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Abstract. We start a nonperturbative study of the Wilson-Kadanoff re-
normalization group (RG) in weakly coupled massless lattice models.
Nonlocal hierarchical models are introduced to mimic the infrared behaviour
of the 1(V¢)? + A(V'p)* model and the like. The RG is shown to drive these to
the line of fixed points corresponding to the massless Sc_ (4)(V¢p)* models.

1. Introduction

The present paper is a (self-contained) continuation of the program started by
[11]. We aim at a rigorous theory of weakly coupled massless lattice models, a
counterpart of the high and low temperature cluster expansions developed for the
massive case. Our approach parallels other recent attempts of rigorously studying
massless models like A(Vp)*, the dipole gas, the low temperature Coulomb gas or
plane rotator [3-5, 7-97]. It is centered around the idea of the renormalization
group.

In [11] we have exhibited the block spin structure of the free Gaussian model
3(V¢)?* in d=2 dimensions by writing

dk

d
V. =(VQZ%),+3 2(VA,QZx+ ... 43 2(VA0Z"x + ..., (1)
3 3k

where the kernel (V.£,0),,, ze3™*Z¢, yeZ’, is concentrated around z~y and
decays exponentially for |z — y|— co uniformly in k. The Gaussian fluctuation fields
Z* are independent for different k and their covariances possess an exponential
decay uniform in k.

Our hierarchical model is patterned on this structure. Here are the main
simplifications we introduce when constructing it:

1. the number of random variables Z¥, yeZ’, is reduced to one Z% for each
block of 3¢ sites centered around 3y, (in the original model there were 3*—1
variables),

2. all Z* fields are taken as equally distributed,
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3. the Z% variables are taken to be bounded uniformly in k and y,

4. each family of kernels (V,/,Q),,, u=1,...,d, is replaced by one .&/(z—y)
where o7 is a function on the lattice with vanishing mean supported in the block of
3¢ sites around zero.

For the sake of generality we will also replace the rescaling factor 3 giving the
scale of blocks by any odd number L=3.

Step 3 is an essential simplification. In the 1(V$)* model large values of the
fluctuation field Z, have small probability (because the Z*-distribution is super-
stable, see [11]) and in fact cutting off the Z* integrations does not change the
critical behaviour of the model. With the perturbation A(V¢$)* we expect this to
remain true. However, the removal of this restriction is nontrivial. We shall try to
do it in the future basing on the methods developed here and for the standard
(unbounded) hierarchical model [2]. The other simplifications are quite natural,
especially in view of the analysis of [7].

" In the hierarchical model the role of the Gaussian fields V.o, u=1,....d, is
played by one field ¢ whose two-point function {¢,¢ > satisfies ) {¢,¢,>=0and

y
decays as |x—y|™¢, thus simulating the behaviour of (V¢ V¢, > in the massless
Gaussian model.

The main aim of the paper is to study the model perturbed by means of, say,
the A¢* interaction [this corresponds to the A(V¢p)* perturbation in the original
model]. The interacting model is studied by means of the renormalization group
transformations integrating out the fluctuations Z* in turn, starting with Z°. There
is a line of fixed points for these transformations corresponding to the interactions
1c¢? (it mimics the Gaussian line 1¢(V)?). The main result proven in the present
paper is the convergence of the interacting model under the renormalization group
transformations to one of the fixed point models for small A (compare somewhat
related studies of discrete spin models [13, 14, 16]). This will be the basis for the
study of the long distance behaviour of correlations (governed by this fixed point)
in the next paper. Because of pedagogical reasons and having in mind future
generalizations to the case with unbounded fluctuations, we consider first the
“local” model where all Z% variables are independent. In this case the block spin
transformations factorize and become transformations of functions on a compact
interval. Taking the fourth order derivative is all one needs to prove the
convergence to a fixed point.

Next we consider the “non-local” case where Z¥’s are weakly coupled for
different y’s. The high temperature cluster expansion [18] for the Z* integration
becomes the main tool'in the study of the renormalization group transformation.
The main estimate needed is a bound on general truncated expectations in the high
temperature Z* state. The bound contains no factorials when no groups of
variables, with respect to which the truncation occurs intersect, the factorial of the
number of groups if they all coincide and interpolates properly between those two
extreme cases. Such estimates were studied for lattice gases in [15]. For our model
we prove one which, being not the strongest possible, is sufficient for our needs.
This is the most technical part of the paper. We assume that the Z* state produces
a sufficiently strong exponential decay. In the second paper to appear we shall
carry over the present construction to the 3(Ve)? + A(V¢p)* model simplified only
by cutting off big fluctuations. There the fluctuation fields exhibit exponential
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decay for A=0 but it cannot be made arbitrarily strong, so we have to perform the
high temperature cluster expansion on a proper scale. Also, the marginal terms
will have to be treated with special care.

The paper is organized as follows. Section 2 contains the description of the
model together with some results about the free two-point function to be proved in
the second part of the present study. In Sect. 3 the RG transformations are
introduced. That they drive the model to the line of free fixed points is shown in
Sect. 4 for the local case and in Sect. 5 for the nonlocal weakly coupled one. The
main result of the paper is stated in the beginning of the section. Section 6 contains
the proof of the truncated expectation bound used in Sect. 5. The bound is
obtained by means of a technically involved but more or less standard high
temperature cluster expansion. Finally, the Appendix contains the proof of simple
results about shortest trees used in the text.

2. Description of the Model

We begin with the definition of our hierarchical model. To avoid the problems
connected to the thermodynamical limit which shall be studied later, we work in
finite volume using periodic boundary conditions. Let L be an odd integer, L =3,
and N=1,2,.... Take ANEZ‘iN as the periodic lattice. The obvious inclusion

Zin—~]—-5LN LN AZ

allows us to identify A, as a subset of Z“. Algebraic operations however as well as
distance functions on periodic lattices will be taken as the periodic ones. Let b_’v',
j=1,...,N, be a lattice block of L/ sites in A,, centered at Liy:

bi={xeAy:|x"—y"|<3LJ, yeAy_}. )

Consider a function .o/ on Z‘ supported on b}, with zero mean, 2/(0)%0 and
nonconstant in b{\{0}. Introduce random variables Z% labeled by yeAy_,_,
k=0,...,N—1. For xeR* denote by [x] the point with integral components
closest to the components of x (for x for which we shall use [x] this will be
determined unambiguously).

