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Abstract. The stochastic Heisenberg model is a probabilistic model of the
time evolution of a classical Heisenberg ferromagnet. It is proved that the
stochastic process converges to equilibrium at sufficiently high temperatures,
and that the equilibrium state is a Gibbs state of the Hamiltonian possessing
the global Markov property. The principal technique employed is the expan-
sion of observables on the state space into Laplace series.

I. Introduction

The stochastic Heisenberg model was introduced by William Paris in [1] as a
probabilistic model of the time evolution of a classical Heisenberg ferromagnet.
He constructed an infinite-dimensional Markov diffusion process whose state
space is a countable product of spheres, and which has two components. The first
is a random motion, the product of Brownian motions on the individual spheres.
The second is a deterministic drift generated by a vector field containing the
interaction terms. The latter is formally the negative of the gradient of the
Hamiltonian, multiplied by the inverse temperature.

In a second paper [2] the same author studied the equilibrium state of the
model and proved that it is unique and analytic in the inverse temperature for
sufficiently high temperatures. This was obtained by expanding the equilibrium
state into a series of Rayleigh-Schrόdinger type around a product measure, and
proving convergence of the series in an appropriate norm.

The main theorem of the present paper (Theorem 1 of Sect. Ill) establishes
convergence of this process with arbitrary initial state to the equilibrium state at
high temperature, for a large class of models of the type studied by Paris. The
principal technique we employ is the expansion of functions on the state space into
series of eigenfunctions of the infinite-dimensional Laplacian (Laplace series.) We
include an existence theorem for the process of a different sort than Faris's. We
also give a discussion of the relationship between the equilibrium state of the
stochastic model and the Gibbs state of the Hamiltonian and show how the global
Markov property of the equilibrium state may be deduced from Faris's uniqueness
theorem.
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We now define the class of models we are interested in. Let M be a compact,
homogeneous Riemannian manifold with metric tensor g. M will play the role of
'spin space' for an individual 'spin'. Let S be a countable set of'sites' equipped with
a metric dQ (we assume also that xeS and r < oo imply that {y:d(y, x) :g r] is
finite.) The state space will be Ξ = Ms = Y[ Mχ, with Mχ = M the manifold at site

xeS

xeS. We write ξeΞ and ξ(x)eMx for the 'spin' at site xeS. Let A = £ Aχ be the (in-
xeS

finite-dimensional) Laplacian; Δχ is defined to be Vχ g~l -dχ9 with Vx the covariant
derivative and dx the differential with respect to ξ(x)eMx. A is well-defined on
smooth functions on Ξ of finitely many manifolds.

Let X be a vector field on Ξ and X dthe corresponding first-order differential
operator. X d is defined on the same domain as A by: X d = Σ-^V^, where

xeS

Xx is a function of ξeΞ whose value is a tangent vector to Mx at ξ(x). We assume
that Z satisfies the following 'finite-range' and smoothness condition: Xχ depends
only on the variables ξ(y) with d(y, x) ̂  H*) < °° and is a C°° function of these
variables. In the models studied in [1] and the present paper, X is formally a gra-
dient: X = — VH, where H (the Hamiltonian) is a scalar function on Ξ. Typically
H is given by a divergent sum of smooth 'potential' functions each of which depends
on only finitely many manifolds and we may define X rigorously by setting
Xx = — VχH = — g"1 dxH. Then iϊH contains only finite-range interactions X will
satisfy the finite-range condition.

The generator of our Markov process will be constructed by setting

Ω = Δ + T~lX d (1)

on the domain indicated above; T is a positive constant proportional to the
temperature. With some additional hypotheses, Paris in [1] proved via the Hille-
Yosida Theorem that the closure of Ω is the generator of a Markov semigroup
{S(ί): ί ̂  0} on C(Ξ), the Banach space of continuous functions on Ξ (a compact
Hausdorf space), with the uniform norm ||/||α = sup (/(£)(. (The S(t) form a

ξeΞ

strongly continuous semigroup of positivity preserving linear contractions on
C(Ξ) leaving the function 1 invariant. For the definition of Markov semigroup and
a discussion of the Hille-Yosida theorem in this context see [1], [3].) From the
semigroup operators one can construct transition functions and a strong Markov
diffusion process in the usual way [4].

We will call a probability measure on Ξ a state. An invariant state μ for {S(f)},
i.e. one for which

$dμS(t)f = Idμf

for all/eC(Ξ)and t g: 0, will be called an equilibrium state. We will say that the
process converges to equilibrium if πS(t) -»μ (in the weak* topology on measures)
as ί -̂  oo for an arbitrary initial state π on Ξ. (μ is then necessarily unique.) We avoid
the term 'ergodicity' in this context since the time-shift operator may be ergodic
on the path space of the process even if the equilibrium state is non-unique. See [5].

