Comment on
 "Analytic Scattering Theory for Many-Body Systems Below the Smallest Three-Body Threshold"

E. Balslev
Matematisk Institut, Universitetsparken, Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

The proof of [1, Lemmas 2.1-2.3] is completed, showing that the operators of multiplication by k^{2} in $H^{t, \ell},|t| \leqq 1, \ell=0, \pm 2$, have spectrum \bar{R}^{+} and generate the holomorphic semigroups $e^{\zeta k^{2}}, \operatorname{Re} \zeta<0$.

It is pointed out, that $[1,(5.54)]$ does not hold. Accordingly, a new version of [1, Theorem 5.15] is proved, saying that (5.44) defines an isomorphism of $\tilde{\mathcal{N}}\left(G_{+}(z, \kappa)\right) / \tilde{\mathscr{N}}_{0}\left(G_{+}(z, \kappa)\right)$ onto $\mathscr{N}\left(\mathscr{S}_{\lambda}^{*}(\bar{z})\right)$.

1. On the Proof of Lemmas 2.1-2.3

Lemma 2.0. The operators \tilde{H}_{0} defined by multiplication by k^{2} in the spaces $H^{t, \ell}$ for $t= \pm s, 0 \leqq s \leqq 1, \ell=0, \pm 2$ with domains $H^{t, \ell+2}$ have the spectrum \bar{R}^{+}and generate holomorphic semigroups $e^{{ }^{\zeta \tilde{H}_{0}}}$ defined for $\operatorname{Re} \zeta<0$.
Proof. Clearly, $\left(k^{2}-z\right)^{-1} \in \mathscr{B}\left(H^{1, \ell}\right) \cap \mathscr{B}\left(H^{0, \ell}\right), \ell=0, \pm 2, z \notin \bar{R}^{+}$, and hence by interpolation $\left(k^{2}-z\right)^{-1} \in \mathscr{B}\left(H^{s, \ell}\right), 0<s<1, \ell=0, \pm 2$.

By duality, $\left(k^{2}-z\right)^{-1} \in \mathscr{B}\left(H^{-s,-\ell}\right)$. Obviously, $\left(k^{2}-z\right)^{-1}$ is unbounded in any of these spaces for $z \in \bar{R}^{+}$, hence $\sigma\left(\tilde{H}_{0}\right)=\bar{R}^{+}$.
\tilde{H}_{0} generates the semigroup $\tilde{\mathscr{U}}(\zeta)$ given by

$$
\tilde{\mathscr{U}}(\zeta)=e^{\zeta k^{2}} \quad \text { in } \mathscr{B}\left(H^{s, \ell}\right), \quad \operatorname{Re} \zeta<0 .
$$

Clearly, $\tilde{\mathscr{U}}(\zeta)$ is a uniformly bounded semigroup. For $s=\ell=0, \zeta<0, \tilde{\mathscr{U}}(\zeta)$ is the bounded semigroup $e^{\zeta H_{0}}$ generated by the self-adjoint operator H_{0} in \mathscr{L}^{2}. Thus, for $f \in H^{0,2}$

$$
\begin{equation*}
t^{-1}\left(e^{-t k^{2}}-1\right) f \underset{t \rightarrow 0}{ }-H_{0} f \text { in } \mathscr{L}^{2}, \text { hence in } H^{-s} \tag{*}
\end{equation*}
$$

From this it follows that $(*)$ holds for all $f \in \mathscr{D}\left(\tilde{H}_{0}\right)$, and it is easy to see that the operator \tilde{H}_{0} in $H^{-s, 0}$ is the infinitesimal generator of $\tilde{\mathscr{U}}(\zeta)$.

A similar argument proves the same for \tilde{H}_{0} in $H^{-s,-2}$, and using the duality of H^{s} with H^{-s} and $H^{s, 2}$ with $H^{-s,-2}$ the same is proved for \tilde{H}_{0} in H^{s} and $H^{s, 2}$.

To prove Lemmas 2.1-2.3 we make the additional induction assumption, that for all systems C of less than n particles $\sigma_{d}\left(H^{C}\right) \subset \mathbb{R}$, where H^{C} is the maximal operator in $H^{s,-2}$, with domain $H^{s, 0}$.

Ichinose's lemma and Lemma 2.0 yield $\sigma\left(\tilde{H}_{0}\right)=\bar{R}^{+}$, where \tilde{H}_{0} is considered as an operator in $H_{p_{D}}^{-s} \otimes H_{k_{D}}^{s}$ or $\mathscr{L}_{p_{D}}^{2} \otimes H_{k_{D}}^{s}$. Hence $\sigma\left(\tilde{H}_{0}(z)\right)=e^{2 i \varphi} \bar{R}^{+}$, and Lemma 2.1 is proved using Ichinose's lemma.