The basic random field ¢ of the model labeled by x€ A4, is given by

N—-1 d

b= Y Y L AL ]-Ly)Z

k=0 yedn-yx-1
N-1o_d,
=Y L AL~ LI D)2 ey @

k=0

This mimics (1.1) showing how ¢ is built from the fluctuation fields Z*.
It is also useful to introduce block spin fields ¢* labeled by xe Ay _,:

d N-1 _d . . . _
=070y ¢ = Y L 2 (L]~ LIL XD 2 e ngs ()
=k

yeblk J
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where we have used
Y A(x)=0 )
xeZd
k_d
following the definition (2) of /. The factor L2 in (3) is the rescaling factor
corresponding to the canonical dimension of the gradient of a scalar field. Notice
that

_d
Q=L 298"+ A (x—LIL™XDZE, 1y, )
d

which gives the decomposition of ¢* into the block spin field L 2¢4"4 on the

next scale L*"! and the fluctuation on the scale L*.
To specify fully our model the distribution dv, of the fluctuation fields Z* has to
be given. We shall consider several cases. The starting point will be

I. The “Free” (Noninteracting) Model

Here the random fields Z* are independent for different k. Depending on whether
Z’;’s for different y’s are independent or not the model will be called the local or the
nonlocal one. Depending on whether all Z’;’s are (almost surely) bounded
uniformly in k and y or not we shall speak about the bounded or the unbounded
case.

In the present paper we shall study only the bounded case. For the local model
we shall take each Z to be distributed with the same compactly supported even
probability measure dy.

To describe the nonlocal model suppose that we are given for each sequence
V=15 Vb ViEZ, m=1, U,, () such that

Y explALWIIU,, (P £52m)1e>", (6)

where 4>0 is big enough, x>0 is small enough and L(y) is the length of the
shortest tree on the set y of points of the sequence y and possibly other
(continuum) points. Throughout the paper we shall use the distance in Z* which is
the sum of the distances between the components of the vectors (and similarly for
periodic tora). We shall also assume that

Uzm(Yb --~,y2m)=U2m(y1+d, '~,J72m+a)
=U 2nWn1) ""yn(Zm))’ ac’Z’, (7)
Uylys -, 3)=0.

For y,,...,y,m€ A, define U%,(y,, ..., ,,) by averaging U(y,, ..., y,,) over identi-
cal periodic translations of all the variables. Put

UN k— 1(Zk Z Z 1

m=1 yjeAn - 1(27’1’[)

2m
N - I(yl" ‘7y2m)HZ;f,»' (8)
i=1

Notice that (6) guarantees the convergence of the series on the right hand side of
(8), since the Z’s are bounded.
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In the nonlocal model the distribution of the Z* field will now be given by

dn(Z9=expl- U Nz) [ duz), ©)
N YEAN —kc -1
where A" stands for the normalization factor (as it always will). This slightly
involved definition of the distributions of Z* for the nonlocal case makes them
almost coincident for different k in large volumes (in finite volume Z¥s live on
different lattices).
Let us denote by { —») the expectation with respect to the above described
total probability measure (in the bounded local or nonlocal case), i.e.
N-1

<~>N=§(—)kl:[0 dv(Z"). (10)

We gather here some elementary properties of the free two-point function, to be
proved in [17], which show that the free model really mimics the free massless
lattice field.

Proposition 1.

(1) 2L, 5,00=0. (11)
2' l<¢)x1d)x2>g<clx1 __le—d (12)
with C independent of N.

3, lim 3 [ b Y=o (13)

In 2 and 3 we assume that A is sufficiently big and x is sufficiently small for the
nonlocal case.

Remark. (13) shows that (12) is the best polynomial bound. Recall that 1-3 are the
properties of Vo, Ve > for ¢ being the massless free field.
For each free model we will consider

I1. The Interacting Model

This is obtained from the free one by turning on interactions V, where V is a
translation invariant functional of the field ¢. Given such a V, define the
expectation for the perturbed model to be

(=op={—exp[~V()]>5/{exp[~ V($)])5 - (14)
One may take for example V(¢)=1 ), ¢% Our main aim in this and the

subsequent paper is to study the long distance behaviour of the bounded nonlocal
interacting model.

3. The Renormalization Group Transformation

We shall examine the long distance behaviour of the interacting models via the
renormalization group method. The first renormalization group transformation
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consists in generating the effective potential T,V depending on the block spin field
¢! [see (2.3) and (2.6)] by integrating out the fluctuation field Z° in the Gibbs
factor:

d
exp[ — T, V(¢")]=const [exp {- V(L_E(l)[lL— v+ (- —LIL7! -])Z[OL_l.])J dvy(Z°).
(1)

The choice of the proportionality constant is to large extent arbitrary. We shall
stick to the convention that potentials vanish at zero field:

7(0)=0. 2
Then

T, V(¢")= —logfexp [ - V(L_%¢[1L-1.]+£"°>] dvo(Z°)
+logfexp[ — V(Z°)1dvo(Z°), (3)
where we define
Pl (x— LIL™ XD ZE -y @)

The next renormalization group transformations are defined in a similar way:

_4
T,V(¢") = —logfexp [— V(L 2Pl g+ T l)} dv,_,(ZF 1)
+logfexp[ — V(Z*~ Yldv, (2. )

Since they differ from the first transformation 7; in fact only by the volume of the
lattice, it is enough to study T, = T. For simplicity we shall consider T only on even
translation invariant potentials.