Our main theorem (which gives some conditions on the generator implying
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convergence to equilibrium of the corresponding process) was inspired by the
proof of Liggett in [3] of a theorem of Holley and Stroock [6]. Their theorem gave
existence and convergence to equilibrium of stochastic Ising models whose spin-
flip rate functions have absolutely convergent Fourier expansions. Our proof
follows that of Liggett but is complicated by the necessity of using the more general
Laplace series.

The plan of the paper is as follows. In Sect.II we introduce an appropriate space
of functions with absolutely convergent Laplace series. In Sect III the main theorem
is proved, and in Sect.I V we compute the temperature ranges for which this theorem
yields convergence to equilibrium, for two important special cases: the plane-
rotor and classical Heisenberg models. These correspond to taking
S = Zv, v ̂  1 M = Sn, the unit sphere in Rn + *, for n = 1 and 2 (respectively)
and

H=-\ ΣΣ £(*KO>) (2)
x,yeS

|χ-y| = l

(the '•'denotes dot product in Rn+1). In Sect.V we discuss the relationship between
Gibbs states of the Hamiltonian and equilibrium states of the stochastic process
for the general model with X = — VH (formally). We also derive the global Markov
property of the equilibrium state from Faris's uniqueness theorem. Finally in an
appendix we prove a different (and stronger) version of Theorem 1 for the plane-
rotor models (i.e. models with M = Sl.) As a corollary, we obtain convergence to
equilibrium for these models over a wider range of temperatures.

II. Functions with Absolutely Convergent Laplace Series

In this section we define a space of functions on Ξ which have absolutely convergent
expansions in eigenfunctions of the Laplacian (Laplace series). We begin by con-
structing the appropriate space of functions on M and then extend the construction
to product spaces.

Let M be a compact and orientable C°° Riemannian manifold. Let g denote the
metric tensor, A the Laplacian (Laplace-Beltrami operator), and σ the volume
measure on M (normalized so that σ(M) = 1). We assume in addition that M is
homogeneous: There exists a Lie group G acting transitively on M leaving g in-
variant. We shall need the following well-known facts concerning the Laplacian
as an operator on L2(M, σ) with domain the C2 functions on M:

(i) A is symmetric and has purely discrete spectrum lying i n ( — oo, 0]. Let
0 = λ(0) > λ(l)> λ(ΐ) > ... be the eigenvalues of A with corresponding eigenspaces
flp/= 0,1,2,....

(ii) each Hl is finite-dimensional and consists of C°° functions.
(iii) The action of G on functions on M induces a unitary representation of

G in each H^.
For each / ̂  0 let { Yt m} be an orthonormal basis oϊHt (m runs over some index

set of cardinality equal to dim H^. Then we may write the orthogonal projection
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Pl onto Ht as an integral operator with kernel

Kl(ξ,r,) = ΣY,,m(ξ)Ϋl,m(η)
m

Thusif/eL2(M,σ),

Plf(ξ)=$MKl(ξ,η)f(η)dσ(η).

Since Pl is a projection we also have

Plf(ξ) = \MKl(ξ,η)Plf(η}dσ(η}.

Applying Schwarz's inequality gives

= Kl(ξ,ξ)^\\Plf\\2. (1)

( I I I I 2 is the L2-Norm.) Using (iii) it is easily seen that Kt(ξ, ξ) is a constant equal
to tr Pl = dim HΓ

Definition. A(M) ΞΞ {/eL2(M, σ) :][>(/) || PJ \\2 < oo, with w(/) - (dim ̂ )1/2}.

From (1) we see that if feA(M) then the Laplace series ^PJ(ζ) converges
absolutely and uniformly t o f ( ξ ) . Thus A(M) c C(M). 4(M) generalizes the notion
of absolutely convergent Fourier series to arbitrary compact, homogeneous
Riemannian spaces (equivalently, arbitrary compact Lie groups). However,
there are other natural generalizations (see [7] for a discussion of this). In [8]
Peetre proved that a sufficiently smooth function is in A(M). In fact from the
proof of Theorem One of [8], it follows that/eZ)"'4'1 =>feA(M\ where Dnl*Λ is
a certain 'interpolation space' and w = dimM. It is known that D(AN) cDπ/4>1

Of course the exemplar of this construction is for the sphere Sn, the unit sphere
in Rn+ ̂  with A the usual Laplacian (in the angular variables). We have S0(n -f 1, R)
acting transitively on M, Ht is the space of surface spherical harmonics of degree
/, and λ(l) =-l(l + n- 1). See e.g. [9].

