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Time-Delay in Potential Scattering Theory

Some "Geometric" Results
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Abstract. Results on time-delay in potential scattering theory are given using
properties of the generator of dilations ("geometric" method).

1. Introduction

The present paper is concerned with time-delay in potential scattering theory. Let
H0 = — A and H = H0+V be the free and full Hamiltonian, respectively, in
J>f = L2(IR"), with V(x) = 0(\x\~β\ β>U as |x|-*oo. Existence and completeness of
the wave operators W± is well known. To define the time-delay, consider first an
orthogonal projection P in Jtf*. The probability of finding the state e~itHf in Ptff at
time t is given by \\Pe~itHf\\2.

The total time spent in PJ f is given by

00

j \\Pe-uaf\\2dt. (1.1)

It is not obvious that this integral is finite. Finiteness is in many cases obtained for
some / by proving local H-smoothness of P.

Let us briefly state the main problems in time-delay. Let Pr denote multipli-
cation by the characteristic function for the ball {|x|<r}. Let feJίf. e~itHof and
e~ιtHW_f are asymptotically equal as ί-> — oo. The difference of the times spent in
Pγffl by these two states is the time-delay for the ball { |x|<r}:

00

ΔTJJ)= J (\\Pre-itHW_f\\2-\\Pre-itH°f\\2)dt. (1.2)
— oo

As r tends to infinity, one expects a finite limit, at least for a dense set of fe Jtf. The
limit is the time-delay for /

ΔT(f)=\imATr(f). (1.3)
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From stationary considerations one expects A T(f) given as the expectation value
of a selfadjoint operator T

AT(f) = (f,Tf). (1.4)

T is usually called the Eisenbud-Wigner time-delay operator. T is given explicitly in
terms of the scattering operator S=W%W_. Let S = {S(Λ,)} be the S-matrix
decomposition in the spectral representation for Ho. T is given by

(1.5)

In order to define T by (1.5) one needs differentiability of the scattering matrix.
We give two results. First assume V{x) = O{\x\~1~ε~k) as |X|->ΌO for some ε > 0 and
some integer fc^O. Then S(λ) is Ck as a function of λ with values in B(L2(Sn~1)),
S11'1 the unit sphere in W. The result is obtained using the Kato-Kuroda
representation for S(λ). The second result is obtained for V satisfying

Kx-F/FMI^Q + MΓ1-*, xeR",

for some c>0, ε>0, and ^ = 0,1,2, ...,fe. For such potentials S(λ) is Ck. This result
is proved using a scaling argument.

The above problems (1.2)—(1.5) can be considered for any sequence Pr

converging strongly to the identity. Geometric ideas related to the generator of

dilations D = — (x V+ V x) have played an important role in recent developments

in scattering theory. See [8] for a review, and [21, 24] for important results, on
which our results are based.

Let P_(P+) denote the spectral projection for D corresponding to (— oo,0]
([0, oo)). P_ 3^{P+ J/f) is the subspace of incoming (outgoing) states. In Sect. 5 we
prove

</,7T>= ] (\\P_e-itH°Sf\\2-\\P_e-itH°f\\2)dt (1.6)
— oo

for V satisfying one of the above conditions with fc = 1. It is part of our result that
the integral in (1.6) is absolutely convergent for a dense set of/ Thus (1.6) shows
that the difference of the times e~itHof and e~itHoSf spend in P_ J^ equals the time-
delay. Replacing P_ by P+ reverses the sign in (1.6), as expected.

In Sect. 6 results pertaining to (1.3) and (1.4) are given. The main results are
Theorems 6.2 and 6.4, which establish results on time-delay under general
assumptions on Pr and S. The main application is to Pr = χr(D\ the spectral
projection for D corresponding to \_ — r,r~\. (1.2)—(1.5) are proved for this sequence
under the assumption F(x) = 0(|x|~4~ε) as |x|-*oo. No spherical symmetry is
assumed. This choice of Pr corresponds roughly to the localization |x p | ^ r in
phase space. In the original formulation one had |x| ^ r in configuration space. For
states with finite energy support away from zero these localizations are almost
equivalent.

Let us now briefly mention some previous results on time-delay. The problem
was first studied by Eisenbud [7] and Wigner [29] in a stationary formulation.
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(1.5) was introduced by Smith [27]. The time-dependent formulation (1.2) and (1.3)
was introduced by Jauch and Marchand [10]. Results on convergence of the trace
of certain operators related to (1.2) was proved in [11] and thus established the
connection between time-delay and the derivative of the total phase shift (Krein's
spectral shift function). (1.3) is not proved in [11].

Rigorous proofs of (1.2)—(1.5) have been given by Martin [20] for a class of
simple scattering systems [i.e. S(λ) scalar]. It is essential in his proof to have S(λ)
scalar. By considering fixed angular momentum he applies the results to potential
scattering for V radial, V(\x\) = 0{\x\~Ar~ε) as \x\-+co. These results are here
obtained as a special case of the theorems in Sect. 6. A presentation of Martin's
results is given [1], together with some further discussion of time-delay, and the
condition on the potential is improved in [9].