The first important property of T is that the potentials

1
Vig)=3c 3 9 ©)
xeAn
constitute a one-parameter family of fixed points (i.e. are reproduced in the form).
Indeed,

1 _4 2
V(") = —logfexp| - e ¥ (£ 0o+ 29 [avo2?)
1
+logfexp|sc ¥ (ﬂf)Z}dvo(Z%
xedAn
€ - 1 ¢ 1y2
=L Z ¢[L-1x]= A Z (@2)°, (7
2 xedn 2 xeAN -1
where we have used
Y O Zl= Ol g (x—LIL™ ' xNZ] - 1=0 (8)
xeAn x

which follows from (2.4).
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Similarly as in (8) one shows using (2.2) that

N—-1

Lei=(TA0P)T T @ 0
x y k=0 xedn-k-1

Hence the state (—)) is again a free one but with changed one-spin

distribution dy.

The key result of the present paper, as mentioned in the Introduction, consists
in showing that for sufficiently small ¥ the subsequent application of T drives V to
a point ¥, on the line of fixed points. In other words the perturbed model
becomes free at long distances.

4. Convergence to the Line of Fixed Points. The Local Case

In the local case, where dvo(Z%)= [] dx(Z9), T preserves the class of local

potentials vedn -1
Vig)= XEZ/:, v(¢,). t9)
ie. )
TV(¢!)= xe% ‘tv(ﬁbi)- 2

This is a result of the factorization of (3.4):

-y D(L‘%(]S; +.szf(x—Ly)Z;)>] dy(z))

xeb},

TV(¢h= ), (— logfexp

yeAN -1

+logfexp {-— Y ov(el (x — Ly)Z;))] dx(ZS)) :

P

Hence we write

tv(¢p)= —logfexp [— Zb‘ U(L~5¢ + %(x)z) dy(z)
+1og§exp[— Zb‘ u(&i(x)z)} dy(z). (3)

To define precisely the domain of ¢, notice that (2.2) and the uniform boundedness
of Z¥s imply that ¢% are also (almost surely) uniformly bounded. Because of that
we shall consider the potentials v defined only on a (sufficiently big) interval
[—o,o]. The domain of ¢t will be

P ={ve CH[—a,0]):0(0)=0, o(~ )= —u(¢)}, 4)

considered with the topology of uniform convergence with all derivatives up to
order 4. It is easy to see that ¢t maps 2 into itself.

Theorem 1. Let O be a small enough neighbourhood of zero in 2. Then for each ve O
there exists ¢, €R! such that

t”v 5w Dcw, (5)
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where
v(p)=3ch*. (6)

Proof. Upon the iteration of ¢, v’s are driven to zero in the directions transversal to
the line of fixed points and to one of the fixed points along the line. The transversal
directions are distinguished by means of the Taylor expansion up to the second
order. Write

o) =3cd? +5(). )
V()= () =1 §*+ 7B, ®)
where
2~ 250
0= 95 0=0. ©)

We shall prove the following

Lemma 1. There exist 0<0<1 and o>0 such that for each 0<n small enough

| = (10)
implies that
| =on (11)
and
' —c|<an. (12)
Proof of Lemma 1. (3) yields
v(¢)=3cd* +0($)—-7(0), (13)
where
()= —logfexp[— Zb‘ E(L_f(p-i-d(x)z) dy2) (14)
and
(51~ exp| = § (L) |t (15)

Notice that

TP _, aa ‘1
TR

{IJ)’;:I

anlg [ _d gy (4 T
<Zgw,—”l(L 2¢+d(x1)z);...;x’§’éW“Z(L 2¢+ﬂ(xk)z)>, (16)
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where Z is the sum over the partitions of {1,2,3,4} into k sets I p-- 1 and
{15
{—,...,—»"is the truncated expectation with respect to the state

1 _4
(== —j—ew|- Tole 2¢+ﬂ(x}zﬂdxc(z). (17
xeb}
Now since (10) implies that
d's
< =
i <0 for i=1,2,3, (18)
(16) gives
4R
EVN )ty 02 <1 (19)
do*| = -
Similarly
d*%'(0)
<
e =0(n). (20)
Since
SOOI B £ (1
) =T0)-510)~ 5 S
and
, d*7'(0)
c=c+ dq52 .

(19) and (20) yield (11) and (12). [J

Theorem 1 follows immediately from Lemma 1 since the convergence of v’s in
2 is equivalent to the uniform convergence of their fourth derivatives together
with the convergence of ¢’s. [

5. Convergence to the Line of Fixed Points. The Nonlocal Case

In the nonlocal case T does not preserve locality any more and so we have to
consider general nonlocal potentials. Also, instead of the simple C* convergence in
the local model, we have to deal with all the derivatives of V. To describe V in a
uniform way for all volumes, let there be given kernels V,,(x, ..., X,,,) defined for
x,€ Z* satisfying

1 T/ = m
Y exp|l - ALR)| Vo, (Rl =@m)tn*, (1)
X2,..0s X2,m€Z4
where we denoted X=(x,,...,X,,), X={X;,...,X,,}, and n will be chosen suf-

ficiently small. We also demand

Vol Xis o3 X0) = Vo (X 0, X5, + @)= V5, (X0 > Xni2m) ()
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and
V,(x,x)=0. 3)

Let for x,, ..., x,,,€ Ay Vi (X) be defined averaging V,,(X) over identical periodic
translations of all the variables. It is straightforward that Vj,(X) satisfy the periodic
versions of (1)~(3) [L(X) is now the length of the shortest tree on the points x; and
possibly other (continuum) points lying on the torus].

Our potential V" will now be

V@) =VN($)+ V(). )
where
)= ge T 6 ©
and
st 1

Ng)= Y )

m=1 X1,..., XomeAN (2 )‘

L2363 N . (6)
which is well defined when # is sufficiently small. Note that (1) defines a metric d 4
on the space ¥~ of VV’s:

AV, Vy)=d,V, = V5, 0=V, = V,l,,

where

AT 7

1
sl = SUp |
4 (2 ) ..... X2me€AN

(1], is not a norm). We use the notation |V], also for V,,, and x,€Z* in (7).
Our result is (compare with Theorem 1 of the local case)

Theorem 2. Let VN be of the form (4), with |V|=n. There are A, no(A)>0 such that
for A> Ay, n<no(A) TVYN can be written as

TVN=V¥" L4 TV, TVNey N1 8)

and
|TVN <oVY, o<1, 9)
lc'— o o 7M. (10)

0 and o do not depend on N or C.