We now generalize this construction to Ξ = M5. Let now A =
X

Laplacian on Ξ and dσ(ξ) = [[dσ(ξ(x)) the volume measure. Define
X

L — {1| 1 :S -> Z+ and l(x) = 0 except for finitely many xeS}.

Then L2(Ξ, σ) admits a decomposition

where Hλ is the tensor product

Each Hl is an eigenspace oϊA of eigenvalue λ(ϊ) = ^λ(l(x)) and has dimension

dim Hl = Y\dim Hl(xγ
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We may construct an orthonormal basis of Hl by setting

Letting P, denote the orthogonal projection onto Hl we find as before that Pλ is
an integral operator with kernel

and a calculation identical to that preceding (1) gives, for/6 L2(Ξ, σ),

\P,m\^K^^}^\\PJ\\2, (2)

with

= dim if,.

Definition A(Ξ)= {/εL2(S,σ):£w(l)||P,/||2 < oo, with w(l) = (dimH,)1/2}. A(Ξ)
leL

is a Banach space with norm

Ί/II2 (3)

Applying Theorem One of [8] to the manifold MΛ and Laplacian AA — Σ^x

xeΛ

with A c: S finite, we see that C°° functions of finitely many manifolds are in
A(Ξ). [Note that on MΛ, Peetre's theorem gives convergence of the series

for sufficiently smooth /, where the sum is over the eigenvalues λ of ΔΛ and Pλ

projects on the corresponding eigenspace Hλ, with w(λ) = (dim Hλ)
1/2. However

by Cauchy's inequality,

/ V / 2 / V/2

Σ w O ) l l Λ / « a £ Σ Mi)2 Σ

so that convergence of Peetre's series implies convergence of our series.] We
conclude that A(Ξ) is dense in C(Ξ\

The following proposition will prove useful in the sequel. The proof (which
is straightforward) is omitted.

Proposition 1. Let H be a Hilbert space decomposed as: H = ®^Hr where
leL

L is a countable index set. Let w(/) ̂  1 be a function on L. Define the subspace
A = A(H9 (Ht\ w) ofH by: feA iff the norm \\ f \\a = ΣW(/) || ft ||2 < oo, where f has

i
Fourier series^fi mthfleHΓ Then:

i
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(i) The dual A* of A may be identified with the space of sequences g = (g^L

with gteHl9 norm \\ g \\ * = sup || gl \2,and pairing
i

;)2. (4)
i

(ii) Let ΓllteB(Hlf,Hl) be a matrix of bounded linear operators satisfying

supwίO-'ΣMOll/Yj^oo (5)
I V

(where || \\op denotes operator norm). Then the formula

(*/),= ΣV/Ί (6)
r

defines a bounded linear operator on A with norm less than the number in (5).

Remark. If in the proposition we have dim Ht = 1 for all /, then the converse of
part (ii) holds : Every bounded linear operator on A is given as in (6) by a matrix
with the number in (5) finite. This remains true if the dimensions are bounded by
a finite constant but is false in the unbounded case. (The author thanks D. Ragozin
for this remark.)

III. Existence of the Process and Convergence to Equilibrium

In order to state simply the main theorem we introduce some additional notation.

Set Ax = Δx and Bχ = T~lXχdx for xeS. Then A = ΣA

X>
 B = ΣB

X

 and Ω = A + B

X X

Let Λn, n = 1, 2, ... , be an increasing sequence of finite subsets of S with union
S and let Bn = £ Bx and Ωn = A -f- Bn. We shall need also the inverse operators

xeΛn

A ~ * and A ~ 1 for x e S which we define on 0 ]Γ Hγ (respectively on 0 ]Γ Ht) so

that AA 1 = / (respectively AXAX

 1 = /) and set equal to zero on the orthogonal
complements of these spaces. Finally if Γ is a linear operator on L2(Ξ, σ) define

1 1 Γ l U = sup w(l)~1^w(Γ)||PΓΓP,|| . (1)
1 1'

In the theorem below all operators are assumed to have as domain the C2

functions of finitely many manifolds, and a bar over an operator denotes closure
of the operator. The Ωn are generators since they are sums of finite-dimensional
generators [1].

