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An Inequality for Hilbert-Schmidt Norm
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Abstract. For the absolute value | C | = ( C * C ) 1 / 2 and the Hilbert-Schmidt
norm | | C | | H S = (tr C* C) 1 / 2 of an operator C, the following inequality is
proved for any bounded linear operators A and B on a Hubert space

The corresponding inequality for two normal states φ and ψ of a von
Neumann algebra M is also proved in the following form:

Here ξ(χ) denotes the unique vector representative of a state χ in a natural
positive cone 3ft for M, and d{φ,φ) denotes the Bures distance defined as
the infimum (which is also the minimum) of the distance of vector repre-
sentatives of φ and ψ. In particular,

for any vector representatives ξ. of ψj,j = l, 2.

1. Main Results

In a study of quasi-equivalence of quasifree states of canonical commutation
relations, we have encountered the following inequality, which seems to have
an independent interest and hence we present it here as an independent article.

Theorem 1. For any two bounded linear operators A and B on a Hίlbert space H,

4-B\\HS. (1.1)

Remark. The coefficient 2 1 / 2 is the best possible for a general A and B. If A
and B are restricted to be selfadjoint, then the best coefficient is 1 instead of
2 1 / 2. (Lemma 5.2, [1].)
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The above theorem can be reformulated in the context of (non-commu-
tative) L2-space over a von Neumann algebra M. A vector ξ in a repre-
sentation space H of M is called a vector representative of a state φ of M if

φ(A) = {Aξ,ξ)

holds for all AeNl. [We have omitted the distinction between the repre-
sentative operator, say π(A), and A itself.] In a standard representation space of
M obtained from a normal semifinite faithful weight φ0 of M by Gelfand-
Naimark-Segal-(GNS) construction, the closure of vectors A1/4'η(x) with xeM,
x^O, φ 0 (x 2 )<oo, is called the natural positive cone and denoted by ^ \ where
η(x) is the GNS-representative vector of XEM. Any normal state φ of M has a
unique vector representative ξ(φ) belonging to 0^. (For example, Theorem 6,

[2].)
The infimum of the distance H^— ξ2ll fc>r vector representatives ξ. of

normal states φ. (/=1,2) of M (infimum taken over all possible representation
spaces of M as well as over all possible representative vectors in the space) is
called the Bures distance of φx and φ2 and denoted by d(φί, φ2).

Theorem 2. For any two normal states φγ and φ2 o/M,

φ2). (1.2)

2. Proof of Theorem 1 for Hilbert-Schmidt Class Operators

In this section, we prove (1.1) for A and B in the Hilbert-Schmidt class. This
result will be used afterwards for the proof of the general case.

For two operators R and S in the Hilbert-Schmidt class, we obtain the
following by Schwartz inequality:

By applying this twice, we obtain the following inequality for X and Y in the
Hilbert-Schmidt class and a bounded linear operator Q satisfying X^O, Y^O
and IIQH^l

\ = 4\tr{Yι/2QX1/2){X1/2 Yil2)\

= 2tϊYQXQ*+2tτXY

Let A = U\A\ and B=V\B\ be the polar decompositions of A and B. By
using the above inequality for X = \A\, Y =\B\ and Q = K*C/5 we obtain

= tr(\A\-\B\)2=\\\A\-\B\\\2

m.
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3. Proof of Theorem 2

This is almost exactly the same as the preceding proof. Let QeM and
Let s(φ) denote the support projection of a state φ of M, j(x) = JxJ, J be the
modular conjugation associated with the positive natural cone 0^ and Aψφ be
the relative modular operator of two states φ and φ defined by (for example)

Atf(xξ(φ) + V-J(s(φ)))Ψ) = Mφ)x*ξ(Ψ), (3-1)

where ξ( ) denotes the vector representative of a state in 0^, x runs over M, Ψ
runs over the space H, and Δ\j2 is the closure of the operator defined by (3.J)
and is positive selfadjoint with its square defining Δψφ.

Since Mξ(φ)=j(s{φ))H and JΨ= Ψ for any Ψe0>\ we obtain

4\(Qξ(φ),ξ(ψ))\=4\(j(s(φ))Qξ(φ),Jξ(φ))\

= 4\(Qξ(<p),Js(φ)ξ(ψ))\ (antiunitarity of J and J2 = l)

= A\{Qξ{φ),Δ^ξ{φ))\ (by (3.1))

= 2 {Js(φ) Q* ξ(φ), Qξ(φ)) + (Js(φ) ξ(ψ)

S\\Js(φ)Q*ξ(φ)\\2+\\Qξ(φ)\\2 + 2(j(

ί\\Js(φ)Q*\\2\\ξ(ψ)\\2+\\Q\\2\\ξ(φ)\\

where we have used (ξ(φ), ξ(ιj/)) = {ξ{ψ), ξ(φ)) (^0) in the last line.
If ξ1 and ξ2 are vector representatives of φ1 and φ2, then there exist partial

unitaries Uj in M' such that ξ,j=ujξ{φJ) (j=l,2). We obtain from the above
inequality for Q=j(u^u2)*eM the following:

= (ξ(φi),Q*ξ(φ2))

[by Jξ(φj) = ξ{φj) and J 2 = l ] . Noting that \\ξj\\2 = \\ξ(φj)\\2 = φj(l), we obtain

h||^!|2-2Re(ξ2,ξ1))

\\2+\\ξ(φ2)\\2-:

4. Proof of a Weaker Version of Theorem 1

For an approximation argument, we need the following:

Proposition. // lim ||Xπ||HS = 0, then
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\im\\\A+Kn\~\A\\\m = O
Π-+OO

for any bounded linear operator A.

For this purpose, we shall prove a weaker version of Theorem 1 where the
coefficient 2 1 / 2 is replaced by a larger number. (It then proves the above
Proposition if we set B =

Lemma 1. Let A be a bounded positive definite selfadjoint operator and K be in
the Hubert Schmidt class, both acting on a separable Hubert space H. Then there
exists a selfadjoint operator C in the Hilbert-Schmidt class such that

AC+CA = K*A + AK, (4.1)

(4.2)

(4.3)

| | ImK| | H S , (4.4)

where 2ReK = K + K*9 2iImK = K-K*.

Proof. We first prove the case where A has a pure point spectrum. Let
00

A=Σ λίEί with Ef=E{ = Ef, dimE. = 1 (degeneracy of λ's allowed), EiLEj (i*;)

a n d ^ O . Let ψ.eE^ and ||¥[|| = 1. Let Kίj = (KΨp ΨJ and

= (Re K)tj + i{λt + λj) ~ι (A. - λj) (Im K)ij9 (4.5)

where Ktj is the complex conjugate of Kij9 (RQK)ij = (ί/2)(Kij + Kji) and

(ImK^ilβήiKij-Kji). We then obtain Ctj = ~C^ and

Hence, there exists a selfadjoint operator C in the Hilbert-Schmidt class such
that Cij = (CΨj,Ψi) and (4.2) is satisfied. (Because A is assumed to be positive
definite, ZΈ. = 1.) Then we obtain (4.3) by the following computation

| | C | | H S ^ | | C - R e X | | H S + | | R e X | | H S

U/2

From (4.5), (4.1) is checked for ψ= ψ. and Φ=Ψj and hence for all Φ and Ψ.
To prove (4.4), we use the following inequality:

(4.6)
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In addition, we have

. (4.7)

Therefore we obtain (4.4). [Actually, (2 + 21/2) in (4.4) can be easily improved to
(1 + 51'2).]

We now consider the general case. By a result of von Neumann [3], there
exist for any ε > 0 a selfadjoint operator Lε in the Hilbert-Schmidt class and a
selfadjoint operator Bε with a pure point spectrum such that A = Bε + Lε — 2ε
and | | L J H S < ε . For this Bε and K, let Cε be the operator C constructed above.
Then | |C ε | | H S ^2 1 / 2 | |X | | H S and Bε^ε. Hence there exists a weak accumulation
point C of Cε as ε^O in the Hubert space of the Hilbert-Schmidt operators
(with the inner product <C 1 ? C 2 > = t r Cf Cx). Due to the reality of trDC for all
D=D*, C is selfadjoint. Since

(BBΦ,KΨ) + (KΦ, BεΨ) = (CεΦ9BεΨ) + (BεΦ, CεΨ)

holds for all Φ and ψ9 and since BεΦ and BεΨ tend strongly to AΦ and AΨ,
respectively, we obtain the same relation for A, K and C, which shows (4.1).
From (4.2), (4.3) and the estimate (4.4) for Cε, the same inequalities hold for the
weak accumulation point C and hence (4.2), (4.3) and (4.4) holds for this C.

Remark. Suppose that ker^4=0. From (4.1), it follows that

C = ReK + i$(λ + λ')-1(λ-λ')dE(λ)(lmK)dE(λ')9 (4.8)

where A = jλdE(λ). Since C is uniquely determined, Cε actually converges to C
in this case.

Other inequalities we need are the following: For A*=A and B*=B,

I I I A I - I B I I I H S ^ M - B H H S . (4.9)

This is given in Lemma 5.2, [1]. For positive selfadjoint A and B,

M-B||έs^M2-fl2 | | t Γ. (4 1 0)

This is given in Lemma 4.1, [4].
We now prove a weaker version of Theorem 1. First consider the case

where A is positive. Let K = B — A. If iC is not in the Hilbert-Schmidt class, the
inequality holds for the trivial reason that the right hand side is + oo. If K is in
the Hilbert-Schmidt class, then use C given in Lemma 1. We obtain

\B\=((A + K)*(A + K))1/2 = {(A + C)2 + (K*K- C2)}1'2.