In [17] we will show (using Theorem 2) that the thermodynamic limit of our
model exists provided A is large enough and # is small enough. That is, each pair
V=(c,{V,,,}) determines an oo volume Gibbs state {— ), and

(=>p= lim {—HNy

N—-
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in the sense of convergence of correlations. Moreover there is a TV such that
hm = =Dy

and (8)~10) hold in the limit N— co.
We will also show that if ¢,—c and |V, — V] —0, then

S e G

(in the sense of convergence of correlations). Thus we get
Theorem 3. For |V|, sufficiently small

(=D pmy == =Dy
where

A

1—0
We will now proceed with the proof of Theorem 2. We will suppress below the

superscript N since all our estimates will be uniform in N. Let us start by
computing V’. From (3.3) we get for m>1 or for m=1 and x, #x, that

~ 2m 5|I:lf/ 511k|[/
V(X5 ooy Xy, ) =L < (Z);...; (3)> (11)
? ! 2 kgl {Ij§=l ([317‘1L~Z,:],V2m) 5¢F1 5(17?1

l=x

where Z is the sum over the partitions of {1, ...,2m} into sets I,,...,I;, ¢y,
{1}

=[[0¢, and {—;...; —>T is the truncated expectation with respect to the state
iel
1
(=>= Wf—eXp[—V(Qf)]dV(Z)- (12)
But
sty y 1 .
(2)= Y VoV 0% 5, 13
5‘17;1 mz41) (2m— |Il)!(u1,...,zu:zm—m) ? (yI ) (3)
where
.-);Iz(yj)ieja 5=(Up "’3U2m—~|[|)7 (14)
2m—|1|
Z= 11 2z, (15)

i=1
Using (3.4) we may rewrite
2m~—|I| 2m—|I|
Z= |1 Aw—Lu) || Z,=40,0Z,, (16)
i=1 i=1

where

w=[L""v;]. (17)
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Inserting (13) and (16) into (11) we obtain

f/zrm()—c)=L—dmZ(_1)k+1 Z z
k {1} {m} FALTIFI=% 7))
2mJ>|IJ|+mm(1 k—1)
1
'H((—*W Vi (31 5)0 5, 1, )) (ZoinZd'(18)
J

The main input used in the proof will be the following result shown in the next
section devoted to the cluster expansion.

Proposition 2. Suppose that D, A are big enough, x and n=1V| , are small enough (the
bound on the next constant generally depending on the ones already fixed). Then
uniformly in N

KZgs. 32yt s HM ! 1_[ exp[D(2m;—|I |+ L(u)]

j=1

CXp[-—% (ylv "'7l—4k)]5 (19)

where M, are the numbers of the sequences Uy, ..., o, equal up to permutations and

Ly, ;... ;u) is the length of the shortest graph on the points of U u; and possibly
other points connected with respect to the groups u;.

The connected structure of the right hand side of (18) is now clear. Let us define
A
L%
L

W, (X)=exp V,.(X) and similarly for I/~Vém From (18) and (19) it follows

that

Y

2(my—m)

N 1 1
<Ly Y Y (2fml——m))1 |Wam, (3, 0)| exp [Z AL(x)— ZAL(_y)]

myzm §:L7lydl=x; ¥

oM |15
fLey ) Z”( ui)"Wz'"J@’f’l_’f)O

kz 2, (I}, {m,} F:[L-'vil=xy {3

JIM, exp —L—L(;c)+DZL(1_4j)— T ZL(_yIjuyj)—%AL(t_tl P ;yk)}. (20)

Notice that for m=1 in the right hand side of (20) we may sum over y such that
x,=[L"'y,J+[L"'y,] only. Denote by .# a sequence (i, ..., i,) of integers, =i,
=2m;—|I}|. For given #; and . denote

U=, 5 Uyp) s U=ty s Upy) (21)

and by [[N,! the product of the factorials of the multiplicities of occurrence of

S

different points in #,. Notice that

[TM, =X TIN! (22)
g s

»



Renormalization Group Study of a Critical Lattice Model. I 419

We shall need the following results dealing with the shortest trees which are
proven in the Appendix.

Lemma 2. Let t and s be lattice subsets such that [L™'t]=s. Then

LL(s)—5(L—1Ddls| S L(), (23)
Lis)=L(v), (24)
(1 +e)Ls)—HL-1 =L@ (25)

for sufficiently small ¢ >0 uniformly in t.

From Lemma 2 it follows that

A A
7 ZLQ/IJUQ)-I- EL(% Sesuy)

1+¢ A
>TAZL Xy, uu)+ L(ul,...;uk)—%Ak

A Ak

+22L AT S

=

L)+ ). EL(g )+ %L(u 34k (26)

v
S~ [\41 hS

Using (22) and (26) we get a bound on the last part of (20)

]_[Mr!exp[...]§;HNS!e%Akexp{—;—i—L(gj)J. (27)
But ’ S
Lemma 3.

IS—[NS! exp|— —;—%L(u,)} §2k;exp[~s’ALt(ﬁj)], (28)

where Y is the sum over the trees on k points and L(ii,;) is the length of the tree t

T
when the points are taken to be those of ii,.

Proof of Lemma 3. ;ZL(L; 5)>€Lu,) where Z(u,) is the length of the shortest
tree on the points of u, and no other points (see [6, p. 197]). But

oxpl ¢ AL )] < [IN2 7 L expl ¢ AL (i)
< [TGND " Sexpl~¢/AL,)] (29)

since N¥~2 is the number of trees on N, (coinciding) points. []
Notice also that

1 1
Llig)2 7 LOg)~ (L~ Ddl(k—~1). (30)
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(27), (28), and (30) yield
[IM, exp[..]1< Y. "D exp[ —eAL,(7,)] (31)
r M g T

(we have omitted the “prime” at ¢). Inserting (31) into (30) we obtain

2my—2m

N _dm c
oWl Y Y T o o

(x2,-.0s X2m) myzm y:[L™iy)=x1 B

_ 1 1
| W, (7, D)l exp ZAL(zc)— ZAL(y)

. Z nc(ZmrIIJl)A Z Z [ (
+L~" e exp[—eAL.(0,)]
k22, 0y 5 Cm—ILD! 57506, 4
: H IWZmJ(yIja 17])] > (32)
J

where again in the first term A, on the right hand side for m=1 we may sum only
over y=(y,,y,) such that x, =[L ™'y, J[L"y,].

