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Abstract. For a stochastic operator U on an L -space, ie. U is linear,
positive, and norm preserving on the positive cone of L, it is shown that
U decreases relative information between two nonnegative L,-functions.
Furthermore it is shown that the following properties of U are closely
related: U is energy decreasing (energy preserving), U is H-decreasing,
where H is Boltzmann’s H-functional, and the Maxwell distributions are
fixed points of U.

The aim of this note is to prove some properties of stochastic operators on L;-
spaces. In Sect. 1 we show that a stochastic operator decreases relative
information between two nonnegative L, -functions. Such a property was
known for special cases.

In Sect. 2 we show that, for a stochastic operator U, certain properties are
equivalent. If o is a function on the measure space defining the energy and H
is Boltzmann’s H-functional, then, for instance, it is shown that U is energy
decreasing and H-decreasing if and only if all “Maxwell distributions”
exp(—xko) (k=1) are invariant under U. These properties are also equivalent to
the property that U is energy preserving and leaves one “Maxwell distribution”
exp(—o) fixed.

In [13], the author proves the H-theorem for Boltzmann type equations v’
=Tu+J(u) in L,(u), for some measure space (£, .o, ). The required conditions
are posed in abstract form on the strongly continuous semigroup (U (¢); t=0)
of “free motion™ generated by T, and on the “collision operator” J separately.
In applications, U(t) should be expected to be a stochastic operator for each
t=0. As a consequence of Theorem 2.1 and Proposition 2.5, one can obtain
relations between some of the conditions for (U (z)); this is discussed in [13,
remarks preceding Proposition 3.1]. As an example we consider Q=D x R,
where D<IR? is open (and has suitable boundary), p is Lebesgue measure, and
T is an operator associated with the differential expression —¢-grad, and a
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suitable boundary condition. The corresponding initial boundary value prob-
lem in L,(u) is treated in [14]. With « defined by a(x,&):=1+|¢* (xeD,
&eR?), the problem to find boundary conditions such that the corresponding
semigroup satisfies the conditions required in [13] is discussed in [14, Sect. 9].
In this discussion, the equivalence of the conditions in Theorem 2.1 suggests
that only rather restricted boundary conditions come into question.

The author is indebted to H. Spohn for suggesting Theorem 1.1.

1. A Convexity Theorem

Let (©, .97, 1) be a measure space. By L, (1) we denote the space of real valued
integrable functions, by L,;(u).:={feL,(w); f=0} its positive cone. For
fige L (1), we define the information of f with respect to g by

H(flg):=[(fInf~fIng)du. (1.1

(We set 0In0=0, xIn0= —co for x>0.) For the introduction of this quantity
we refer to [5]. The following remarks recall that we always have
— oo <H(f]g)< 0. The elementary inequality

xInx—x=xlny—y (1.2)

(x,y=0) implies f(w)Inf(w)—f(w)Ing(w)—f(w)+gw)z0 (we®), H(fIg)=| /|
—llgl> —oo. If in particular || f]=]gll, then H(f]g)=0. Furthermore, since
equality in (1.2) holds if and only if x=y, we obtain H(f|g)=Ifll—lgll if and
only if f=g.

Let (@, o/, 1,), i=1,2, be measure spaces, and U: L,(u,)— L,(1,) a linear
operator. U is called positive if U(L,(u;),)<=L,(¢,),. (This implies that U is
continuous; cf. [11, II, Theorem 5.3, p. 84]) U is called stochastic if U is
positive and [[Uf|l=|f| holds for all feL,(u,), (cf. [11, III, Def. 8.8, p. 1917;
in [4, Def. 11.7.4, p. 353], such operators are called transition operators). We
note that, for a stochastic operator U, we have ( Ufdu,=lUf"I— US|

=11 =lf~lI=]fdp, for all feL,(u,).

1.1. Theorem. Let (Q,, ,, 1), i=1,2, be measure spaces. Let U: L (u)— L{(1,)
be a stochastic operator. Then

H(UfIUg)=H(flg) (1.3)
holds for all f,ge L (u,),.