Lavine [18] has found a different expression for the limit (1.3). Narnhofer has
proposed a different definition of time-delay, [23]. We have omitted discussion of
these subjects to keep the paper reasonably short. For more recent results in the
physics literature, see [5]. In classical scattering theory time-delay has been
discussed by Lax-Phillips [19]. See also Amrein and Wollenberg [2] for an
approach closer to the problems (1.2)—(1.5).

Note that [23] contains geometrical considerations showing that a spherically
symmetric choice for Pr is natural.

2. Notation and Preliminary Results

This section contains the notation used and some preliminary results on various
spaces and operators. Our basic Hubert space is Jf = L2(IR"). The norm and inner
product are denoted || || and < , •>, respectively. The weighted L2-space is given
by

Let y\lR") denote the Schwartz space of rapidly decreasing functions, and
the tempered distributions. For any m, selR the weighted Sobolev space is given by

An equivalent norm is given by

Note that H°'s{ΊRn) = L^(W1) and H0'°(ΊRn) = L2(ΊRny The inner product on L2(IR")
induces a natural duality between Hms(IR") and J7~m'~s(IRn) for any m,seR It is
denoted < , •>.

The Fourier transform £F is given by

(2πΓ" / 2 ί/(x)e- i χ ^ x . (2.1)

is bounded from H m s(IR") to Hs m{ΈC) for any s,meR
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Let Ho=—A. Ho is an unbounded selfadjoint operator in L2(IR") with domain

0) = H2'°(lRn\ but we will also consider Ho as a bounded operator from
s(IRn) to Hm~2>s(W).

In the present paper the dilation group, U{θ\ and its generator, D, play

important roles. Let = L2(β?) and 0 e R Then

and 1/(0) = eίθD, where

W = β2 f(e°x),

D = — ( x F+F x).

(2.2)

(2.3)

D is essentially selfadjoint on ^(!Rn). D is considered both as an unbounded
selfadjoint operator on f̂, and as a bounded operator from Jΐm>s(]Rw) to
iίm~1 ' s~1(IR"). Note also that the condition

is equivalent to the conditions

| |D j / | |<oo for 7 = 0,1,2,3.

Let φeC£((0, oo)) and define φ{H0) using the functional calculus. Using the
Fourier transform it is easy to see that φ(H0) is bounded from tfm's(IR") to Hm' s(Rn)
for any m,seR

The quantum mechanical operators can be considered in various repre-
sentations. We use configuration space, momentum space, and the spectral
representation spaces for Ho and D. These spaces are related by unitary operators.
To simplify notation, let 0*' = L2(Sn~'r\ S"'1 the unit sphere in W. The spaces are
defined as follows.

Jfc = L2(R"), configuration space.
34?m = L2(R"), momentum space.
34?s = L2(0, QO\3P\ spectral representation space for Ho.
Jf-L =L 2 (IR;^), auxiliary space.
Jf2 = L2(IR;^), spectral representation space for D.

The unitary maps between these spaces are given in the following diagram.
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The operators are defined below. It is straightforward to check that the operators
are unitary, and that the diagram commutes. We omit the details.

#": fflc-*fflm is the Fourier transform as defined in (2.1).

Φ : ^m-*^s is given by (%f)(λ9ω) = 2-ll2λin"2)l4f(λll2ω)
with

(Φ- xg) (ξ) = (<8Γ 'g) (|ξ|ω) = 2m\ξ\~
2tfc-*#es gives the spectral representation for H o , viz. FHQF'1 is
multiplication by λ in J-fs.

J^m-*3tf?

2 i s ^ n e Mellin transform. It is conveniently described by

Jfm-» Jfx is given by (^/) (τ, ω) = e2 Zf(eτω)
with

3#'1->Jtf?2 is th e one-dimensional Fourier transform of vector-valued
functions:

(J^/MσHL ί /(τ)^^τ.
| / 2 π -oo

[As in (2.1) the integral is convergent in the mean for
Jfx -> J^s is given by ^ = q/Ϋ"~ K Explicitly we have

As usual, the same letter is used to denote a quantum mechanical observable in
various representations. Hence Ho= —Δ in J^c, Ho = multiplication by ξ2 in j ^ m ,
and Ho = multiplication by λ in J^s.

Note also that in 3Ve D=—(x-V+V-x), in J#L D = (ξ-V+V'ξ), in JC
2ί 2ί

D = multiplication by — σ, and in Jtifs D = U T T + "TT^I We have chosen the
i \ dλ dλ I

above signs to obtain consistency with [24].
Let P+ (P_) be the spectral projection for D corresponding to [0, oo) ((— oo, 0]).

We have P++P_ = 1. Due to the choice of signs P+ is given by multiplication by
the characteristic function for (— oo,0] in Jf2.

Using the operators summarized in the diagram above we can find P_ as an
explicit convolution operator in Jtfs. We state the result, but omit the computation.
Let vp denote the Cauchy principal value. Then P_ — \l is represented in J ^ by

1 1 /I

Boundedness of this operator can be seen directly using results on the Hubert
transform, see e.g. [28].
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Let χr(D) denote the spectral projection for D corresponding to \_ — r,r~\. In
3tfs χr(D) is given by the kernel

sin ί^ (In λ -In//) j

For two Hubert spaces JT and X we let B(Jf,Jf) denote the bounded
operators from jf to Jf. As usual we write B(34?) = £(Jf, Jf).