A. The k=1 Term
First we shall estimate A4,. Denoting |V|, by # (7) gives

m m
c 1=

L=y > Zml 2m1(Y’v)|exp[A (X)——L(!)}

mi>m F:[L-1yil=xy ©

my—m /
éL_d(m_l)z(zml)!nzml(zc—z)T EL d(m— 1)(2m)' 2m z (2m+ >( )/
= L7 D 2m) " [(1— ) = 1]
S LMD (@Qm) L n2m(efm 7). (33)
For m;=m>1
A
LTI, |exp[ L)- ZL@} SLTTIQm.(34)
Hence for m>1
Ay S LT DQ2m) gPmetm < (2m) 1 (Om)*" (35)

for some 0 < <1, provided # is small enough.
For m;=m=1

L ¥ |W,(7)| exp

W1, v2):[L7 yil=x1 +[L™ 1y2]

A A
7 L(x)— A L(y)}

S0P LKL —(L—2))+2n* L™ (L~ 2)" exp [— ﬂ <2(on)? (36)

for some 0<§ <1 since for L!—(L—2)* choices of y, there exist choices of y, such
that L(x)=L(y). For other (L—2)* choices of y, L(x)— L(y)< — 1. Hence putting
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together (33) and (36) we get for m=1
A, =2(0m)? (37)

for some 0 < <1 provided # is small enough.

B. The k>2 Terms

We pass to estimation of the second term A4, on the right hand side of (32). We
shall use the following

Lemma 4.

> 2 exp[—eAL(T,)] H |W2mJ Y1, 0))l

AL tyil=x1 {5}

< LA ] 2m) ™ (38)
J

Proof of Lemma 4. Fix y,. Note that W,,(x) is translation invariant. Write Fourier
series

W, (B =L 42m=0 5 (P (p)

p:Xpi=0
e—i:Alxl ___L—d Z eipxz(p) )
p
Then by the tree structure of (42)

Y =0T W, (0)

y:y1 =fixed J ’

— [Ze—uﬂxl k-1 n( Z |W2mj(>—c)|)'
x J

X250 X2mj

The claim follows by virtue of (11) since there are L? choices of y,. [
With Lemma 4 we obtain

cACm;=11,)
A=t Dk; 2, (r,;wj},f,r l:I m@mj)!nz’"". )
Now use
L=kl em i skt [em (40)

and estimate
A(ZmJ - IIJ ]

L Y B8 e T

k22, {L}, {m,}
(2]’!’!) ] A(ij—nj)

2m
éL—d(m—l)
kz‘z m?m [n;! {mzj} U G = (2m;—

):nJ=2m,nJ>0 2m;>n,;

—rosm oy ¥y ni("f”)( r

k=2 (ny,...,hx) j £=1

(21’)’11) ! 7,2'"1

(2m )] 2m;

=L hemiy? Y [T -1, (41)

Ynj=2m j
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where O(n) is A dependent. But
[T —1) < [T00" ) exp[On" ] 00 expOn*Hm.  (42)
J J

Hence
2m
A, < L= 1)(2m)!172me(7(r]1/2)m Z (2’"_ 1) Oy
=2\ k—1
<0 ) 2m)! (6n)*" (43)

for some 0 <6 <1 provided # is small enough (the bound on # depending on A).
Gathering (35), (37), and (43) we obtain

Y W, I=m)en (44)
for some 0 <6 <1 provided # is small enough.
The first part of Theorem 2 is thus proven.
We still have to estimate the coefficient ¢’ multiplying the term 3 Y ¢Zin V.

Notice that 3(¢' — ¢) is given by the right hand side of (18) for m=1and x, =x,=x.
Thus $|¢’— ¢| may be bounded by the right hand side of (32) for m=1 with the sum
in the first term A4, over all y=(y,, y,) such that [L ™'y, ]=x. Now (37) must be
replaced by

A, S2ne"™., (45)
Combining (44) and (45) we obtain

|’ —c|=om (46)
and the proof of Theorem 2 is completed. []

6. The Cluster Expansion

In this section we shall prove the basic Proposition 2.

A. The Properties of the Measure
Let us begin with the following result about the measure dv(Z) given by (5.12)

Lemma 6. Let n be small enough (the bound on n depending on A and x). Then
FD=~op| = ¥ ¥ 1,002, |[1d1Z) (1
R B

where I,,, are translation and permutation invariant, I,,(y, ...,y)=0 and the even
probability measure d has the same support as dy. Moreover,

Y exp[ALIIL, () S @m)!". @)
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Proof of Lemma 6. By (5.12)
N 1
di(Z)= —Fexp—V(2)+ U2)] [1dnz,), 3)
‘ v

where we have omitted the sub- and superscripts indicating the volume. Notice
that due to (5.4) and (5.16)

V2)=5 Yt o— L2} + Vonl®)E. 92, @

m g (2m)!

where y=[L~'7]. But by virtue of (5.23) and |V|,<n

Y. exp[AL()]

2,0es y2m)

<c Y exp {%L@}Wzmwngzmn(c,m)“. 5)

5L~ 15)=F

Y V0, y)i

5L 18] =F

The terms of (4) local in the field Z will be used to define d7. The other terms

together with the terms coming from U(Z) [see (2.8)] build up the »Z;

L 1
@m)! "
terms in (1). (2.6) and (5) show that (2) holds if (C ,n)*"<3x*™. O

From now on we assume that # satisfies the assumption of Lemma 6. It is
preferable to rewrite (1) by introducing for lattice subsets y the random variables