In the proof of Lemma 2.2 it follows in the same way from Ichinose's lemma, that $\sigma\left(\tilde{H}_{0}\right)=\bar{R}^{+}$, where now \tilde{H}_{0} is considered as an operator in

$$
H_{\alpha_{1}}^{-s,-2} \otimes H_{M_{1}, \alpha_{2}}^{-s,-2} \otimes \ldots \otimes H_{M_{k-1}, \alpha_{k}}^{-s,-2} \otimes H_{M_{k}, \alpha_{k+1}}^{s,-2} \otimes \ldots \otimes H_{M_{n-2}, \alpha_{n-1}}^{s,-2}
$$

and hence

$$
\begin{aligned}
V_{\alpha_{1}} R_{0}(\zeta) \in \mathscr{B}\left(H_{\alpha_{1}}^{-s,-2}, H_{\alpha_{1}}^{s,-2}\right) & \otimes \mathscr{B}\left(H_{M_{1}, \alpha_{2}}^{-s,-2}\right) \otimes \ldots \otimes \mathscr{B}\left(H_{M_{k-1}, \alpha_{k}}^{-s,-2}\right) \\
& \otimes \mathscr{B}\left(H_{M_{k}, \alpha_{k+1}}^{s,-2}\right) \otimes \ldots \otimes \mathscr{B}\left(H_{M_{n-2}, \alpha_{n-1}}^{s,-2}\right)
\end{aligned}
$$

The fact that $V_{\alpha_{1}} R_{0}(\zeta)$ belongs to the same space with the first factor replaced by $\mathscr{C}\left(H_{\alpha_{1}}^{-s,-2}, H_{\alpha_{1}}^{s,-2}\right)$ is proved as in the proof of Lemma 2.2. Here the formula (2.8) is valid because by Lemma 2.0, H_{0} generates a semigroup of bounded operators

$$
e^{-H_{0} t}=e^{-H_{0}^{\alpha_{1} t}} e^{-H_{0}^{M_{1}, \alpha_{2} t}} \ldots e^{-H_{0}^{M_{n-2}, \alpha_{n-1} t}}
$$

defined for $t>0$ in the above space. The validity of Lemma 2.2 for all $\zeta \in C \backslash \bar{R}^{+}$then follows from the analyticity and Hahn-Banach's theorem by the argument given in [29].

For the proof of Lemma 2.3 we notice that by the $H_{0}-\varepsilon$-boundedness of $V_{D_{n-i}}$, the operator $H_{D_{n-i}}$ is a closed operator in

$$
H_{k_{D_{n-i}}}^{s,-2} \otimes H_{M_{i}, \alpha_{i+1}}^{-s,-2} \otimes \ldots \otimes H_{M_{n-2}, \alpha_{n-1}}^{-s,-2}
$$

with domain

$$
H_{k_{n-i}}^{s} \otimes H_{M_{i}, \alpha_{i}+1}^{-s} \otimes \ldots \otimes H_{M_{n-2}, \alpha_{n-1}}^{-s}
$$

By Ichinose's lemma and the induction assumption,

$$
\sigma\left(H_{D_{n-i}}\right)=\left[\lambda_{e, D_{n-i}}, \infty\right)
$$

where

$$
\lambda_{e, D_{n-i}}=\sum_{j=1}^{n-i} \min \left\{\lambda \in \sigma\left(H^{c_{k}}\right)\right\}, \quad D_{n-i}=\left\{C_{1}, \ldots, C_{n-i}\right\}
$$

Hence, by the ε-boundedness of $V_{D_{n-i}}$, for $\zeta \notin\left[\lambda_{e, D_{n-i}}, \infty\right)$

$$
V_{D_{n-i}} R_{D_{n-i}}(\zeta) \in \mathscr{B}\left(H_{k_{D_{n-i}}}^{s,-2}\right) \otimes \mathscr{B}\left(H_{M_{i}, \alpha_{i+1}}^{-s,-2}\right) \otimes \ldots \otimes \mathscr{B}\left(H_{M_{n-2}, \alpha_{n-1}}^{-s,-2}\right)
$$

Finally it remains to verify the additional induction assumption, i.e. that $\sigma_{d}(H) \subset R$, where H is considered as an operator in $H^{s,-2}$ with domain H^{s}.

We first note that this holds by Lemma 2.9 , when H is considered as an operator in H^{-s} with domain $H^{-s, 2}$. Hence the induction proof shows that the
spectrum of this operator is contained in \mathbb{R}. Denote for the present this operator by \tilde{H}, while H is the operator in $H^{s,-2}$ with domain H^{s}.