In many cases we write L 2 instead of L2(Rn), H m s instead of Hm's(lRn), etc.
Cfc(IRn) denotes continuously differentiate functions on IRn, etc.

3. The Eisenbud-Wigner Time-Delay Operator

Let HQ=-A and H = H0 + V in Jfc = L2(lR"), where F is a short range potential.
The wave operators

W+= s-\imeίtHe-itHo

exist and are complete. Hence we have a unitary scattering operator S = W% W_.
In Jfs S has a decomposition S = {S(λ)} 5(A) is the scattering matrix. The
Eisenbud-Wigner time-delay operator is formally given by

(3.1)

In this section we give conditions on V that ensure the differentiability of
λ\->S{λ) in operator norm on B(^). These results imply for a large class of
potentials the existence of T as a selfadjoint operator commuting with Ho. For two
classes of potentials the differentiability of S(λ) is well known. If V is short range
and dilation-analytic, S(λ) is analytic, see [4]. If V is exponentially decaying, S(λ) is
analytic, see for instance [3].

We consider the following classes of potentials. For simplicity we consider only
multiplicative V. Theorem 3.5 can easily be extended to a class of nonlocal V.

Assumption 3.1. a) V is multiplication by a realvalued function such that V defines a
compact operator from HU0(WLn) to H~uβ(Rn) for some β>l.

b) V is multiplication by a realvalued function such that V defines a compact
operator from H2'°(W) to H° β(Rn) for some β>l.

Obviously b) implies a). In case a) V: HUs(JRr)^H" uβ + s(JRn) is compact, and in
case b) V: H2 ' s(IR")->H0^ + s(IRn) is compact, for any seIR, because V commutes
with multiplication by (1 + x2)s/2. In case a) H = Ho + V is the quadratic form sum,
and in case b) H = Ho + V is the operator sum.

Assumption 3.2. Let V be a realvalued function. Assume that for some s>\ and
integer fe^O the map

Θ^U(Θ) VU{- 0), IR-^5(L2

 s, L2)

is k times continuously differentiable. Here U(θ) is the dilation-group, see (2.2).
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The following condition is sufficient for V to satisfy Assumption 3.2. Let
VeCk(βP) and assume there exist <5>0, c > 0 such that

for all xeW and /, 0^/^fc. If V satisfies (3.2) it is well known that H has no
positive eigenvalues, see [26].

The following results are derived using the explicit representation for the
scattering matrix given in [16]. Let us briefly describe it. Let y(μ) be the trace
operator defined for feC%(WLn) by (y(μ)f)(ω) = f(μω\ μ>0, ωeSn~K y(μ) extends
to a bounded operator y(μ)eB(Hs'mQBLn), L2^"'1)) for any s > § , m e R

is k timesLemma 3.3. Let melR, s>k + ^, fe^O an integer. Then
continuously differentiable in norm on 5(#s'm(IR"), L 2 ^ " " 1 ) ) .

Proof Consider first fe = l and m = 0. Let T: μ^y(μ\ T: (0, ao)-

The obvious guess for the derivative is DT(μ) = y(μ)—,— = — x V. Let
or or \x\

We then have

}

-T{μ))-DT(μ))f

Hence

dr dr'
dξ

1 h

1 f δ

h 0

In the last step we used the Holder continuity of y(μ), see [16]. Since
d

DT(μ) = y(μ) — is continuous in operator norm, the result is proved for k = 1, m = 0.

Using the expression for DT(μ) the result for any k follows easily. For mφO we
note that boundedness of y(μ):Hs'm-*L2(Sn~1) is equivalent to boundedness of

Obviously y{μ){ί +X 2 )~ m / 2 = (l+μ 2)~m / 2y(μ), and the result for mφO follows from
this result. •

Let R(ζ) = (H — ζ)~1 be the resolvent. The boundary values

R(λ±iΰ)= limJR(λ±iε)5 A>0, λφσJH)
ε|0 y

exist in B(H ί>s,H1> s) for s,sr>^. Here σ (if) denotes the point spectrum of H.
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The scattering matrix is given by

S(λ) = 1 - πiλnl2~ ιy{λm)^{V- VR{λ + zΌ) V)^*y{λ112)* (3.3)

for λe(0, ao)\σp{H\ see [16].

Lemma 3.4. Let k^O be an integer. Let V satisfy Assumption 3.1 a) with β>k+l.
Let s,s'>k + i;. Then λt->R(λ + zΌ) is k times continuously differentiable as a map
from (0, oo)\σp(H) to BiH'1'*,!!1'-*').

Proof The result is proved using the technique in [13]. Since we do not require
decay estimates in A, we can allow local singularities in V. Details are omitted. See
also [22] for similar results. •

Theorem 3.5. Let V satisfy Assumption 3.1 a) with jβ>fc+l, fc^Oαn integer. Then
S(λ) is k times continuously differ entiable in λ, λe(0, co)\σp(H\ with values in B(03).