Theorem 1. Assume that there exists α < 1 such that

for all xeS. Then:
(i) Ω generates a Markov semigroup on C(Ξ). Ωn-+Ω in the sense of strong

resolvent convergence: For allκ>Q andfeC(Ξ\

in uniform norm.
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(ii) The semigroup (S(t) : t ̂  0} generated by Ω has a unique invariant state
μ and for any g e A(Ξ\

I) S(t)g - \gdμ |U 2 1| g L exp (- ίλt(l - α)) (4)

where λ1 — inf ( — λ(l)). Thus ifπ is any initial state on Ξ,
l * = 0

πS(t) -> μ

in f/*e weα/c* topology on measures.
Proof. The line of argument follows that in [3] for the existence proof see also
the lemma in Sect. 3 of [1]. (A(Ξ) plays the role of Faris's auxiliary Banach space
W\ We begin by proving two lemmas which provide the necessary a priori esti-
mates.
Lemma 1. Condition (2) implies the uniform bound (for all 1, Γ with Γ ̂  0) :

HΛVΛ-'PJUsi/Y,, (5)

where Γl r is a matrix with positive entries (independent ofn) such that

Proof.

xeΛn,Γ(x) =£ 0

To obtain the bound (5) we drop the restriction xεΛn from the sum over x
on the right side of (7), and define Γj ,, as the resulting upper bound. We then obtain
from (2),

1 x

In the next lemma let D be the space of C°° functions of finitely many manifolds.
Lemma 2. Let K > 0,/eD and (I — κΩn)f= g. Then for each 1,

||p1/1|2(i + ̂ )NllΛίll2 + ̂  Σ IW^K/L. (8)
1^0

Proof. Since /is C°°, both /and Afare in A(Ξ). In particular the series Σλ(l)P}f
converges in A(Ξ). This fact and the bounds in (5) and (6) (which imply that Bn ° A ~ l

is a bounded operator on A (Ξ) ) justify the following computation.

Projecting onto Hj yields

(P,/)(l

and the estimate (8) follows by taking || || 2 of both sides and using lemma one. Π
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We now begin the proof of (i). As in [1], Ω is a densely defined, dissipative
operator and so has a closure Ω with similar properties. The difficult part in
verifying the hypotheses of the Hille-Yosida theorem is showing that the resolvents
(/ — κΩ)~ *, for K > 0, exist. For this we must show that I ~κΩ has dense range
(the range is closed since Ω is dissipative). The semigroup operators are then con-
structed from the formula:

S(t)f= lim(I-(t/n)ΩΓnf (9)
n~* co

(the limit is in the uniform norm).
Let geD and suppose that g depends only on the manifolds Mx with xe A.

Using the finite-range condition and existence and regularity theorems for elliptic
P.D.E's we can solve (/ — κΩn)fn = g for/πeD, if n is large enough (such that
Λn => Λ). [To do so it is necessary to check that the adjoint equation (/ — KΩtyf = 0,
where Ω*n is the formal adjoint of Ωn with respect to σ and the equation is for a
distribution/on a finite-dimensional manifold, has only the solution/ = 0. For
a proof of this see [1] or [10].] Lemma two applies and gives the estimates:

The bound (6) translates into the bound ||Γ||o p< 1 of the matrix Γ operating
on the weighted / x -space obtained from 12(L) and the weight function w as in
Proposition 1. Hence/ — Γ is invertible on this space and we obtain from (10)

(componentwise), where

M(i)
and

«Ό) = I|P,0«2

The conclusion is that for all 1,

KlWllPi/JL^KiX (»)
with r(l) S: 0 independent of n and

£w(I)r(I)«x>. (12)

Now let gn = (I- κΩ)fn. We have

Since < the latter is



Stochastic Heisenberg Model 369

1:
supp lr\Λc

(We have used (2) and part (ii) of Proposition 1 in the third inequality,
and supp 1 = (x:l(x) =£()}). From (11), (12) and dominated convergence we see
that the last bound tends to zero as n -» oo.

Thus gn-*g uniformly. Furthermore since / — KΩ is dissipative,

Thus/π ^/uniformly,/eD(ί5) and (7 - κΩ)f= g. By the Hille-Yosida Theorem,
Ω generates a (Markov) semigroup on C(Ξ). (3) follows from the lemma of [1].

We now prove (ii). Let g eD and (/ — κΩ)f = g. From the proof of (i), we obtain
(8) holding for /and g since this inequality holds with/π in place of/, P,/n-»P,/
uniformly for each 1, and dominated convergence applies because of the bound (11).
Multiplying both sides of (8) by w(l), summing over 1 ̂  0 and using (6) we obtain

(1 + κλ,(\ - α)) Σ w(l) || PJ \\2 ̂
1=^0

where λ^= inf | λ(ϊ) \ . We rewrite this as

Iterating this inequality n times with K = t/n,

,(/ - (t/n)ΩΓ"g ||2 ̂  (1 + (i/n)At(l - α)Γ" || g \\a.

