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Abstract. The proof of [1, Lemmas 2.1-2.3] is completed, showing that the
operators of multiplication by k2 in ff'', |ί|^l, / = 0, ±2, have spectrum R+

and generate the holomorphic semigroups eζfc2, Reς<0.
It is pointed out, that [1, (5.54)] does not hold. Accordingly, a new version

of [1, Theorem 5.15] is proved, saying that (5.44) defines an isomorphism of
>(G+(z, fc))A/P0(G+(z, K)) onto

1. On the Proof of Lemmas 2.1-2.3

Lemma 2.0. The operators H0 defined by multiplication by k2 in the_spaces H1^ for
t=+s, 0^s^l,/ = 0, ±2 with domains H*'*+2 have the spectrum R+ and generate
holomorphic semigroups e^H° defined for Re£<0.

Proof. Clearly, (k2-zΓlε@(H^)π@(HQ>*\ / = 0, ±2, zφR+, and hence by
interpolation (k2 - z}~ lε @(HS>*\ 0<s<l, ^ = 0, ±2.

By duality, (k2 - z ) " * ε @(H ~ s>~ *). Obviously, (k2 - z) ~ 1 is unbounded in any of
these spaces for zejR+, hence σ(H0) = JR+.

H0 generates the semigroup Φ(ζ) given by

eζk2 in ^(HSΌ, ReC<0.

Clearly, Φ(Q is a uniformly bounded semigroup. For s = ̂  = 0, C<0, Φ(0 is the
bounded semigroup eζH° generated by the self-adjoint operator H0 in <£2. Thus,
for/eH 0 ' 2

ri(β-ίfc2_l)y - >-H0f in ^2, hence in H~s. (*)

From this it follows that (*) holds for all /e^(H0), and it is easy to see that the
operator H0 in H~s>0 is the infinitesimal generator of $(Q.

A similar argument proves the same for H0 in H ~s' ~ 2, and using the duality of
Hs with H~s and Hs'2 with H~s> ~2 the same is proved for H0 in Hs and Hs'2.

0010-3616/81/0082/0257/S01.00



258 E. Balslev

To prove Lemmas 2.1-2.3 we make the additional induction assumption, that
for all systems C of less than n particles σd(Hc)ClR, where Hc is the maximal
operator in Hs>~2, with domain Hs'°.

Ichinose's lemma and Lemma 2.0 yield σ(H0) = R+, where H0 is considered as
an operator in H~*®Hs

kD or &lΏ®H*kΌ. Hence σ(H0(z)) = e2ίφR+, and Lemma 2.1
is proved using Ichinose's lemma.

In the proof of Lemma 2.2 it follows in the same way from Ichinose's lemma,
that σ(H0) = R+, where now H0 is considered as an operator in

H — S, — 2 / r x r τ ~ s » ~ 2 / r χ /O\EJ~S>~2 /o\ rys, — 2 /rx /ςx ΓJS> ~ 2
αi

and hence

The fact that VΛίR0(ζ) belongs to the same space with the first factor replaced
by <g(H~* ~ 2, H%~ 2) is proved as in the proof of Lemma 2.2. Here the formula (2.8)
is valid because by Lemma 2.0, H0 generates a semigroup of bounded operators

defined for t > 0 in the above space. The validity of Lemma 2.2 for all £e C\R + then
follows from the analyticity and Hahn-Banach's theorem by the argument given in
[29].

For the proof of Lemma 2.3 we notice that by the H0 — ε-boundedness of VDn_t,
the operator HDn_ί is a closed operator in

TTS, — 2/5-χrτ — s, — 2 /r\ /rx ΈJ — s, — 2
Hknn

with domain

By Ichinose's lemma and the induction assumption,

where

7=1

Hence, by the ε-boundedness of VDn_t, for ζφ[λβtDn_i9 oo)

Finally it remains to verify the additional induction assumption, i.e. that
σd(H) C R, where H is considered as an operator in Hs> ~ 2 with domain Hs.

We first note that this holds by Lemma 2.9, when H is considered as an
operator in H~s with domain H~s'2. Hence the induction proof shows that the
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spectrum of this operator is contained in IR. Denote for the present this operator
by H, while H is the operator in Hs> ~ 2 with domain Hs.

Assume λ<£IR, φeHs, (H-λ)φ = 0. Then

<(H - λ)φ, ψy=<</>, (H - l)Ψy=o

for all ψeH~s'2, where < , •> denotes the duality of Hs'~2 and H~s'2. Hence
$(H-λ)ή=H~s, so Xeσ(#), a contradiction.

It follows that σd(#)cR

2. On Lemma 5.14 and Theorem 5.15

The identity (5.54) does not hold. The correct identity is

G_(z, κ)7_(z, κ) + G'_(z, φl_ = /.

Hence Theorem 5.15 cannot be proved as Theorem 5.13, replacing Y_(z,κ) by
Y_(z,κ;). The Theorem holds with Tκ being given by (5.44), but with no explicit
expression for the inverse Zκ. This can be proved as follows.

It is seen as in the proof of Lemma 5.14, that &**(ζ) is regular at ζ = z and is
given by (5.53) or, in view of (5.56)

λY_ ζ,λ+ -

Assume βeJ^(G+(z,κ;))/J^(G+(z,κ;)) and let σ=TκΩ. Then

_ lζ,λ+ -̂ -) WD(ζ)2πίmDζ-2γ*(l)γD(l)EλΩ

= lwι2πiζ-2γD(ί)Eλ

β+yJU+-^ G+ u+^ -G_ U+7ΓV 2roD/\ \ 2mD/ \ 2mD

because (5.56) holds, G+(z,τc)ί2 = 0 and

/ r2 \ I r2 \
yD(l)Eλlim Y\ζ,λ+ γ-\ G l£,λ+ ~-\ =yD(l)Eλ by Lemma 4.3,

since

2m,



260 E Balslev

This shows that Tκ is an isomorphism of J^(G+(z,κ;))/J^0(G+(z,κ;)) into
Λ^(5^*(z)). A simple argument, utilizing the expression (5.39) for 5 l̂~

1*(z), shows
that

+(z, κ))/Jro(G+(z9 K)) ̂  di

Hence the isomorphism Tκ is onto ^(^(z)\ and the theorem is proved.
The same proof applies to establish a similar version of [2, Theorem 7.9].
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