Proof. Using (3.3) and Lemmas 3.3, 3.4 we see that all operators in the expression
for S(λ) are k times continuously differentiable, provided we can verify the
conditions on 5, s' in Lemmas 3.3 and 3.4. Omitting constants and the factor λn/2~1

we have typical terms

and

^i ' 2̂? ^3 non-negative integers satisfying zf1 + ^ 2 + /3^fc. We now determine the
condition under which these expressions make sense.

* l u - s ) for

Hence β must satisfy
For the second term we have

^Λ y{λ)^eB(H\^) for β-
dλj

for

ί,β — s τjl,—s'\ f^«

, Jti i io r

and β-

dλ
X u β ~ s \ ^ ) for β-s

f>S1
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Hence β must satisfy

As / 1 + £2 + ̂ 3 S k, we must have β > k + 1 . On the other hand, given β > k +1, we
can find s, s', such that the terms exist as continuous functions of λ with values in
B{2F). D

To prove the next result we use the dilation-group to relate a change in the
energy to a change in the potential. This is a well known technique in scattering
theory, see e.g. [12, Lemma 3.3] and for a recent application [6].

U{θ) is given in (2.2). Define

Vφ) = e~2θU(-θ)VU(θ).

Let S{λ; V) denote the scattering matrix for H = H0 + V. Then

S(e2θλ;V) = S(λ;V(θ)). (3.4)

This result can be proved using (3.3). It is interesting to note that (3.4) can be
proved without using (3.3), see [6].

Theorem 3.6. Let V satisfy Assumption 3.2 for some fcgrO. Then S(λ) is k times
continuously differentiable in λe(0, oo)\σp(H).

Proof Assumption 3.2 implies that Θ\->V{Θ) is differentiable k times from 1R to
B(HU~S, £ Γ l f S ) , s>^. Using (3.3) and (3.4) this gives the result. Notice that by
taking θ small enough we can avoid possible eigenvalues for H. Π

Theorem 3.7. Let V satisfy Assumption 3.1 a) for β>2 or Assumption 3.2 for fc = 1.
Let T be defined by

=f for some a9b, [α,b]C(0, oo)\σp(H)}

d }:-τS(λ)}f for fe@(T).
dλ J

T is essentially selfadjoint on 9{T\ 9{T)CΘ{H0\ and T commutes with Ho. Eo

denotes the spectral family for Ho.

Proof S(λ) is differentiable by Theorems 3.5 or 3.6. S{λ)*S{λ) = l implies

and hence for each Λe(0, co)\σ JH\ — iS{λ)* —- S{λ) is a bounded selfadjoint
dλ

operator in B{3P). Thus T is densely defined, symmetric, and for each
[α, b~] C(0, co)\σp(H), TE0([a, b]) is a bounded selfadjoint operator. This implies the
essential selfadjointness of T. Obviously T commutes with Ho. Π

T is called the Eisenbud-Wigner time-delay operator.
We have the following representation for TH0, which has a simple in-

terpretation, see [23].
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Theorem 3.8.

H0T=-±S*[D9S]. (3.5)

on the domain 3) = {fe 3t?c\Ffe Cj(O, oo \&)}. (See Sect. 2 for the definition of F.)

Proof We have - \D = I - iλ—- - - ft, see Sect. 2. Let ge Cj(O, oo &\ Then

{(H0Tg)(λ)}=l-iλS%

which proves (3.5). •

4. Some Results Related to D

In this section we give various results on D to be used in the following sections. We
refer to Sect. 2 for the definitions.

We have on ^(IR") (in configuration space)

which implies by differentiation on

i [ H 0 , D ] = 2 H 0 .

We also have

U(θ)e~ίtHoU( — θ) = exp( — ite~2θH0). (4.1)

Note that U(θ) and e'itHo map Sf(WLn) into 6^(W).

Lemma 4.1. On £f(W) we have for fc= 1,2,3

tkHk

0e~itHo= £ Ck

jfD
je-ίtHoDf, (4.2)

w/zere Cj y, are complex constants.

Proof. Let fe£f(JSLn). Differentiation of (4.1) with respect to θ gives

Setting 0 = 0 in (4.3) gives (4.2) for fc=l. Differentiate (4.3) to obtain

Using (4.3) we obtain

-4t2H2

0e-4θexp{-ite-2θH0)f
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Set θ = 0 to obtain (4.2) for fc = 2. The result for fc = 3 is obtained by further
differentiation. We omit the details. •

Remark 4.2. (4.2) is valid for any k. This can be seen from the proof using
induction.

Lemma 4.3. Let 0 ^ μ ^ 3 . We then have

for all ίφO. We also have

\\(l+D2)-μ/2(l+H0)-3H3

0e-itHo(l + D2)-μ'2\\^cμ\t\-μ (4.4)

for all ίφO. The norms are operator norm in B(L2).

Proof The closure of (1 + x 2)~ 3 / 2(l + H0Γ
3l2Dj [defined on ^(R")] is a bounded

operator, j = 0,1,2,3. Let feόf(W). Lemma 4.1 implies

The first result now follows from this estimate and complex interpolation.
To prove the second result note that i [if0, D] = 2H0 implies

D ( l + H 0 ) - 1 = ( H - H 0 ) - 1 D - 2 i H 0 ( l + H 0 ) - 2 .