Let n -> oo. We obtain from the Hille-Yosida Theorem:

-ί^d-α)}!^!!.. (13)

To complete the proof of the theorem note that from (13) we obtain

|| S(t)g - P0S(t)g I ϊ exp { - dt(l -«)}\\g \\a (14)

so that if μ is an invariant measure for {S(t): t ̂  0},

\\gdμ-PGS(t)g\^^{-tλl(\-^}\\g\\a. (15)

Equation (4) now follows from (14) and (15), completing the proof of the theorem.
D

Remark. The connection with Faris's uniqueness theorem is the following. We
prove Lemma 1 with B in the place of J5π, and conclude that

Hence by Proposition 1, B°A~1 has operator norm < 1 as an operator on A(Ξ\
and dually A~ί*°B* has operator norm < 1 on A(Ξ)*, where a* on an operator
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denotes Banach space adjoint. Thus the uniqueness and analyticity in T"1 of
the invariant measure follows from Faris's Proposition 1. Note that Faris uses
the norm on measures dual to our norm on functions in A(Ξ\

IV. Convergence to Equilibrium of the Plane-Rotor and Classical Heisenberg
Models

In this section we compute, for the plane-rotor and classical Heisenberg models,
the temperature ranges over which Theorem 1 yields convergence to equilibrium.
We carry out the computations simultaneously for both models.

For these models M is either the circle S1 (plane-rot or model) or the two-
sphere S2 (the classical Heisenberg model), Δ is the usual Laplacian in the angle
variables, and σ is (normalized) surface measure. On the circle, each eigenspace
Hl has dimension two, with basis exp ( ± i/θ); on the two-sphere, Hl has dimension
21 -f 1, with basis the spherical harmonics {Yt m: — I ^ m rg /} of degree 1 (normal-
ized in L2(M, σ)). Hl has eigenvalue ( - 12) on the circle and ( — /(/+ 1)) on the
sphere. S is the lattice Zv of points in Rv with integer coordinates.

The Hamiltonian is given (formally) in both models by:

ff — iΣΣcosβ,,, W
x y

\x-y\ = l

where Θxy is the angle between ξ(x) and ξ(y). Thus

Bχ = (VxH)-dx = Σ sinΘxyd/dΘχy. (2)

For the plane-rotor model with Θxy = θ(x) — θ(y) this may be written more simplyxy

as

Bx= Σ sm(θ(x)-θ(y))d/dθ(x). (3)
y

\y-x\ = ί

The spaces .4(3) are defined in both cases as in Sect.IL Note that the weight
functions are

w(l) = γ[ 21/2 =: 2 | supPIl/2 (4)
xesupp 1

for the plane-rotor model, and

xesupp 1 v '

for the Heisenberg model.
The computation of temperature ranges will follow from the two lemmas

below. We give the proofs for the plane-rotor model. For the classical Heisenberg
model they are found in [2].

Lemma 3. The operator sin @xyd/dΘ restricted to Hλ has norm bounded by
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Proof. Hl has an orthonormal basis consisting of the functions

e^ = nexp{iKxWxWx)} (6)
X

with w(x) = ± 1 for all x. Thus if Y^H19 \\ sin (θ(x) - θ(y))d/dθ(x)Yl \\2 ^ l(x) \\ Yl ||2
= ( -λ(l(x))l/2 1| Y j || 2, since each of the basis functions (6) is an eigenfunction of
d/dθ(x) with eigenvalue ± l(x) and Yλ is a linear combination of these functions.

Lemma 4. LetYleHl.Ify is a neighbor of x, thenύnθ^d/dθ^Y^s a sum of
four terms belonging to spaces Hlt with Γ(x) = l(x) ± 1, Γ(y) = l(y) ± 1 and l'(z) = l(z)
for all other z.

Proof. Write sin (θ(x) — θ(y)) as a linear combination of the functions
exp{±i0(x)}.exp {+/%)}.

