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The Inverse Scattering Transformation in the Angular
Momentum Plane

H. J. de Vega
Laboratoire de Physique Theorique et Hautes Energies*, F-75230 Paris, **France

Abstract. The inverse scattering transformation (1ST) with the angular mo-
mentum (λ) as a spectral variable turned out to be a useful method to deal with
rotationally invariant problems in field theory at higher spatial dimensions
[Refs. (1) and (2)]. We derive the direct and inverse scattering problems for the
v-dimensional radial Schrodinger equation for variable λ and fixed energy
(negative or positive). We determine the scattering data (SD) in one to one
correspondence with the potential and derive the corresponding Gelfand-
Levitan equation. A family of exactly solvable potentials for any λ and fixed
energy is obtained. The trace identities associated to this 1ST are derived for
both signs of the energy. They relate integrals of local polynomials in the poten-
tial and its derivatives times r2n~l(n ^ 1) with the SD. The presence of this
power of r makes these relations useful in higher dimensions.

I. Introduction

The applications of the inverse scattering transformation (1ST) are mainly limited
up to now to non-linear equations in one spatial dimension. We present here an
1ST to deal with rotationally invariant problems in a number of spatial dimen-
sions (v) higher than one.

We consider a linear eigenvalue equation (the radial Schrodinger equation in
the present paper) where the spectral parameter (λ) is the angular momentum. It
can be written as

Γ-4-A (1.1)

We shall choose length units such that E = 1, i.e. we work at fixed "energy".
Our interest in 1ST in the angular momentum is motivated by quantum field

theory. The scattering data (SD) of this 1ST are natural variables to express re-
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normalized functional determinants like

/ _ V 2 - £ + t;( )\
Seff - Log Det ( —_ V2 _ F ) ~ counterterms (1.2)

for rotationally invariant v(r) with t (oo) = 0. This kind of determinant appears in
the effective action of scalar field theories at the one-loop level. The 1ST in the
angular momentum is a powerful method to find saddle points as well as to study
the strong field behavior of Seff. This method allowed us to investigate the large
order behavior of the l/N series in the two-dimensional non-linear sigma model
[1] and in the ($2)% model [2]. In these models the l/N perturbation theory follows
from an effective action with the form of Eq. (1.2).

Euclidean QFT corresponds to negative E in Eq. (1.1). Positive E is found for
Minkowskian QFT when υ is time independent.

In the present paper we develop the direct and inverse scattering problems for
Eq. (1.1) when E = — 1. The case E = + 1 was considered by several authors
[3,4]. The linear problems for £ = — 1 and + 1 are very different. For £ = — 1(4-1)
waves income and outgo from the origin (the infinity). In Sect. II we introduce the
Jost solutions and Jost functions for E = — 1 and we determine the spectrum, the
orthogonality and the completeness relations. In Sect. Ill the Gelfand-Levitan
equation for this problem is derived and the scattering data (SD) in one to one
correspondence with v(r) are determined. A family of exactly solvable potentials
for any λ and fixed E is constructed from separable Gelfand-Levitan kernels.

We derive in Sect. IV the trace identities associated to the 1ST. They are an
infinite sequence of equations relating integrals of local polynomials in v(r) and its
derivatives, times r2n~l(n = 1,2, 3,...) with the scattering data (SD). The presence
of this power of r makes these relations useful in higher dimensional problems.
The name "trace-identity" is justified because one finds in the nth equation the
sum of the eigenvalues to the nth power plus the nth momentum of the continuous
SD.

In Sect. V, we summarize the 1ST for E = + 1 and we give the corresponding
trace identities. In this case there is an infinite number of discrete eigenvalues and
we find the zeta function associated to them in the trace identities [Eqs. (5.13-14)].

The 1ST presented here can be easily generalized to Dirac-type equations with
the angular momentum as a spectral parameter. In this case, integrable non-linear
systems are generated. This seems not to be the case for a second order linear
equation like (1.1) in the interval (0, oo). We shall return elsewhere to those inte-
grable non-linear systems which are rotationally invariant restrictions of higher
dimensional non-linear systems.

