(x)ga j(x)\ ^m g / 0 . Lemma 3.1 shows that w;. exists and |t//x)| ^
2(1 + cjm = cm. It follows algebraically from the consistency conditions that u. is

/ \/
consistently defined on W.n | J ^

Choose a smooth C0 0 partition of unity φ. on M which is 0 on f;. - [j ύίίak.

This can be done in such a way so that the sets

j , j

cover M - (J °Ua. Define p 7 = exp φ.u. on ^ - π ί (J %ak I and p J = l on

°U. - [j ^ α ^ T h e n | e x p " ι p.(x)\ ^ | φ^upc)\ ^ 2(1 +"cfc)m = c, m. The continu-

ous map p. and the sets ^ α . have the listed properties for j = k + 1. Note that by
iteration cfc+ x = 2(1 -f cΛ) can be explicitly computed.
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Corollary 3.3. Let ha β and ga β be two sets of Lp

2 overlap functions on ^ α n °Uβ

for 2p > dimM,g a t β eL p

2 (%n% β 9 G\h Λ t β eU 2 (W a n<ti β 9 G). Suppose

m= max jexp" 1 haβ {x)gβtΛ {x)\ ύfr

Then the pα constructed in Proposition 3.2 satisfies p(χeLp

2(iΛ

a, G). Furthermore if

\\Kj®an®β\\P,2^mf and h«,β\®«n®β\\P,2^m'f°r aϊl Vairs (α, j8), then there
exists k(rή) such that

(Note that restrict means both derivatives and integrals are restricted to the open
set named.)
Proof. We simply note that by the rules of multiplication and composition of
Sobolev LP2 functions in the range 2p > dim M, that inductively

= e x
j e x P " * hj,« Pa 0Λj)

can be bounded in Lp

2(%j,G). The bound could be made explicit in norms of
^eC°°(M), PaeLf2(%k, G\ hj%aeU2(%n%9 G) and g^eLψ^^ G).

It is now possible to proceed with the main business of this section. Fix p > n/2
and assume J | F | P * 1 < B is a fixed uniform LP bound on the curvature of a set of

M

connections. The next lemma refers back to the proof of Lemma 2.3.

Lemma 3.4. There exists a finite cover °Ua of M depending on p (2p > dim M) and
B such that Bn = %a. Under this coordinate identification J \F\P dx ^ κ'(ή).

Proof Choose exponential balls about each point xoeM. If the balls are small
enough, the Riemannian norms in M compare uniformly to the Euclidean norms.
Using the construction and dilation of Lemma 2.3, we can assume every XOGM
lies in a ball J \F\P dx ^ κr. Since x is compact, a finite subcover of these coordi-

xeBn

nate geodesic patches cover M. The choice is independent of D, but depends on
B, K' and 2p - n > 0.

Choose K' — κ(n) of Theorem 2.1. Apply this theorem to any connection D
restricted to each ^ α of the cover if j |F(D) | P * 1 < B. This theorem then essentially

M

chooses a trivialization σΰL(D):η\<%a = R x <%a. We have already used several
times that bounds on the connection forms give bounds on the gauge transforma-
tions, (or overlap functions) relating them (in Lemma 1.2 and Lemma 2.4). We
apply this to a sequence of connections.

Lemma 3.5. Let D(i)be a sequence of connections inland assume JF(D(z))*l ^B.
M

Then there exists a fixed open cover {°U^ of M and trivίalizations σβ):
η I <%^ ^ R? x ^ α which induce the connection forms σjj) (D(i)\ ^ α ) σ ~ 1 = d + Λ(i, α).
These trivializations satisfy the properties

(a) Conditions (a)-(d) of Theorem 2.1 are satisfied by the A = A(i, α) on <%£a.
(b) The overlap functions gaβ(i) = σβ)°σβ(i)~ί cire uniformly bounded in
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(c) For a subsequence, we have weak convergence

A(i\ α) - A(a) in L ^ ^ , © x Rn)

(d) The A(a) represents a connection D onη presented in terms of a trivialization
ofη whose overlap functions are given by ga β{co).
Proof Condition (a) follows from Lemma 3.4, (b) from the computations in
Lemmas 1.2 and 2.4 which we will not repeat and (c) from weak compactness of
L\{M) and LP2(M). Because the consistency conditions are preserved under weak
limits, it is clear A(ot) represents a connection in a bundle presented in terms of
ga;/?(co). That this bundle is topologically η follows from Theorem 3.2. We go into
this in greater detail in the proof of our main theorem which follows.

Theorem 3.6 (1.5). Let 2p > dim M and D(ϊ) be a sequence of connections in ^
such that J | F ( D ( ϊ ) ) | p * 1 ^ B. Then there exists a subsequence {ι} cz [i] and gauge

M

transformations s{ϊ)eΘp

2 = LP2(M, Aut η) such that

s(iY' o D(ϊ) oS(ί')-^D in Wt.

Proof We assume the situation described in Lemma 3.5 has been constructed.
Renumber so ϊ = i. Because LP2(M) c C°(M) is a compact embedding for 2p > n,
aoc / 0 -* aa /°°) (strongly) in C°(ΰlίa n <%β, G). Therefore there exists a fixed j , such
that for oo'^ i > j we may apply Theorem 3.2 and Corollary 3.3 to gaβ{j) = gaβ

and gaβ(i) = gaβ.
There exists a cover of M by the open sets ir

α cz ύttα such that for oo ^ i >j,

Moreover, pα(ι)eIP 2(^α, G) is bounded and converges to pα(oo) in C°(
which is equivalent to ρα(i) -»pα( oo) in Lp

2(ir

α, G).
Define the global gauge transformation s{i)e@p

2 on °lla by the formula

On %an
ύiίβ, the consistency condition

σa (0 Pβ) σaU) = σβ X (0 P/0 σβU)

is algebraically

Pβ) oJJ) σβ(j)~' pβ~1 = σβ)a~ι(i).

From the definition of the overlap functions this is precisely the condition we used
to choose pα(i).

We have still to show that s(i)~i D(ϊ) s(i) is weakly convergent. The fixed
trivialization σjj): η \ rΓa -> R* x τ^α does lie in U2 (although we have no bound
on norms because we have no natural choice of norm in the affine space 2Ϊ^). It
is sufficient to show that the induced connection forms in this trivialization over
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/Va converge weakly in Lp

2(Va, R* x ©). However,

is algebraically

The trivializations σβ) were chosen to make σJi)°D{i)°σ~1 (i) = d + A(α, z) satisfy
weak convergence, (c) of Lemma 3.5. In our present trivialization, the connection
s(i) ~1 ° D(ί) ° 5(0 is now

p~1 (0o(d + A(OL9 i))opa(ί) = d + p~1 (0dPa{ί) + p ; 1 (i)X(α, 0p α (0

Because ^(α, /) is weakly convergent in L\{Va, R* x ©) and pfi) in Lp

2{i^a, G) by
the rules of multiplication, this connection converges weakly in Lp(i^a, R* x ©).
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