Repeated application of this commutation-result leads to the result

where ψ(H0) is a bounded operator. The second result of the lemma is now proved
using complex interpolation. •

We use the following result due to Mourre [21]. Let χ + (t)(χ_(t)) be the
characteristic function for [0, oo)((— oo,0]).

Lemma 4.4. Let φeC^((0, oo)) and Orgμ'<μ. Then there exists a constant
c = c(φ,μ,μf) such that for ίelR

\t\Γμ\ (4.5)

where the norm is operator norm in B(L2).

Proof See [21, Lemma 1]. •

Lemma 4.5. Let feJ4fc = L2(W) and l^q<co. Assume for some
φe C£((0, oo))φ(H0)f=f9 and for some μ>l/q \\(D2 + l ) μ / 2 / | | < oo. Then we have

and

j \\P_e~itHof\\qdt<oo (4.6)
o

o
f \\P+e-ίtHof\\qdt<oo. (4.7)
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Proof. We prove (4.6). The proof of (4.7) is similar. Taking adjoints we obtain from

(4.5) the following estimate. Let - <μ' <μ. For ί > 0 we have

which implies (4.6). •
The following lemma gives a result on the wave operators which could be

obtained directly from the usual stationary phase argument for a dense set of /, see
e.g. [25]. The following lemma is useful, because it gives a condition on /, which
can also be verified for Sf

Lemma 4.6. Let V satisfy Assumption 3.1 b) for some β>2. Let feJ^fc satisfy
Φ(H0)f=ffor some φeC%((0, OO)), and \\(D2 + l)μ/2f\\ < oo for some μ>2. We then
have

ί | | (W,-l)e- i ί H o / | |Λ<cx) (4.8)
o

0

f \\(W_-l)e~itH°f\\dt<oo. (4.9)

and

Proof Consider first (4.8). We have for fe2>{H) =

(W+ - ί)f=i j eisHVe~ίsHofds,
o

where the integral is strongly convergent, and for any teWL

00

(W+-l)e~itHof=ie'itH j eisHVe'isH°fds.
t

Hence to prove (4.8) it suffices to prove

00 00

J J \\Ve~isHof\\dsdt<ao
o t

for / satisfying the assumptions of the lemma. (Such /'s are obviously in the
domain of Ho.) The result follows if we prove

\ \ f \ \ 9 s>0

for some μ > 2.
Let / satisfy φ{H0)f=£ for some φeC%({0, oo)) and | | ( l+D 2 ) μ / 2 /l l < oo. We

can assume 2<μ^β. Let φ(λ) = φ(λ)(1 +/l) 1 1 / 2/l" 3, and define g = φ(H0)f
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Then / = (1 + Ho)~1 ll2H3

Qg. We have ||(1 + D2)μί2g\\ < oo since ||(1 + D2)μl2φ{H0)
(l + D 2 ) " μ / 2 | | β ( L 2 ) < o o , see [31] for a proof.

We used Lemma 4.3 and the result that V(l+H0)~1{lJrx2Y12 is bounded on
L2 by assumption and μSβ- Thus we have proved (4.8).

(4.9) is proved using

t

(W_-l)e~ίtH°f=-ίe~ίtH J eίsHVe~ίsHofds,
— oo

and the estimate given above. •

Remark 4.7, (4.8) and (4.9) are valid for any fe@(H0) satisfying for some ε > 0

\\Ve~isH°f\\=O(\sΓ2-ε)

as |s|—>oo. Such an estimate can be proved in the following manner. Let / satisfy
φ(H0)f=f for some φeC%(0, oo). Let <5=4dist(O,supp0). F(|x|^δ|s |) is multipli-
cation by the characteristic function for {x||x|^<5|s|} in fflc

The first term is 0(\s\~ β) by Assumption 3.1 b). We can obtain estimates

using stationary phase arguments, see e.g. [8, 25]. The conditions on/have a form
that makes it very hard to verify them for Sf. Hence we prefer to give the above
arguments.

5. Time-Delay and the Subspace of Incoming (Outgoing) States

In this section we establish a connection between the time-delay operator and the
projection P_ onto the subspace of incoming states. P_ (and P+, the projection
onto outgoing states) was introduced by Mourre [21]. Roughly, our result states
that the time-delay equals the difference of the times f(ή = e'itH°f and
{Sf)(t) = e~ιtHoSf spend in the incoming subspace. A similar result is true for P+,
with the obvious reversal of sign.

The result is based on a representation of S*[P_,5] in Jtfs as an integral
operator with an operator-valued kernel κ(λ, μ)eB(@>), λ,μe(0,ao)\σp(H). For

with g having compact support in (0, oo)

00

\κ{λ,μ)g{μ)dμ.
0
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Lemma 5.1. Let Vsatisfy Assumption 3.1 a) with β>2or Assumption 3.2 with k= 1.
Then S*[P_,S] is given by the kernel κ{λ,μ); λ,μe{0, ao)\σp{H):

In A— m

j,S(λ), λ = μ.
2πι dλ

κ(λ,μ) is continuous in A, μe(O, co)\σp(H).