II. The Schrόdinger Equation at Fixed Negative Energy and Variable
Angular Momentum

The radial Schrodinger equation in v-dimensional space for fixed negative energy
(— 1) reads

- <>•»
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The dependence on v and / can be easily simplified by the introduction of

λ E = / + ̂ -l. (2.2)

Then, one gets

I - T2 + Φ) + l + λ2~~2\x(r> Λ) = ° (2 3)
L dr r2 J

Let us now define a regular solution by the boundary at r = oo

\imerφ(r,λ)= 1. (2.4)

φ(r, λ) is an entire function of λ2 because the boundary condition is independent
of λ. It is convenient to introduce Jost-type solutions by the boundary condition

Iimr-A- 1 / 2/(r,λ)=l. (2.5)

The scalar product associated to the Schrδdinger Eq. (4) is

We shall assume that

00

f r |u(r) |dr<oo (2.7)
o

and also that

v(r) = 0(r~2 + 2ε), ε>0. (2.8)

It can be easily shown that/(r, λ) is analytic in λ if Re(A) > — min (ε, 1). The two
solutions/(r, λ) and/(r, — λ) being linearly independent, we can write φ(r, λ) as

A)]. (2.9)

Here F(Λ,) is the Jost function and it is given by the Wronskian

r,λ\ f(r,λ)l (2.10)

Another expression for F(λ) is

F(λ)= lim^~7(r,λ). (2.11)
r-»oo

It follows that F(λ) is analytic for Re(/l) > — min (ε, 1) and that

F(λ*) = F(λ)*.

For the free equation (i; = 0) the solutions can be expressed in terms of cylindric
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functions

Iλ(r) (2.12)

2λΓ(λ+l).

We can write for purely imaginary λ = iτ

where D(τ) and δ(τ] are even and odd real functions of τ respectively. Then, for
small distances

φ(r, ή) = -—D(τ) sin τ ln - δ(τ) - Arg Γ(l + iτ) (2.14)
•

where In D(τ) - δ(τ) = 0 if ϋ = 0.
We see that <5(τ) is the phase-shift between free and interacting wave solutions

near r = 0 and not near infinity. These solutions form the continuous spectrum.
The discrete spectrum consists of the normalizable solutions of Eq. (2.3). There is
an eigenfunction for each real positive root λk

F(λκ) = Q, X=1,2,. . . ,M. (2.15)

It can be shown that all zeros in Re λ > 0 are simple and real. Eigenfunctions
associated to different λκ are orthogonal. Continuum solutions (λ = iτ) are ortho-
gonal to the discrete eigenfunctions. The scalar product of a pair of solutions is
easily computed from the Wronskian relation

l A l v / 2 (2.16)

In this way for the continuum solutions we get

(φ(r, iτ), φ(r, iτ')) = ~^--D(τ)2[δ(τ - τ') + δ(τ + τ')] (2.17)
τ sh πτ

and for the discrete eigenfunctions

(φ(r, λm), φ(r, λm)) = (5nm— (2.18)

— = ]~φ(r,λn)
2, (2.19)

Cn 0 Γ

This set of solutions is not only orthogonal but complete as it is shown below.
The Green's function is defined as the solution of

(r, r' 9 λ ) = δ(r - r') (2.20)
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regular both at r = 0 and r = oo . It can be expressed as

<*r,r>;λ) = rt~%*> λ\ (2.21)

For the free case (υ = 0) this gives

G0(r, r λ) = Iλ(r<)Kλ(r>). (2.22)

The completeness relation can be derived by general theorems on differential
operators [5] or by integrating G(r, r' λ) over a large closed contour on the half-
plane Re λ > 0. In this way one gets

$dλp(λ)φ(r, λ)φ(r', λ) = - J 2 dτφ(r, iτ)φ(r', iτ)
Ή o ^vτ/

+ Σ cκ<P(r, W, λκ) = r2δ(r ~ r'ί (2 23)
K=ί

For the free case Eq. (2.23) reduces to the Kantorovich-Lebedev transform [6].
A dispersion relation for F(λ) can be derived by considering the logarithm of the

function

This function is analytic and non-zero in the right-half plane and F(oo) = 1. From
a Cauchy type integral of Log V(λ) and Eq. (2. 1 3), it follows that

F(λ) ^λ-λκ Γ2A? dτ Ί
- J A 2 + τ2^W (2.24)

and

III. Gelfand Lev i tan Equations

The fundamental object in the theory of Gelfand and Levitan is a triangular kernal
K(r, r') which has the following properties:

a) 1 + K transforms free wave functions into interacting wave functions
b) K is independent of the spectral parameter.
We shall first define this kernel for our case, and then derive the relation of

K with the spectral data (Gelfand-Levitan equation). Finally we give the connec-
tion of this kernel with the potential υ(r).