Assume $\lambda \notin \mathbb{R}, \phi \in H^{s},(H-\lambda) \phi=0$. Then

$$
\langle(H-\lambda) \phi, \psi\rangle=\langle\phi,(\tilde{H}-\bar{\lambda}) \psi\rangle=0
$$

for all $\psi \in H^{-s, 2}$, where $\langle\cdot, \cdot\rangle$ denotes the duality of $H^{s,-2}$ and $H^{-s, 2}$. Hence $\overline{\mathscr{R}}(\tilde{H}-\bar{\lambda}) \neq H^{-s}$, so $\bar{\lambda} \in \sigma(\tilde{H})$, a contradiction.

It follows that $\sigma_{d}(H) \subset \mathbb{R}$.

2. On Lemma 5.14 and Theorem 5.15

The identity (5.54) does not hold. The correct identity is

$$
G_{-}(z, \kappa) \tilde{Y}_{-}(z, \kappa)+G_{-}^{\prime}(z, \kappa) A_{-}=I
$$

Hence Theorem 5.15 cannot be proved as Theorem 5.13, replacing $Y_{-}(z, \kappa)$ by $\tilde{Y}_{-}(z, \kappa)$. The Theorem holds with T_{κ} being given by (5.44), but with no explicit expression for the inverse Z_{κ}. This can be proved as follows.

It is seen as in the proof of Lemma 5.14, that $\mathscr{S}_{\lambda}^{*}(\bar{\zeta})$ is regular at $\zeta=z$ and is given by (5.53) or, in view of (5.56)

$$
\mathscr{S}_{\lambda}^{*}(\bar{z})=1+\lim _{\zeta \rightarrow z} 2 \pi i m_{D} \zeta^{-2} \gamma_{D}(1) E_{\lambda} Y_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2_{m_{D}}}\right) W_{D}^{i}(\zeta) \gamma_{D}^{*}(1) .
$$

Assume $\Omega \in \tilde{\mathcal{N}}\left(G_{+}(z, \kappa)\right) / \tilde{\mathscr{N}}_{0}\left(G_{+}(z, \kappa)\right)$ and let $\sigma=T_{\kappa} \Omega$. Then

$$
\begin{aligned}
\mathscr{S}_{\lambda}^{*}(\bar{z}) \sigma= & \lim _{\zeta \rightarrow z} 2 \pi i \zeta^{-2} \gamma_{D}(1) E_{\lambda}\left\{\Omega+Y_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right) W_{D}^{i}(\zeta) 2 \pi i m_{D} \zeta^{-2} \gamma_{D}^{*}(1) \gamma_{D}(1) E_{\lambda} \Omega\right\} \\
= & \lim _{\zeta \rightarrow z} 2 \pi i \zeta^{-2} \gamma_{D}(1) E_{\lambda} \\
& \cdot\left\{\Omega+Y_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right)\left(G_{+}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right)-G_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right)\right) \Omega\right\}=0,
\end{aligned}
$$

because (5.56) holds, $G_{+}(z, \kappa) \Omega=0$ and

$$
\gamma_{D}(1) E_{\lambda} \lim _{\zeta \rightarrow z} Y_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right) G_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right)=\gamma_{D}(1) E_{\lambda} \quad \text { by Lemma 4.3 }
$$

since

$$
\begin{aligned}
& J R_{1_{-}}(z, \kappa) \lim _{\zeta \rightarrow z} Y_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right) G_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right) \\
& =\lim _{\zeta \rightarrow z} R_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right) G_{-}\left(\zeta, \lambda+\frac{\zeta^{2}}{2 m_{D}}\right)=J R_{1_{-}}(z, \kappa) .
\end{aligned}
$$

This shows that T_{κ} is an isomorphism of $\tilde{\mathscr{N}}\left(G_{+}(z, \kappa)\right) / \tilde{\mathscr{N}}_{0}\left(G_{+}(z, \kappa)\right)$ into $\mathcal{N}\left(\mathscr{C}_{\lambda}^{*}(\bar{z})\right)$. A simple argument, utilizing the expression (5.39) for $\mathscr{S}_{\lambda}^{-1 *}(\bar{z})$, shows that

$$
\operatorname{dim} \tilde{\mathscr{N}}\left(G_{+}(z, \kappa)\right) / \tilde{\mathscr{N}}_{0}\left(G_{+}(z, \kappa)\right) \geqq \operatorname{dim} \mathscr{N}\left(\mathscr{S}_{\lambda}^{*}(\bar{z})\right)
$$

Hence the isomorphism T_{κ} is onto $\mathscr{N}\left(\mathscr{C}_{\lambda}^{*}(\bar{z})\right)$, and the theorem is proved.
The same proof applies to establish a similar version of [2, Theorem 7.9].

References

1. Balslev, E.: Commun. Math. Phys. 77, 173-210 (1980)
2. Balslev, E.: Ann. Inst. Henri Poincaré 32, 125-160 (1980)

Communicated by J. Ginibre

Received June 12, 1981