1.2. Remark. A statement similar to Theorem 1.1, for completely positive trace-
preserving maps on the trace class operators on a Hilbert space, can be found
in [6]; cf. also [12]. For special situations, Theorem 1.1 is known. We refer to
[5, Chap. 2, Theorem 4.1, p. 19] for the case that U is the operator forming
conditional expectations, and to [7, Sect. 2.3], where our Corollary 1.5 is
proved if (Q, o7, u) is a discrete finite measure space. [
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1.3. Lemma. Let (2,9, 1t) be a measure space. Then there exists a compact
Hausdorff space S and an isometric algebra isomorphism J: L (1t)— C(S) (L (1)
and C(S) real valued). If I=I<R, and y: I >R is continuous, and feL_(u) is
such that u({weQ; f(w)¢1})=0, then

J(yof)=velJf) (1.4)

Proof. Since the complex valued L_(u;C) is a commutative B*-algebra with
unit (cf. [4, Definition 1.15.3, p. 22]), there exists a compact Hausdorff space S,
and an isometric B*-algebra isomorphism J: L_ (1; C)— C(S; C) (cf. [4, Theo-
rem 4.22.1, p. 157]). Then J:=J|L_ (¢ has the asserted properties.

If AeR\I, then A1—f is invertible in L (u), therefore A1—Jf is invertible
in C(S), and this implies Jf(s)*4 for all seS. Without restriction we may
assume that I is compact. Then there exists a sequence of polynomials (p,;
keN) such that max {|p,(t)—7(@); tel}—0 (k— oc). Now, p,of—7yofin L (1),
pod f—yeldf and J(peof)=p,°(J f) (keN) imply (1.4). [J

For the validity of (1.4) in a related sitvation we refer to [3, Theorem
4.6.18, p. 274].

1.4. Lemma. Let S, S, be compact Hausdorff spaces. Let R: C(S;)— C(S,) be a
positive linear operator, R1=1. Let I=I <R be an interval, y: I - R continuous
and convex. If o € C(S,) is such that ¢(S;)<1, then Ro(S,)<I, and

7o (R@)=R(yo ¢). (1.5)

Proof. Let seS,. Then a positive linear functional R, on C(S,) is defined by
R,@:=(Rop)(s) (¢eC(S,)), and, by the Riesz representation theorem, there
exists a positive Borel measure u, on S, such that [@du,=R,¢ (pe C(S,)) (cf.
[10, Theorem 2.14, p. 407]). By R,(1)=1, we have u(S,)=1. Jensen’s inequality
(cf. [10, Theorem 3.3, p. 61]) now implies (| o du)<|(y° ¢)dp,, which can be
written as Y(R@(s) SR(yeo ¢)(s). Since this is true for all seS,, we have
(1.5. O

Proof of Theorem 1.1. We define the function y: [0, c0)— R by y(t):=tInt (recall
0In0=0). y is continuous and convex. Furthermore we note that, for ¢, 20,
t,>0, we have
t
7 (t—1)=tI In¢, —¢t;Int,. (1.6)
2
(i) In the first step we are going to prove (1.3) under the additional
assumption that there is ¢>0 such that f<cg Let geL,(u,), be fixed, and
define Qy:={w,eQ,; Ug(w,)*+0}. We define a linear operator R': L (u,)
— L (1,]€;) by
1
Ro:=—U(pg).
? =g (¢g)
Then we have R'¢=0 for ¢=0, R'1=1. Let J;: L (u)— C(S,), J,:
L (n,]1€25)— C(S,) be the algebra isomorphisms whose existence was shown in
Lemma 1.3. Then the operator R:=J,R'J[ ' obviously has the properties
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required in Lemma 1.4.
R
Lo (pty) ==L (1,]€2)

!/11 J]z
C(S)——>C(5,)
For ¢eL,(u;), we have J;9=0, and Lemma 1.4 implies 7yo(RJ,¢)

SR(yeJyo), or yo(LR9)SJ,R I (o, ). Applying J; ' and using (1.4),
we obtain yo (R'@)<R'(y° o),

o
ol

Now let feL,(u,), be such that there exists ¢>0 such that /' < cg. Then there
exists ¢ e L (1,), such that f=¢g, and for each ¢ with these properties we
have (yoe@)g=fInf— fln g.[This is trivial for those w, € Q, for which g(w,)=0
holds; otherwise it follows from (1.6).] From (1.7) we therefore obtain

1
)gﬁgumwwﬂ
(1.7)

))) U9

UflnUf—Ufln Ug<U(fInf — fln g) (1.8)

on €,, where we have transformed the expression resulting on the left hand
side with the aid of (1.6). From flnf—flng=(yop)g we obtain |[fInf
—flng|l=|ve@l g which implies U(fInf—f1lng)|2,\Q,=0. Since we also
have Uf|Q,\Q,=0=Ug|Q,\Q,, we obtain (1.8) on all of Q,. Now, integrat-
ing (1.8), we obtain

H(UflUg)égj U(finf —flng)du,=H(f|g).