We define

K(r9 r'} = ]dτpQ(ίτ)φQ(r: iτ) [φ(r, iτ) - φ0(r, iτ)] (3.1)
o
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where p0(λ) is the free measure

. τ s h π τ

The integrand in Eq. (3.1) is an entire function of λ2 = — τ2, so we can express
the kernel K(r, r') as an integral from — zoo to -f ϊ'oo in the /l-plane and then deform
the contour. One proves in this way that

JK(r,r') = 0, i fr '<r.

This implies with the aid of Eq. (2.15) that the free and interacting regular
solutions are connected by a transformation of Volterra type

φ(r9 A) = (1 + K)φQ(r, λ) = φ0(r, λ) + ] ~ K(r, rf) φ0(r', λ). (3.2)
o r

Similarly one can derive a Volterra representation of φ0 in terms of φ

K(r, r') = ldλp(λ)φ(r', A)[>0(r, λ) - φ(r, A)], (3.3)

φ0(r, A) = (1 + K}φ(r, λ) = φ(r, λ) + ]^K(r'9 r)φ(r', λ). (3.4)
r ^

The Gelfand-Levitan equations follow from Eqs. (3.2)-(3.4) and the completeness
relation (2.21). We multiply Eq. (3.4) for λ = iτ by |F(ΐτ)|~2φ(r? iτ) and Eq. (3.2)
by |F(z'τ)|~2φ0(r, iτ) and we integrate over τ2 from zero to oo. Using Eq. (3.2) for
A = λκ , we obtain the Gelfand-Levitan (GL) equation for the present case

fl{r, r ) + K(r, r) + J *K(r, s)Ω(s, r') = 0 (3.5)
r S

for r ̂  r'. Here

°(r, r') = ] Ψo(r, n)Ψo(r', Iτ

M

From Eq. (3.6) we learn which are the spectral data (SD) in the present case

We assume that the spectral data are such that

D(τ)-l = 0(τ~2) (3.8)
τ->oo

Equation (3.8) guarantees that Eq. (3.6) is Fredholm type (ΎτΩΩ+ < oo). Then it
follows by the same argument is in [7] that the solution of the GL Eq. (3.6) exists
and is unique. In the next section we shall see that Eq. (2.7) guarantees that D(τ)
satisfies Eq. (3.8).
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Let us now derive the expression for v(r) in terms of the kernel K(r, r') as well as
the partial differential equation satisfied by this kernel.

The Schrόdinger equation (2.3) can be written as the eigenvalue problem

Lχ(r,λ)=-λ2χ(r,λ) (3.9)

where L is an hermitian operation for the scalar product (2.6)

L = L0 4- r2v

/ J2 \ 1

--. (3.10)

The Volterra type operator (1 + K) verifies

or

Projection of this equation shows that if v is hermitian it must be local and

rdr\_ r

It also follows that

]κ(r, s) = 0,•TT - s2—ϊ + s2 - r2 - s2υ(s) \K(r, s) = 0, s>r.
dr ds J

When the continuum part of the SD is trivial (D(τ) = 1,0 ̂  τ < oo) the Gelfand-
Levitan equation admits a closed solution because the kernal Ω becomes degene-
rate. We find

lίK.(r') (3.12)

where W(r) is an M by M matrix with entries

»yM = ^y + ̂  J 7̂ .(̂ >) (3-13)
r

The corresponding potential results

v(r) = - 2V2 Log det W(r\ (3.14)

where V2 = —% + -— . The solution of the Schrodinger equation for this potential

and any λ follows directly by replacing K(r, r') given by Eq. (3.12) into Eq. (3.2).

IV. Trace Identities

Here we shall trace identities associated to the 1ST in the angular momentum.
Our starting point is the relation between the Fredholm determinant of the oper-
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ator (3.10) and the Jost function

F(λ)

0

(see the Appendix for a proof). This ratio is an analytic function of λ for Re(/l) >
— min (ε, 1) and it equals one at infinity. Hence

Lo%A(λ2) = Σ%nλ-n. (4.2)
n=l

We shall compute the #π in two ways : firstly in terms of v(r) and secondly from
the Jost function in terms of the SD (Eq. 2.24). For the first method we use the
relations

Log Δ(λ2} = Tr [_G(λ) - G0(A)] (4.3)