1
= —1,.(0Z;. 6
](X) m,;:!Zfixed (2m), 2m(y) y ( )
Then
- 1 N
BD= oo~ T AW|I14K2Z,). ()
A yiiylz2 y
The following estimate will be needed:
Lemma 7. For x sufficiently small
Y 1 exp[ALWILA W) = OGk). ®)

y20

Proof of Lemma 7. By (6) and (2)

k*Wlexp[ALY)]LZ ()

y20

<Y Tk e TALGIL,IZ)

(CK_ 1/2)2m .
L o L UL,

2,005 Y2m)

IIA

< ¥ 2m(CxM2Pm <o), 0O
m=1
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B. The Expansion

Our main aim is to estimate {Z; ;...;Z; »", where {—;...; — »T is the truncated
expectation with respect to d¥(Z). Without loss of generality we may assume that
the order of points in the sequences i, ..., 1, agrees with some fixed ordering of
the lattice points. First we shall obtain for {(Z ;Z,;k>T a cluster expansion
formula. Wr1te

fHZ A(Z)= —fﬂzu,exp[ Zf(y)]l_[dfc(Zy)

“1’ ee

=—mz,,,z [Hexpl-s@)-D1]dnz,). ©)

Yey

where y is a family of lattice subsets y [|y|=2 since otherwise #(y)=0].
Given 7, consider the set

(0w U

Jj= yey

and its finest partition with the property that
each y; and each yey are in the same subset of the partition. (10)

Denote by X,, «=1,..., 4, the sets of the partition containing u;s and by Y,
B=1,...,B, the other ones. In (9) we shall fix first the clusters {X,} and {Y;}
performing the rest of the summation and only then shall we sum over {X } and
(%),

For HC{l,...,k} and X being a subset of the lattice such that for each je H
u;CX, denote

(H,X)=X, (11)
and define
Q(X)=6Xp{ D Z (; +L(u,))}2§ llZ [T 79— 1)HXdX(Z ), (12)

where 7 is the length of the sequence #; and z is the sum over the families y, of y,

yCZ (yl22), such that X cannot be divided 1nto two subsets so that each u;, je H,
and each yey, is in one of the subsets. Similarly for a lattice subset Y, |Y| =2, put

o(Y)=0(Y) where Y=(¢, Y), i.e.
oY)= Y I (expl— 21 —-1) de(Z) (13)

Ye  YEYe

Now we may rewrite (9) as
<H Zuj>= ——exp [D Y (4L )}
x> TTeX) M To%). (14)

Xadd=1 (Yp}f=1 «

where Y runs through the sets {X,} such that X,=(H,,X,) with
X
d):':Ha: ={]MJCX},
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X, are pairwise disjoint and each y; is in some X,. )" runs through the sets 1Y)
(Y}
(the empty set included) of lattice subsets Y, |Y;/=2, disjoint among themselves

and with X ’s.
Next we shall transform (14) so as to exhibit the cancellations between the
numerator on the right hand side and the denominator

W= 3 e, (15)

(Yp)F=1
To this end introduce for two lattice subsets V, and V,

if VAV, %0,

if VinV,=0. (16)

0
U(VP Vz): {1

Using these symbols we may write
G]Z>=~—w%DZM+lmq

> Y gluellaxollay.

partiions n={Hg}a=1 (Xa¥f=1 (Y1,....YB)
of {1,....k} Xo = (Hu, Xa)

where in H & runs through the pairs (X,,,X,,), %, <a,, (X, X,), and (Y, Y;)),

ap

B, <P, w1th all X, and Y, treated as different elements. We shall call £ a line on
elements X, Y;. Now standard transformations (see [1, Chap. II]) yield

<HZ >=—exp[DZ/ —I—Lu))}
) ) E;IJFA(g)[;IQ(Xa)gIQ(Yﬁ)

7= {Hq} {Xo} (Y1,....Yp)
Xo= (Ho, Xo)

:ﬂmP;%+mw]

1
Y X 2 ITA[Tex)eyy).  (8)
n={Ha}X ={(x;} X )(Yl,u-,YB) S I el o B

where ) is the sum over the sets of lines %, ) is the sum over the sets of lines ¢
r r

forming a graph on X, ¥, connected with respect to the elements Y, and the group
of elements composed of X,’s. A(¥):=U(¥L)—-1.
Since by the definition of the truncated expectation

k
(Mz)= 5 T2, 19)
ji=1 par:fu?!;sj:AKy} y \JekK,

we easily read off from (18) the following cluster expansion formula:
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Proposition 5.

(Zss.. 32y )" =exp|D i (/j+L(L4,~))]
i1
> ) ,Z I1 Af)ﬂ@&)ﬂo(n) (20)
eI I v BT, ser,

where Y is the sum over the sets of lines ¥ forming a connected graph on the
r
elements X ,, Y, (treated as different).

Proof. With this expression for the truncated expectation we easily obtain (19), first
fixing on the right hand side of (18) the partition {K,} of (1,....k}, each K,
composed of points of H,’s such that the corresponding X s enter into a single
connected component of I', and then summing over {K }. [J

Remark. We shall call the sum on the right hand side of (20) the external sum, as
opposed to the internal sum contained in the ¢ terms.

(20) will be the starting point for the estimation for which we shall also need
appropriate bounds on ¢(X) and o(Y).

C. Estimation of the ¢ Terms
Proposition 6. For D sufficiently big, x sufficiently small and some C=1

le(V)| S (Cx"2M = L exp[ — AL(Y)], (21)
IQ(X)IgeXp[—%D ;I(/j+L(uj))}(cK1/2)!x\uml
.exp[—AL ((uj)jeH;X \Mi y,)} (22)

where X=(H,X) and L ((u ~)jeH;X\U 1_4) is the length of the shortest graph on the
H

points of X and posszbly other points connected with respect to the sets u;, jeH,
and the points of X\ Uy

Proof. Define for X, ..., X, Y being disjoint lattice subsets, X, ...,X,*0,
é(Xp'u»Xa;Y):Z [T exp[— 21—, (23)
Ve YEYVe

where 2 runs through the collections y, of yC ( U X, )uY [v|=2, such that

(VX )UY cannot be split into two subsets so that each X, and each yevy, is in
some set of the partition.
We shall estimate ¢ using the standard Kirkwood-Salzburg equation method