We now compute a bound on the norm |||#X

0-4X Mil °f Theorem 1. Since
Hl is an eigenspace of Ax of eigenvalue λ(l(x)) we need only find a bound on

w(!Γ H - λ(l(x))Γ wd') || PrBxP} \\o (7)

for all 1 with /(x) =£ 0. From the fact that x has 2v nearest neighbors and Lemma
4 we see that, if Y^H19 Bx Yl is a sum of 8v terms belonging to various Hv . By the
orthogonality of these spaces and Lemma 3, each of these terms is bounded by
( - λ ( l ( x ) ) ί f 2 . || Yl || 2 . Thus (7) is less than

8vΓ- x ( - λ(l(x))Γ 1/2 sup w(l')Ml),

where the supremum is over the various index functions described in Lemma 4.

For the plane-rotor model | supp Γ | ̂  | supp 1 1 + 1 so that from (4) w(Γ) ̂
and so we have proved:

Theorem 2. For the plane-rotor model in v dimensions we have the bound

Thus ifT >v/28v, the stochastic process converges to the equilibrium state.
For the classical Heisenberg model we have 2Γ(x) + 1 ̂  2/(x) + 3, 2ΐ(y) + 1 ̂

2/(j;) + 3 so that from (5) we find w(Γ)/w(l) ^^/5. Since λ(l(x)) ^ 2 if /(x) ̂  0 we
have proved :

Theorem 3. For the classical Heisenberg model in v dimensions we have

Thus the process converges to equilibrium if T >

Remarks. The temperature range in Theorem 2 is considerably restricted vis a vis
Faris's range T > 2v over which he proved uniqueness and analyticity hold. In
fact convergence to equilibrium occurs also over this range (see the Appendix).
The range computed in Theorem 3 should be compared with Faris's result T > 8v.
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V. Gibbs States, Reversible States and the Global Markov Property

In the stochastic Heisenberg models, the vector field X generating the drift part
of the process is (formally) the gradient of a scalar function H — the Hamiltonian.
The equation for an invariant (equilibrium) state is

for all smooth functions /. If we write μ = pσ, as though μ had a density p with
respect to σ, this equation may be rewritten as

where Ωt is the formal adjoint (with respect to σ) of Ω. As Paris observed in [1]
the (formal) solution of this PDE is

p = Z-lexp(-T~lH), (I)

i.e. μ is the Gibbs state of the Hamiltonian.
If the set of sites S is finite (so that Ξ is a finite-dimensional manifold), this

argument is valid and in fact μ is the unique equilibrium state of the process
(see Prop. 2 below). When S is infinite we must replace (1) by the rigorous definition
of a Gibbs state formulated by Dobrushin, Lanford and Ruelle ([11], [12]).
We shall then identify a class of equilibrium states (called reversible states) and
prove that this class is identical with the class of Gibbs states. (For the stochastic
Ising model this was proved in [13]; see also [5].) Thus Theorem 1 (implies con-
vergence, at sufficiently high temperature, of the stochastic process with arbitrary
initial state to the (unique) Gibbs state of the Hamiltonian. On the other hand
it was shown in [14] that in the classical Heisenberg model with v ̂  3 at low
temperatures the Gibbs state is not unique. The implication is that there exist
distinct equilibrium states of the stochastic process, at low temperatures.

We also discuss in this section an additional property of the equilibrium
state, valid when Faris's uniqueness theorem holds : the global Markov property.

We begin with the rigorous definition of a Gibbs state. We assume that H is
given formally by:

(2)

where the sum is over finite subsets of S and the J(F) are smooth functions of
ξ(x\ xeF called potentials. (For example, in the classical Heisenberg model
J( {χ> y} ) = ζ(χ) ' ζ(y) if χ and y are neighbors, and J(F) = 0 for all other F.) In order
to satisfy the finite-range condition we assume 3r < oo such that J(F) = 0 if
diam F > r. Now let A c S be a finite set and ζeM^A an external configuration.
We define the conditional Gibbs state inside A with boundary condition ζ by:

Λ)dσA, (3)

where σΛ is the product of the normalized volume measures on Mx for
ZA£ is a normalization factor, and HΛ ζ is the energy of the configuration inside
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Λ, given the boundary condition ζ. The latter is defined by

λ (4)

where ξ ζ is the configuration equal to ξ on A and ζ on S\Λ. (note however that
HΛ ζ depends only on ζ(y) for dist (y, /I) ̂  r).