Proof. Let ge$Ps have compact support in (0, co)\σp{H). (2.4) implies

(5.1)

2πί λ1/2μ1/2 ln/l — lnμ

S(μ)g(μ)-S(λ) \
lnl-m/i

:~δ GO \ -j -i

ί + ί ά
Theorems 3.5 or 3.6 implies that S(λ) is continuously differentiable in operator
norm. Hence

1 S(λ)-S{μ) d
''-jτS(λ) as λ-+μ.λll2μ112 lnλ-ln// dλ"

Since g has compact support, the result follows using dominated convergence. •

Theorem 5.2. Let V satisfy Assumption 3.1 a) with β>2 or Assumption 3.2 with
k = ί. Let fej^c satisfy F/eCj((0, ao)\σp(H);0>). Then

ί (\\P_e-itH°Sf\\2-\\P_e-ίtHof\\2)dt, (5.2)

where the integral is absolutely convergent.

Proof First we show absolute convergence of the integral. Let / satisfy our

assumptions. In the spectral representation D is given by D= \liλ \-i>, so we

I dλ J
have | |D/| |<oo which is equivalent to ||(D2 + 1 ) 1 / 2 / | | <oo. Since S={S(A)} is
continuously differentiable (Theorems 3.5 or 3.6), a computation in the spectral
representation shows that \\(D2 + 1) 1 / 2S/| | < oo. We can now use Lemma 4.5 with
q = 2, μ= 1 to conclude that the integral over (0, oo) in (5.2) converges absolutely.
For ί^O we use the identity

= \\P+e-itH°f\\2-\\P+e-ίtH°Sf\\2, (5.3)

which follows from the unitarity of S and e~ίtH° together with P++P_ = 1,P+ and
P_ both orthogonal projections. (5.3) and (4.7) show that the integral converges
absolutely for ίgO.
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Let J(ε), ε > 0 be defined by

00

— oo

We have by the first part of the proof

\iml(ε)= J (\\P_e-itHoSf\\2-\\P_e-ίtHof\\2)dt.
— GO

The time-integral in I(ε) can be computed in the spectral representation. Let g = Ff.
Using Lemma 5.1 we have

J(e)= ί dte-^] dλ] dμeitiλ'>ί\g(λ),κ(λ,μ)g(μ)) .
- o o 0 0

Since g has support in an interval [a, b~\ C (0, co)\σp(H\ (5.1) implies

II K(h μ) II B(&) = C f° r a ^ λ, μe [α, b\ and we can interchange the order of integration

oo oo oo

= j dλ \ dμ(g(λ), κ(λ, μ)g(μ)} -τ— ^ .
0 0 o ,,

For a.e. λ the following integral exists:

0 ε -f- ( Λ — //J

^ ε ( v ) = — 2 2 ̂ s t n e Poisson kernel, so we have

ψε(λ)-+2π(g(λ\κ(λ,λ)g(λ)} as ε|0

for a.e. λ. The Poisson kernel has the property that this convergence is dominated,
see [28, p. 63]. Hence

for some heL2{0, oo). This gives the result

lim 7(ε) = J 2π(g{λ), κ(λ, λ)g(λ)}dλ.
εlΌ 0

(5.1) and the definition of T show that we have proved (5.2). •

Remark 5.3. (5.3) shows that under the assumptions of the theorem we have

<f,π>=~ ] dt(\\P+e-itH°Sf\\2-\\P+e-ίtH°f\\2).
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Remark 5.4. Other choices for projections P_ and P+ on incoming and outgoing
states have been proposed, see [8, 30]. One can prove that (5.2) is true for the
projection P_ from [30]. The proof is similar to the one given above. We omit the
details.

6. Phase-Space Description of Time-Delay

In this section we state and prove the results on the phase-space description of
time-delay mentioned in the introduction. Several of our results require finiteness
of integrals of the form

f \\Qe-itHof\\2dt
— oo

for a dense set of / In many cases this can be proved by showing local Ho-
smoothness of Q. See [14, 15,17, 18, 26] for the definition of smoothness and local
smoothness. For the moment we assume finiteness of such integrals for fe @>, 3ι
dense.

Definition 6.1. Let {Pr} be a sequence of orthogonal projections such that

s-lim Pr = l. {Pr} is said to satisfy condition (E), if there exists a dense set Q)Q.fflc

such that for all fe 3) and all r the integrals

ί \\Pre-itH°f\\2dt
— oo

and

J \\Pre-itHW_f\\2dt
— oo

are finite.

Theorem 6.2. Let {Pr} satisfy condition (E).
(i) Let V satisfy Assumption 3.1 b) with β>2. Let fe@ satisfy φ(H0)f= f for

some ΦECQ((0, OO)) and ||(£>2 + l)μ/2/ll < oo for some μ>2. For any ToeWLwe have

Jim j dt(\\Pre-ίtHW_f\\2-\\Pre-ίtH°f\\2)
— oo

= rlim ]dt{\\Pre-hHW_f\\2-\\Pre-itH°f\\2), (6.1)
To

where both limits either exist or are infinite.
(ii) Let V satisfy Assumption 3.1 b) with β>2. Let feβf satisfy φ(H0)f=f for

some φeC^((0, oo)\σp(H)) and \\(D2 + l)μ/2f\\ + \\(D2 + l)μl2Sf\\ < oo for some μ>2.
Assume for each r

00

ί \\Pre-itHoSf\\2dt<ao.
o
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Then we have

Urn ί dt(\\Pre-itHW_f\\2-\\Pre-itH°f\\2)
— 00

- Urn f dt(\\Pre-ίtHoSf\\2- \\Pre~itHof\\2), (6.2)

where both limits either exist or are infinite.