= G,(λ)-GQ(λ)r2υG(λ\

We get for the lowest order term

Tr[G0(A>2ϋG0(/l)] = - j j 2 2G0(r1,r2;λ)2v(r2)

—W2 +/A0 2)
2

_, Λ ^ l ' Λ v Z'

1 r

Using the large index behavior of the cylindric functions [6], we obtain

d , .,„„, J_

'413rLog^
2)=-τk

Higher order terms can be computed in an analogous way and we find after some
work

Log Δ(λ2) = ~]rv(r)dr - -̂  f r3dr[(t*r) + I)2 - 1] (1 + ~
.Z/l Q oΛ Q V /L

+ τΛ??^5^ i ί^l +Mr)+l) 3 -l +O(λ"7). (4.4)
16/ί 0 I2\drj J

^2n vanish for all n ̂  1.
The asymptotic expansion of log Λ(λ2) in terms of SD follows starting from the

identity [8]

where 0 < Re(z) < \ and ̂  is a contour from — 100 to + ioo closed by a large
semicircle on the right-half plane. We can express the l.h.s. of Eq. (4.5) in terms of
D(τ) and c)(τ) with the result

00 00 ,_

cos πz J dττ2z~ lδ(τ) + sin πz J dττ2z~l In D(τ) = y~Σ^ (4.6)
0 0 ^Z K
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We obtain, by analytic continuation up to integer and half-integer values of z

^τ), (4.7)

2"~2

,
where n = 1, 2, ... and we have used Eq. (4.2) and [12]. The residue at z = 0 of
Eq. (4.6) gives Levinson's theorem

<5(0+) = πM. (4.9)

The trace identities follow by expressing the ^2n__ ί in Eqs. (4.7 — 8) in terms of
the potential through Eq. (4.4). We get, for the first identities

00 Λ GO

J rv(r)dr = - 4£/lχ + - J dτ In D(τ\ (4.10)
o K π o

), (4.12)

OW. <4,4,

From the dimensionally regularized Schrδdinger determinant, it can be shown
that (&2n- 1 expresses for any n as an integral of r2n~ 1 times a local polynomial in
v(r) and its derivatives. Hence, ^2«-ilX')] corresponds to the integral of rota-
tionally invariant field configurations over a 2n-dimensional space.

V. Variable Angular Momentum at Fixed Positive Energy

We summarize in this section results on the 1ST at fixed positive energy and variable
angular momentum. The Schrόdinger equation reads in that case, after the trans-
formation (2.2)

~ + *r) - 1 + r , μ ) = 0 . (5.1)
dr r J

In this section we set μ = t + v/2 — 1.
The regular solution of Eq. (5.1) is defined by the boundary condition at r = 0

~ΐ/2φ(r,μ)=l, R e μ > 0 (5.2)
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The θ-solutions ψθ(r, μ) and ίβθ(r, μ) are defined by the boundary at r = oo

lim [>,(r, μ) - cos (r + θ)] = lim [\pe(r, μ) - sin (r + 0)] = 0. (5.3)
!*-*• oo r~+ oo

Here θ is an arbitrary real parameter 0 :§ θ < 2π. We can express φ(r, μ) as the
linear combination

<p(r, μ) = vθ(μ)ψθ(r, μ) + uθ(μ)ψθ(r, μ). (5.4)

Here ϋβ(μ) is the Jost function. It is analytic for Re μ > - ε and

ve(μ)* = υe(μ*).

The eigenvalues are given by the real zeros of vθ(μ) in Re μ > 0 [3]. It can be shown
that there are an infinite number, all real and simple

vθ(μκ) = 0, K positive integers. (5.5)

There is a continuous spectrum for purely imaginary μ.
In the free case [v(r) = 0] we find

(5.6)

The inverse scattering problem can be formulated for this case in the Gelfand-
Levitan form. For fixed θ the spectral data are

1 2 3
= ^ "'"

Here

SD = {<5,(τ),0£τ<oo;<,4,Ke,

»e(iτ) Λ , -x_H β m

(5.7)

We have derived the trace identities associated to this spectral transformation.
As in the negative energy case, the Jost function can be related to the SD and to the
Fredholm determinant Δθ(μ2) associated to Eq. (5.1).