The Gibbs states are now defined as follows. A state μ on Ξ is a Gibbs state of
the Hamiltonian (at temperature T) iff μ admits the function μΛ ζ as a regular
conditional probability, given the configuration ζ in S\A. Thus μ is a Gibbs state
iff for all (conditions) functions /, g with g depending only on the configuration
ζ outside Λ we have :

\dμgf = $dμ[ζ)g(ζ)$dμ^(ξ)f(ξ ζ). (5)

(These equations are usually called DLR equations.)
Returning to the stochastic process we will call a state μ on Ξ reversible for the

semigroup {S(t):t ^ 0} if for all/, g in C(Ξ) and t ̂  0,

SdμfS(t)g = $dμgS(t)f (6)

An equivalent definition is : For all/, g in (a core of) the domain of the generator Ω,

IdμfΩg = f dW0/ (7)

Clearly a reversible state is invariant (take/ = 1 in (6)).
We are now ready to state our theorem.

Theorem 4. Let H be defined formally by (2) with potentials satisfying the finite-
range condition. Assume that there exists a Markov semigroup on C(Ξ) with generat-
or the closure of Ω = A — T~lVH'd (with the usual domain). Then the class of
reversible states for this semigroup coincides with the class of Gibbs states of H.

Proof. We require the following proposition, proved by Nelson in [15].

Proposition 2. Let Nbea compact.finite-dίmensional Reimannian manifold and X a
smooth vector field on N. Then the generator

Ω = A+X-d (9)

has a unique invariant probability measure μ, which is reversible iffX is the gradient
of a scalar function Ψ. In this case μ is given by

(10)

where σ is the volume measure on N.
Let μ be a Gibbs state off/. Let Λ c S be a finite set. For any external configura-

tion ζ define a generator ΩΛ>ζ on N = MΛ by taking X = - T~1VHA^ Then
by the proposition, μΛ ζ is the unique reversible measure of ΩΛ ζ so that if/ g are
smooth functions on MA,

gΩΛΛf. (11)

We then obtain from (5) by integrating both sides of (1 1) with μ(note that if /is a
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function on MΛ then ΩΛ ζf(ξ) = Ωf(ξ - () if we regard /as a function on Ξ):

Thus μ is reversible.
Conversely assume that μ is reversible for the process with generator Ω. First

note that \ifeC2(MΛ\ geC2(MΛ') with ΛnΛ' = φ, then

Ω(fg)=fΩg + gΩf. (12)

Since μ is reversible, it is invariant and so we obtain from (7) and (12)

We may rewrite this as

0 = $dμ(ζ)g(ζ)$dμ(ξ\S\Λ)(ζ)ΩΛ}ζf(ξ),

where ζ -* μ( \S\Λ)(ζ) is a regular conditional probability for μ, given the con-
figuration ζ in S\Λ. Letting / and g range over countable dense sets in C2(MΛ)
and C(M^Λ) respectively we obtain

0 = \dμ(ξ I S\A)(ζ)ΩΛfζf(ξ\ μ - a.e. . (13)

Thus for μ — a.e. (,μ( |SVl)(() is an invariant state for ΩΛ ζ. From the proposition
we conclude that μ( | S\A)(ζ) = μΛ ζ( ) for μ — a.e.ζ. This implies the DLR equations
(5) so that μ is a Gibbs state. D

A probability measure μ on Ξ = Ms is said to have the local Markov property
(LMP) of range r if for all finite ΛaS9

-a.e., (14)

where μ(-\S\Λ)(ζ) (respectively μ( drΛ)(ζ)) is the conditional probability given
the configuration in S\Λ (respectively in drΛ — {y: dist (y, A)^r}). If μ is a Gibbs
state of a Hamiltonian with potentials of range ^ r then μ has the LMP of range r.

The global Markov property (GMP) of range r is said to hold if we may take A
arbitrary in (4). The GMP is not an immediate consequence of the LMP; in fact
there exists a Gibbs state of the Ising model for v = 3 which fails to have the GMP
[16]. The GMP follows from Dobrushin's uniqueness theorem for the Gibbs
state [17], and holds also for the extreme states in FKG ordering of the Ising model
[16], [18].

Theorem 5. The unique equilibrium state (Gibbs state) of the plane-rotor and class-
ical Heisenberg models has the GMP whenever Faris's uniqueness theorem (or
Theorem 1) applies.