Remark 6.3. (i) A result similar to (6.2) has been proved in [1, Proposition 7.11] in
an abstract framework.

(ii) The assumption \\(D2 + l) μ / 2 S/| | < oo, μ>2 can be verified under additional
assumptions on Vand / Let V satisfy 3.1 b) with β > 4 , and let \\(D2 + 1 ) 3 / 2 / | | < oo.
The assumption on / is equivalent to | |D J '/ | | < oo for7 = 0,1,2,3. Theorem 3.5 now
implies \\DjSf\\ < oo, j = 0,1,2,3, cf. the proof of Theorem 5.2. Hence the assump-
tion is verified with μ = 3.

(iii) For any Tv T2, — oo < T.x < T2 < oo, we have

τ2

lim j dt(\\Pre-ίtHW_f\\2-\\Pre-itHof\\2) = 0j

and

τ2

lim f
r-*oo z

Hence the important contributions to the limits in (6.1), (6.2) come from the
behavior of the integrand near t= + oo, as expected.

Proof of (i). It suffices to prove

o
lim f

For each r the integral exists by assumption. Using the intertwining relation we
have

o
J (\\Pre-itHW^f\\2-\\Pre-itH°f\\2)dt

— GO

0

= J (e-ίtHofi{W*_PrW__-Pr)e-itHof}dt.
— oo

Define

gr(t) = {e"itHof (Wt PrW_ - Pr)e-itHof} .

Clearly gr(t)-^O as r-^oo for each ί.

gr(t) = <W_ e~itH°fi Pr{W_ - l)e- f t H o />

_ - l)e~itHof Pre~itHofy .
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Hence

\gr(t)\^2\\f\\ \\(W_- l)e-ίtH°f\\.

Using the assumptions on V and / we have by Lemma 4.6 that the right hand side
is integrable over (— oo,0]. Dominated convergence gives

o
Hm I gr(t)dt = O.

— oo

Proof of (ii). Using the first part we see that it suffices to prove

lim | fd ί ( | |P r e- i t H ϊ7_/ | | 2 - | |P Γ β" / ί H o S/ | | 2 ) = 0.

By assumption the integral exists for each r. We have

]dt(\\Pre-itHW_f\\2-\\Pre-itH°Sf\\2)
o

00

= j dt(e-ίtHof(WtPrW_ -S*PrS)e-itHof}.
o

Let

hr(ή = (e~ίtH°f (W*_PrW_ - S*PrS)e"ίtH°f}.

For each t we clearly have lim hr(t) = 0. S is unitary and commutes with Ho, so we

have

hr(ή = (e-ίtHoSf(SW*PrW_-PrS)e-itHof).

Now use SWt = W% and W+S= W_.

hr{t) = <SW+ - l)e~itHoSf9 PrW_ e~itHof)

+ (e~itHoSf(PrW_-PrS)e-itHofy

- l)e~itHoSf PrW_ e~ίtHof}

\K(t)\^2\\f\\.\\(W+-l)e-ίtH°Sf\\.

The assumptions on V and Sf together with Lemma 4.6 imply that the right hand
side is integrable over (0, oo). Dominated convergence gives

00

lim $hr{t)dt = O. D

Theorem 6.4. Let V satisfy Assumption 3.1 a) with β>2 or Assumption 3.2 with
fc=l. Let {Pr} satisfy condition (E). Assume Pr given by an integral kernel
κr(λ, μ)eB(0>) in the spectral representation. For each [α, b]C(O, co)\σp(H) assume

ess supHK Λ^μJl l^^oo.
λ,μe[a,b]
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For each r assume in B(έ?)

for a.e. λ, μ.
Let feSf satisfy φ(H0)f=f for some φeC™((0, oo)\σp(H)\ and for each r

]\\Pre-itHoSf\\2dt<oo.
o

Then the following limit exists and is expressed as follows

00

Hm $(\\Pre-itH°Sf\\2-\\Pre-itH°f\\2)dt = (fTf}. (6.4)

Here T is the Eisenbud-Wigner time-delay operator.

Proof Write g = Ff There exist a,b,0<a<b<co, such that g has support in [α, b].
By assumption the integral in (6.4) exists for each r

](\\Pre-itH°Sf\\2-\\Pre~itH°f\\2)dt
o

oo

= lim j e-εt(\\Pre-itHoSf\\2- \\Pre~itH°f\\2)dt.

The integral on the right hand side is denoted /(ε, r). In the spectral representation
we have

00 00 00

I(r,ε) = j e~εt j dλ J dμeit(λ~μ).
0 0 0

• (g{λ\ (S(λ)*κr(λ, μ)S(μ) - κr(λ, μ))g(μ))dt.

g has support in [α, b~\ and \\κr{λ,μ)\\ < C for a.e. λ,μe[α, b], so we can change the
order of integration, and carry out the ί-integral.