,,Θ2

μ
02

ι

dτ (5.8)

and

Following the same procedure as in Sect. IV, we find

_ n+i °°

(5.9)

n= 1,2,3,... (5.10)
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l\s , (-iΓY Λ2?, / d V"-2,
~ Λ }^2n-ι,β + 7τ τ\τ( n~ o Γ~ J I τΛ~ τ ) 'n^e(τ/>/ ' "- ) \ Λ o V τ / (511)

L(0) = -δβ(0+). (5.12)
7Γ

Here the zeta function is defined for Re z > 0 as

(5.13)

For Rez^O, ζθ(z) is defined by analytic continuation of Eq. (5.13). Equation
(5.12) expresses Levinson's theorem for the present case.

The coefficients Λnίθ can be computed in terms of v(r) as the %>n were computed
in Sect. IV. In this way we get the trace identities which are formally identical to
Eq. (4.10-14) if the following replacements are done

r > ir

v(r) > - v(r) (5 14)

K

<5(τ),D(τ) >S,(τ),D,(τ)

VI. Final Remarks

The transformation from v(r) to the scattering data (3.7) or (5.7) is a local diffeo-
morphism. This is easily obtained by computing infinitesimal variations from the
Gelfand-Levitan equation. We find for the case E = — 1

1 =llJlΓ_lT τ s h π τ^-^lΓ 4°?τsh
-\ - -J
r[_ πQ D(τ)

_ , . .
δv(r) = -—< - - -J 3 φ(r, ιτ)2δD(τ)dτ

ά3rdr [r[_ πQ D(τ)ά

(6.1)

The inverse mapping directly follows, multiplying the preceding equation by
appropriate wave functions and integrating over r, or by perturbation theory
from Eq. (2.3). One obtains

/ κ o

δD(τ) = ] drίϋ(r)φ(r, iτ) Re Γ/(r, iφM< τ ). (6.2)

The 1ST associated to several linear problems on the real axis can be interpret-
ated as a canonical transformation [9]. That is, there exists a symplectic form in-
variant under the 1ST. Equivalently, there is a Poisson bracket which remains
unchanged under the 1ST.

This does not seem to be the case for the linear problem of the present paper
and more generally for second-order equations in a semi-infinite interval.
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We can define a Poisson bracket (PB) through

δv(r)drδv(r)

by analogy with the KdV equation. Then, canonical coordinates are

00

Q(r) = rv(r\ P(r) = j r'vfr'W
r

{Q(r1XP(r2)}=3(r1-r2).

The PB of the Jost function can be computed in a closed form with the aid of
Wronskian identities

{F(AJ, F(λ2)} = 2~~ lF(λJF(λ2\ Re(λ1>2) > 0. (6.4)
4/t1/2/2 -Γ Λ1

The PB for the SD easily follows

, I P , Iτ 2 + τ'2 1
{In D(τ\ In D(τ')} - - , 2 _ 2, [δ(τ)9 δ(τ')} = ^-r—P-n 2

{ln D(τ), δ(τ')} - ^r[<5(τ - τ') H- δ(τ + τ')] (6.5)

where P stands for principal value. Apparently, it is not possible to obtain canonical
variables from these SD. This can be related to the fact that a non-linear evolution
equation is solvable in (0 + oo) when the dispersion relation is even in the eigen-
value [10]. In our case, if we define the time evolution, taking as hamiltonian a
linear combination of the %>n and the SD as canonical variables by definition, we
find an odd dispersion law because ^2n = 0.

As a last remark, we wish to note that the linear problem (1.1) in the interval
(0, oo) can be related to a problem in the whole real axis. If we set

x = lnr

ψ(x,λ) = e-*!2ι(r,λ\ (6.6)

we get from Eq. (1.1.)

Γ " έ
This is a one-dimensional problem with an exponentially rising barrier on the right.
On the left side the potential vanishes asymptotically if we assume that Eq. (2.8)
holds.

In conclusion, the scattering problem on the angular momentum is equivalent
to a one-dimensional problem with ( — λ2) as "energy" and the following boundary
conditions on the potential

lim e~2xV(x)=l, lim V(x) = Q. (6.8)
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Appendix

The connection between the Fredholm determinant and the S-matrix can be
proved in a general context (see for example [1 1] ). We give here a simple proof. It
follows from Eqs. (4.3) and (2.21)

-^Log A(λ2) = R[G(r, r λ) - G0(r, r A)]

- lim Un
" 2F0(A)

This last integral can be performed using Eq. (2.16), with the result

d τ F(λ)

) = 5?Log w
Noting that both A(λ2) and F(λ)/F0(λ) tend to one for A = oo, we get the desired
Eq. (4.1).
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