Proof. Let μ be the unique invariant state and A c S an arbitrary set. Given a
configuration ζ in d/t, define HΛζ formally by (4) and let ΩΛζ = ΔA — T~lVHΛζ-d
(ΔΛ = Σ^JC) Since μ is reversible, (13) holds for μ — a.e.ζ. An examination of the

xeΛ
bounds on ||fV-BxP,||op proved in Sect. IV and in [2] reveals that these same
bounds are valid with BΛζx = T~lVxIίΛζ'dx replacing Bχ, provided xeΛ and
the support of 1 and Γ lie in A. (The proofs of these bounds required only the deter-
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mination of the spaces containing the various terms and a bound on these terms
as functions of ξ(x) which is uniform in ξ(y) for y =f= x.) Thus we may invoke
Faris's (uniqueness) theorem or Theorem 1 for the process generated by (the closure
of) ΩA ζ and conclude that it has a unique invariant measure μΛ ζ. Furthermore
μΛ ζ is an (analytic) function of BΛ ζ, which in turn depends on ζ(y) only for yedrΛ.
Thus μΛ ζ( ) is drΛ measurable in ζ. From (13) we conclude that μ( \ S\Λ)(ζ) = μΛ ζ( ),
μ — a.e. Thus μ(-1 S\Λ) (ζ) is δryl-measurable and (14) holds a fortiori. Q

Appendix. A Sharpened Version of Theorem 1 for the Plane-Rotor Model

The restricted temperature range computed in Theorem 2 for the plane-rotor
model stems from a somewhat unnatural choice in this case of the space A(Ξ). In
fact if M = Sl (unit circle), Ξ = (Ms) is a commutative group, and the functions
defined in Eq. (A6) of Sect. IV are characters of Ξ. It is not hard to show that con-

vergence of the Laplace series £ £0, me, m I in A(Ξ) implies Σ | α, m | < oo, i.e.
1 \ m / I,m

absolute convergence of the Fourier series in the usual sense. This suggests that to
obtain a strengthened version of Theorem 2 we should use more conventional
methods (and notation) of Fourier analysis.

Let Ξ = (Sl)s and let Ξ be the character group of Ξ. Ξ is isomorphic to the
additive group of functions n: S -> Z with only finitely many non-zero values, via the
map n -> yn, where yn is the character

yn= expfi£n(x)0(x) V

In this context σ is the normalized Haar measure on Ξ. Define the Fourier coeffi-
cients of a function/eL2(Ξ, σ) by:

The series

Σ/(n)7n

then converges in L2 (Ξ, σ) to/. Let A ~(Ξ) = {/eL2 (Ξ, σ) : £ |/(n) | < oo } with norm

Finally if Γ is a bounded operator on L2 (Ξ, σ) let

= SUP Σ l^l»
where Γn, n = (yn,,Γγn)2 are the matrix elements of Γ. In this case \\\Γ\\\ is, if finite,
the operator norm of Γ as an operator on A ~(Ξ).

We are now able to state a theorem which is considerably easier to use in this
setting than Theorem 1. We continue the notational conventions adopted in the
first paragraph of Sect. III. X is a vector field with smooth coefficients satisfying
the finite-range condition and Ω = A + B = A + T'1 X-d.



376 W. D. Wick

Theorem 6. Let Ξ be the commutative group (S1)5. Assume 3α < 1 such that

for all xeS. Then the conclusions of Theorem 1 (stated with the norm \\ - \\~) follow
for the generator Ω.

Proof. Let Hn be the one-dimensional space spanned by yn so that w(n) = 1
for all n. Now the proof of Theorem 1 applies verbatim.

By exploiting the group structure of the characters we may state a corollary
which applies to more general Hamiltonians than the one defined by Eq. (1) of
Sect. IV. It is convenient to assume that H has the formal Fourier series

V (A3)
n

If we impose the condition

|n(x) |<oo (A4)

for all xeS, then the operator Bx = — T~lVxH'dx is well-defined and equals

- T-H{ΣH(n)n(x)yn}d/dθ(x). (A5)
n

We also impose the restriction

H(n) = 0 if diam supp n > r, (A6)

which implies the finite-range condition.

Corollary. Let H be defined formally by (A3) with Fourier coefficients satisfying
(A6). Assume that 3α < 1 such that

| ^αT (A7)

for all xeS. Then the closure ofΩ = Δ- T~lVH d generates a Markov semigroup
converging to equilibrium (as defined in Sect. I.)

Proof A quick calculation gives the matrix element Γn, n(x) of Bx°A~l:

Λi'iM = T~ln(xΓ lH(n' - n)(n'(x) - n(x))

if rc(x) ± 0. The bound (2) of Theorem 6 then follows from (Al) and (A 7).
D

Returning to the Hamiltonian of the usual plane-rotor model (Eq. (1) of
Sect.IV) we easily compute the Fourier coefficients: H(n) = 1/2 if supp n = (x, y}
with n(x) = 1, n(y) = - 1 #(n) = 0 for all other n. Thus

and so we have proved

Theorem 7. The stochastic plane-rotor model in v dimensions converges to equili-
brium ifT> 2v.
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