OO 00

/(r,ε)= \dλ\dμ-
0 0 λ — μ-jrl£

Using (6.3) we have

h,Jλ, μ) = l-—-ig(λ\ (S(λ)*κr(λ, μ)S(μ) - κr{λ, μ))g(μ)}
A — μ ~~\~ ιε

= - 1 ( g{λ\ S(λ)*κr(λ, μ) —7- g(μ)
\ λ — μ-i-iε

S(λ) is continuously differentiable in norm by Theorems 3.5 or 3.6. We have

\K^μ)\^Cr\\gm

for 29μe(0, oo).

Kε(λ> μ)^Ko(λ> $ a s
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for λ,μe(0, oo), where

- i (g(λ\ S(λ)*κr(λ, μ) S { λ ) S { μ )

 g{μ)\ , X + μ

) ί d \ /

,S*(λ)κr(λ,μ)I — S(λ)Jg(λ)j , λ = μ.

Hence

J(r,O)=lim/(r,fi)

00 00 /

= j dλ j dμ( — i ) ( g
0 0 \

By assumption

(λlS(λ)*κr{λ,μ)

00

j κr(λ9μ)ξ(μ)dμ-+ξ{λ) as
0

in L2(0, oo βP). Hence

00

lim J(r,O)= j <iA
κ->co o

or, using g = Ff and the definition

(g(λ\-iS(λ)*(

oΐT9

S(λ)-S(μ)

λ-μ

r—•oo

TλS{λΊ9{)

g(μ)).

In applications condition (6.3) seems to be difficult to verify. In two cases it is
trivially verified: When either S(λ) or κr(λ, μ) is scalar. The first case is the one dealt
with in [20], simple scattering. Thus we have given a new proof of Martin's result.
Notice that in this case Pr is multiplication by the characteristic function for
{x\\x\<r). Condition (E) is satisfied, because Pr is Ho- and H-smooth locally. Our
main application here is to the case where κr(λ, μ) is scalar.

Let Pr = Xr(D), the spectral projection for D for the interval [ — r, r].

Lemma 6.5. Let Vsatisfy assumption 3.1 b) with β>4. Then {Pr} satisfies condition
(E) with

® = {f\φ(H0)f=f for some φeC%((0,oo)\σp(H)) and |||

Furthermore, for each r and each fe 3) we have

00

0

Pγ is given in 2tfs by κr(λ,μ) defined in (2.5). It satisfies

PSS sim \\κ (2 iAW

λ,μe[a,b]

for each [α,b]C (0, oo)\σ (H). κr(λ,μ) satisfies (6.3).
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Proof. Since | |P r(l + D 2 ) μ / 2 | | ^ ( l + r 2 ) μ / 2 , Lemma 4.3 gives for μ>ί/2

Let fe 2, B defined in the lemma. Then we have

\ \\Pre-ίtHof\\2dt<oo.
— 00

The proof of Theorem 5.2 and Remark 6.3(ii) show feΘ implies SfeΘ under our
assumptions on V. Hence we also have

00

f | |P r έΓ i < H o S/Ί| 2 Λ<oo.
o

We have

\\Pre-itHW_f\\ £ \\(W_ - l)e-itH°f\\ + \\Pre~itH^f\\.

(4.8) and the above result imply that \\Pre~itHW_f\\ is square integrable over
( - oo,0]. Using W_ = W+S we have

\\Pre-itH W_f\\ £ \\(W+ - l)e-ίtH°Sf\\ + \\Pre~ίtHoSf\\,

so \\Pre~ιtHW_f\\ is square integrable over [0, oo) by (4.9) and the above result.
The remaining results in the lemma follow from results given in Sect. 2. •

Theorem 6.6. Let {Pr} he the sequence defined above. Let V satisfy Assumption 3.1
b) with β>4. Let fe^c = L2{W) satisfy FfeC3

0{{0, oo)\σp(H) 0>\ We then have

</,T/>= rlim I dt{\\Pre-itHW_f\\2-\\Pre-itH<>f\\2).
— oo

Proof The result follows from Lemma 6.5, Theorem 6.2(ii), Remark 6.3 (ii), and
Theorem 6.4. •

Remark 6.7. (i) The conclusions of the theorem are true under the following
assumptions: V satisfies 3.1 b) with β>3 and /eJfc, φ(H0)f=f
φeC0((0,(X))\σp(H)l | | ( l + D 2 y / 2 / | | + | | ( l + D 2 y / 2 S / | | <oo for some μ>2. If V
satisfies 3.1 b) with β>3, we expect ||(1 +D2)μl2f\\ < oo to imply
||(1 +D2)μl2Sf\\ < oo, but we have not been able to prove this result.

(ii) The conclusions of the theorem are also true under the following
assumptions: V satisfies 3.1 b) with β>2 and 3.2 with fe = 3, and / satisfies
||(1 + £> 2) 3 / 2/| | < oo. This result is true, because 3.1 b) with β>2 is enough to apply
all the results except the one requiring \\{ί+D2)μl2Sf\\ < oo for some μ>2. But 3.2
with fe = 3 implies S(λ) three times differentiable, so we get | | (1+D 2 ) 3 / 2 S/ | | < oo.
This result also requires an obvious modification in the definition of <3).
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