(see e.g. [107]).
Lemma 8. For x,€X |, X' : =X \{x,}
(X5 Xy Y)=exp[— Y f(y)} y K(X,,S)
SCX2u...uXuY

Y
Xi1eyC X,

@(Xau( U Xa>us,(Xa)mSnx“:@;Y\S), (24)

SN XgF0
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where for S+0

KX.,9= Y H(expr > f(yuyﬂ)]—l) (25)
oo f N
and
KX, 0)=1. (26)

Proof of Lemma 8. Let us consider in y, in (23) those y for which x,eynX +y
taking S=uU(y\X,) and {y,, ..., y,} ={y\X,}. The set y’ of those y is described by
giving {y;, ..., y,} and the sets y, , x, € y,, CX, for fixed § giving {ynX,:yey" and
Y\X,=y;}. For yey.\y, x,€y we have yCX,. Hence we may write

HynXiN= T [[lepl- )= )
) S TS TTexpl—#0mp]—1)

SCX20...uXaUY 1,96 B {ygy} ¥
ypFO,uyp=S

@(X;u( U Xa)us, K aisnxa=o Y\S). 27)

a:SNXaF0

(27) easily yields (24). O
We shall need the following estimate for the kernels K(X,, S):

Lemma 9. For « sufficiently small

i Hexp[AL(IX  JUS)IIK(X . S)| Sexp[O(x)]. (28)

S:SnX;=90

Proof of Lemma 9. By virtue of Lemma 7 for x sufficiently small

Y ok MSlexp[AL({X, JUS)IIK(X ,, S)|

S:SnX1=6

< Z I;IK“%'“'eXp[AL({xl}U_Y,;)]'eXP[— ) f(yuy,;)}—l'

X:xlsycxl

2 I;[CK“%'”' Y. exp[ALyuy) s (yup

yiXieyC Xy

o (C Y, kT eXp[AL(y)]If(y)l)”§eXp(@(K)). O

yaXy

The Kirkwood-Salzburg equation (24) together with Lemma 9 allow us to
prove

Lemma 10. For x sufficiently small

a
Y oxil-1

Xy, WX VISCTT (Crt )M exp[ — AL((x,): V)] (29)
uniformly in Z (for almost all Z ).

Proof of Lemma 10. We shall proceed by induction over M : =X [+ ... +[X | +]|Y].
For M=1 3({x,};¢$)=1 so that (29) holds. Now suppose that we have proven (29)
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for M<M,. Then for M=M,+1

SCXau...uXauY

(CrVHMSlexp {AL(X’IU< U Xa>uS, X Dusox.=0: Y\S)

a:SNXg+0
<exp [@(x)]cg'“ TX(Ci Y exp[AL(X,); Y]
Yk lexp[AL(X,JUS)TIK(X ,, 9), (30)

S:SNnX1=190
where we have used
L({XJUS)—{—L(X’,U( U Xa)uS, X usnxo=0° Y\S) =2 L(X,);Y).
a:SNXqF0
By Lemma 9, (30) yields (29). [
Since for X=(H,X)

@(X)=exp[—D > (f,-+L(Lt,-))]§ [12:2 (Xp '--aXa;X\<UXa)) [1dxz,)

jeH jeH yeX

where X |, ..., X, are the sets of the finest partition of U u;such that each uj, je H,
jeH
is in one subset of the partition and since

Y)=fa({y.}: Y\, ) [ du(z,

yeY

for some y, €Y, Lemma 10 yields (21) and (22). [

D. Estimation of the External Sum

Let among the sequences i, j=1,...,k, there be s different ones u;,...,i;,

occurring with multiplicities M,,...,M;, Y M,=k. For HC{l,...,k} let

H:=(k,,.. k s be the sequence of the corresponding multiplicities (k, =0). Let for
X=(H,X), X: =(H,X). Notice that 9(X) depends only on X. Denote by V either X

or Y and put
oX) if V=X

= 31
o) {@(Y) it V=v, G
L((yj)jeH;X\Uﬂj) if V=X
L(V)= R (32)
L(Y) if V=Y
and V=X or Y respectively. Consider for m=1, n=0
m+n
¢(W . Wn17vnz+17"' m+nEZ HAg)H
Ir %er (33)

PV 0)=0(V),
where )" runs through the diagrams on the elements V,, 1 <i<m+n, (treated as
r

different ones for different i’s) connected with respect to the group {V;}, 1 Si<m,
and the elements V, m+1=<i<m+n.
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Lemma 11. For D and A big enough, x small enough and some C (n=1)

_ AE|
z l¢(W17 ""Wm; Wm+ 1 "'awm+n)l—<_—n!2 nexp[_ T} l_l (ClVl|[Q(W1)D

i=1
L LV)ZE (34)

Proof of Lemma (1. (Compare [1, Lemma II, 4].) We have the following Kirk-
wood-Salzburg equation obtained by studying the lines of the graphs I' ending
on V;:

(tb(vl’ "'awm; Wm+1, ...,Wm+n)=Q(W1) H U(Vp V;)
i=2

H A(Vla K1)¢(Wz, »Wma {th}tle!); {Vtz}tz¢!2) > (35)
Qc{m+1,..., m+n} t1ef2
where by definition ¢(@;V, ...)=0.
We shall use induction on m+n. Suppose that (34) has been proven for
m~+n=M, [it holds for m+n=2 since |p(V,; V,)|=o(V,)o(V,)| and we can use
(21) and (22)]. Then for m+n=M,+1

n n
A R R A E DA
=0

V1,00 Vin +n)
TLV)zZE
Z Id)(WZ’ m+p’Wm+p+1""’Wm+n)|
Ve)m<t, sm+p Vi), >m+p
VenVi#o X IV, )>E— X L(Ve))
ty>m+p m<t15m+p

<V Y (7) T e e =34 (E- TV,
Ve, nVi®0 '

m+p n+1

T (€ llo(Vy))) + H lo(V,)

i=2
<n!2 "exp[—3AE] [[2 (€ a(Vhe(V,)

o1
: ZO E}—,( % 2Co(V)| eXp[%AL(V)])", (36)
r= ) VaVi*o

where we used |[p(V,, ..., V,; P < [] lo(V)), following from (35).
i=1
We shall estimate the sum over V¥V by the method of combinatorial
coefficients [12]:

%|A/3|§S‘;p|CﬂAﬁ' if glcgl—lél-

Given V one may construct V in the following way:

1. Choose QC U u; which will contain a point in each u; such that h,>0

(Q=¢ will correspond to V=Y).
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2. Choose the number h= ) h,.
r=1

3. For each ge Q choose n, =2 1. n, will be equal to the sum of h, >0 over those r
for which g will be taken as the point of u jr.quQ n,=h.