Hence by (4.9) and (4.10) we obtain

A\\m, (4.11)

where β may be taken to be 2 1 / 2 + (2 + 2 1 / 2 ) 1 / 2 .
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Now we consider the general case. Let F be the projection operator on
(Ranged) 1. We assume that B — A=K is in the Hilbert-Schmidt class. Then
F{B-A) = FB is in the Hilbert-Schmidt class with \\FB\\mS\\B-Λ\\HS.

Let Λ = U\Λ\ be the polar decomposition of A. We have UU* = 1 -E Then

where we have used (4.10), \B\2-\(1-F)B\2 = \FB\2 and (4.11).

5. Proof of Theorem 1

Lemma 2. // K is a Hilbert-Schmidt class operator and a sequence of bounded
linear operators Qn tends to Q strongly, then

l i m | ! ( β n - 0 K | | H S = O, \im\\K(Q*n-Q*)\\HS = 0.
n n

Proof Since the sequence Qn has a strong limit, sup | | β j | ~q is finite. For any
ε>0, there exists a finite rank operator Kε such that \\K — K J H S < ε . Since the
range of Kε has a finite dimension, there exists Nε such that for n>Nε

| | ( β π - β ) | RangeKε\\<ε.

Then for n>Nε, we obtain

\\Kε\\m

This proves the first relation in Lemma 2. The second follows from the first

by l |X(β?-β*) l lHs=l l (βn-β)^ΊI H s .

Proof of Theorem 1. We first consider the case where ,4^0 and A has a pure
oo

point spectrum and hence A= ]Γ λiEi with E^Ej (ίή=j) and d i m i s ^ l . Let B

= A+K with | |K | | H s <co. Let Fn= Σ Et. By the special case of Theorem 1
i= 1

proved in Sect. 2, we obtain

\\\A+FnKFn\-A\\ns=\\\FnA+FnKFn\-FnA\\HS

S2^2\\FnKFn\\m.

Since FnKFn-K = (FnK-K) + Fn(KFn-K) and \imFn= 1, we have

\ιm\\FnKFn-K\\m = V

by Lemma 2. By Proposition, we have
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Hence by the same proposition,

1/ 2 1 / 2 . (5.1)

Next, we consider the case where yl^O but A may have an arbitrary

(bounded) spectrum. By the von Neumann approximation theorem and Pro-

position, (5.1) for this case follows from (5.1) for a positive A with a pure point

spectrum.

Note that if 4 ^ 0 , A=Bε + Kε, Bf=Bε and F is the spectral projection of

Bε for ( - o o , 0 ) , then 0 ^ -BεF = FKεF-FAF^FKεF, -BεF

= (KFεF)ll2Q(KFεK)ί/2 for | | β | | ^ l , \\BεF\\HSS \\Kε\\HS and hence we may as-

sume Bε^0 by including FBεF in Kε.

If Range A — H, then the method of proof at the end of the preceding

section works with F = 0 and (1.1), for such a case follows from (1.1) for the

case of a positive A just proved.

Finally we consider a general case. Let u be an isometry with l—uu*

having an infinite dimension. Since \Bu*\2 = u\B\2u* and \Au*\2 = u\A\2u*, we

have

\\\Bu^-\Au^\\HS=\\u(\B\-\A\)^\\HS=\\\B\-\A\\\us, (5.2)

where we have used w*w = l. In the same way

\\Bu*-Au*\\HS=\\B-A\\m. (5-3)

Let v be a partial isometry such that υ* υ^\—uu* and Ranges

= (Range Au*)1. Let Lε be an operator such that Lε = L*ε, Range Lε = Range v

and | | L J H S < ε for ε>0. Let Aε = Au*+Lεv. Then Range Aε = H, and hence we

may use (1.1) for the pair Bu* and AE (instead of B and A) to obtain

\\\Bu*\-\Aε\\\Hs^2ll2\\Bu*-Aε\\HS. (5-4)

As ε ^ 0 , we obtain \\Aε — ,4w*||HS->0. By Proposition, (5.4) implies

By (5.2) and (5.3), we obtain (1.1) for the general case.

Acknowledgement. The authors would like to thank Professor T. Ando for critical reading of the
manuscript.

Note added in proof. A. Kishimoto kindly pointed out the following simplification of the proof in
Sects. 4 and 5: It is easy to prove that if Tn^T strongly, then ||Γ||H_s_^Mm | |TJ H . s . . If B = BE + L
with | | L | | H S <oo and a pure point spectrum for Bε and K=Λ— B is in the H.S. class, then

and the strong limit of the operator difference is \A\ -\B\. Hence the desired conclusion follows.
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