4. For each ge Q choose n, times the sets u; containing g.

5. For each set u; just chosen pick a corresponding sequence ii; .

Notice that in Step 5 we only have to specify the multiplicities of the points of
u; since, as we have assumed, points in ii; appear in fixed order.
We take account of the procedure described above by choosing proper

combinatorial coefficients for each step:

Ad1 2V
Ad2. 2%
Ad3. (;ZQ}T—T) <o,

o) Y h( i+ Lw;))| for O(1) sufficiently big (see below),

r=1

Ad4. exp

AdS. 27,

Only Step 4 is non-trivial. Estimate
1
X exp[ = O(1)(ul + Lw)] < Z =D L, el o]

' ~exp[—@<1)e$<{q, s ooy })]

g/z Z omreel-om] Y. expl—O(eL (g up, ..., u,)]

1t (u2,..., uy)

= i ~ exp[ O/ 1=1 (37
= (=11

if (1) is big enough. In (37) we have used L(u) =% (u) where L(u) is the length of
the shortest tree on u (and no other points) (see [6, p. 197]) and Z 1=/?"7 where
Z runs through the trees on / points.

(37) shows that we have chosen a correct coefficient for Step 4.
Altogether we may bound the product of the coefficients just chosen by

2Wlexp [(9(1) i h(¢;,+ L(u jr))} (38)

r=1

for ¢(1) sufficiently big. Hence
Y 20 e(W)exp[FALWIS Y 220)"o(V))

VoV +o VaViFo
"exp [(9(1) Lh(t;+ Ly j,))} exp[3AL(V)]
= ) exp[—0)(VI+ L=V (39

VVAVi+0



Renormalization Group Study of a Critical Lattice Model. I 431

if only D, A4 and k! are big enough. We have used (21), (22), (31), (32) and in the
last estimate also (37).

Substituting (39) into (36) we complete the proof of (34) for m+n=M,+ 1 and
thus altogether. []

Now we come back to (20). Denoting H!: = H k.! and using (33) we may
r=1
rewrite (20) as

1 M,!.
KZa s Za DTS ﬂ exp[D(;+ L(u))] Y -
j= (Ho)g=1 Al n

SHo=(Mi,...,My)

.M,
!

1
IR Y 1 VED WIS I NS A

Xo)d=1 (Yp)F=1 B!

1
< [TM ! [ Texp[D(;+ Lu,) A=
l:[ U pLDY; ! ]xl:gexl ot (A=1)!
1
' ZB Eid)(Xl;XZ"”,XA’ Yl""’YB)I’ (40)
Yp)g=1 ="

=

where x, is a fixed point of () u;. Notice that
=1
A

B
LX)+ Y LY Z Ly - uy) (41)

a=1 p=1

for non-vanishing terms ¢. Hence

KZg, o3 Zg "I TTM [ Texp DU+ Liw)]

i

1
——_7)—! Z [PV, V)l

XiixgeX, A+Bz1 (A+B (Va,..., Vas+B)

+
L LYz Lus, ..., ) — L(Xy)

<[IM! [Texp[D(;+ L)) Y.

X1:x0eXy

27T BT D exp[ = FA(L(y 5 - su) — LX) C (X))

A+B21

< [IM A TTexpD(+ L) expl— 1AL, s .. 1))

- ) exp[— 00X, |+ LX )] (42)
X13x0
with arbitrarily big (1), provided that D, 4,k ~* are big enough. We have used in
turn (34), (22) and the argument with the combinatorial coefficient (38) to bound

the sum over X, with fixed X ;. (42) together with (37) imply (5.13) completing the
proof of Proposition 2. []



432 K. Gawedzki and A. Kupiainen

Appendix

Proof of Lemma 2. Take the shortest tree T on the points of ¢ and possibly other
points. Consider the set Ls. For each point Ls of Ls which is not in £ or in the set of
the other points, add to 7 a line joining this point to one of the points ¢ of ¢ such
that L™t =s. We obtain a tree on Ls and possibly other points of the length < L(¢)

-1 . . . .
+s| (L 5 )d (recall that we work with the distance being the sum of coordinate

distances). This gives (5.23).
Now consider a map x:R'—R!

[L™'x] if |x—L[L™'x]|<3(L-1),

K(x)::{x—(L—l)u—%(L—l) if Luti(L—1)<x<Lu+i(L+1).

x shrinks the balls of radius (L — 1) around the points of LZ* to points. Notice
that

]K(xl)— KX S xy — X,/

Consider the d™ Cartesian power of x, k*:R?—IR% «* also decreases the distance
(in the periodic case IR? must be replaced by tora). But k(t)=[L ™ t]=s. For t as
above application of x? produces a tree on s, and possibly other points, which is
not larger than k. Hence (5.24) follows. Under x* acting on the endpoints, the
length of the lines of 7 is preserved only if the endpoints lie in one of the 1 x ... x 1
cubes which are not shrunk by x“. Any line joining points in two different cubes
gets shortened by at least .—1 (here we use the non-Pythagorean form of the
distance). It is possible to follow along 7 in a continuous way running through
each line at most two times. Suppose that doing this we cross the points of ¢ in the
order (t,, ..., ). Since a 1 x ... x 1 cube contains at most 24 (lattice) points in £,
when following along t we have to jump to another cube at least 27 ¢ —1
times. Thus the length of 7 gets shortened by at least (L —1)(27%|t|— 1) under x*
Hence

L(s) S L) —5(L =127t +3(L—1).
This together with (5.23) yields (5.25). [0
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