(i) In this step we assume f|[g=0]=0 p,-almost everywhere. Defining
fi=fnkg (keN), we have f,<f,., (keN), fy—f in L,(u,), and from part (i)
we obtain

H(Ufi|Ug)=H(filg)- (1.9)

If H(f|g)=o00, then (1.3) is trivially true. Assume now H{(f]g)<oco. We
define Q:=[f=g], Q/:=[f>g]. Then we have (fInf,—f,1ng)|Q\=(fInf
—fIng)|Q; (keN). For we Q] we have

AG

o (k—> o0).

0=/c(w) In fy(w) = fi(w) In g (W) =f,(w) In

B o f?

)
w)
The dominated convergence theorem therefore implies

H(f|g)=lm H(f,|g) (1.10)
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As an increasing sequence, the sequence (Uf,) converges to Uf u,-almost
everywhere. From (1.2) we obtain Uf,InUf,—Uf,InUg—Uf,+Ug=0, and
therefore Fatou’s lemma implies

H(UfIUg) = IUf I+ Ugll <liminf (H(U f,| Ug)— U £ + [ U glD),
HUf|Ug)Sliminf H(Uf,|Ug).

From (1.9), (1.10), (1.11) we obtain (1.3).

(iii) If the assumption made in (ii) is not satisfied, i.e. if pu, ({weQ,; g(w)=0,
SwW)£0})>0, then H(f|g)=oc0, from the definition, and (1.3) is trivially
satisfied. [

Theorem 1.1 becomes especially interesting if the “reference quantity” g is a
fixed point of U.

1.5. Corollary. Let (Q,.97,1) be a measure space. Let U: L,(n)— L,(1) be a
stochastic operator. Let ge L (1), be a fixed point of U (ie. Ug=g). Then, for
all feL ()., one has

HUflg)<H(fg). (1.12)

Proof. This is a trivial consequence of Theorem 1.1. [

We now fix the measure space (Q, </, p). Furthermore, we assume that a
measurable function o: Q—[o,, co0) (for some a,>0) is given. The L;-norm in
L, (o) will be denoted by | - ||,. We shall always assume the condition

(1) exp(—a)eL; (W

[where exp(—o)(w):=exp(—a(w))(weQ)]. For feL,(xp), we define the nega-
tive entropy of f by
H(f):=|fInfdu. (1.13)

We note that always — oo < H(f) < co, because of

H(f)=H(flexp (=)= [/, (1.14)

1.6. Corollary. Let («1) be satisfied. Let U: L,(1n)— L,(u) be a stochastic opera-
tor. Assume that exp(—a) is a fixed point of U.

(@) Then HUN+NUSN,=H)+Ifll, for all feL,(xp), such that
UfeL,(op).

(©) If feL(aw), is such that UfeL (op) and [UfI,2Ifl,, then
H(U )< H(f) holds.

Proof. This follows from Corollary 1.5 and (1.14). []

2. Properties of H-Decreasing Stochastic Operators

In this section, we fix the measure space (Q2,/,u). As in Sect. 1, let o:
Q—[o,, 0) (for some o,>0) be a measurable function satisfying (a1).
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We define the o-algebra o7 :={a"'(B); B<[0,00) Borel set}jc/ on Q.
ule/, is o-finite, since the sequence A;:={weQ; a(w)<j} (jeN) satisfies
Ajed,, Q= UA;’ nA )<e’|]exp( oc)l)<oo For feL, (1) we define the signed
measure g, on o/, by u(4):={fdu(Aes/,). Then u; is absolutely continuous

A
with respect to u|.«Z,, and the Radon-Nikodym theorem implies the existence
of a unique M, fe L, (u|«,) such that

iMufdu=£fd# 2.1)

holds for all Ae, (cf. [10, Theorem 6.9, p. 122 as well as the remarks on p.
124]). M, is the operator which, to each feL,(u), assigns the conditional
expectation with respect to <,. The operator M,: L, (¢)— L, (u|-,) is stochastic.
If L,(u]o2,) is canonically embedded in L,(u), and, accordingly, M, is consid-
ered as an operator in L, (1), then M2 =M, holds.

2.1. Theorem. Let (x1) be satisfied. Let U: L,()— L, (1) be a stochastic opera-
tor. Then the following statements are equivalent:

(@) UL (@@w)=L (), and |Ufl,=fll., HUS)SH(f) for all feL,(xp),.

(b) exp(—«ua) is a fixed point of U for all k=1 (or equivalently, for all k>0
such that exp(—xo)e L, (u)).

(c) Uf=f forall feL,(u|«) (or expressed differently, UM =M, ).

(d UM,=M =M,U.

©) ULyep)=L,@p), [Uf1,=1/, for all feL,(u),, and exp(—a) is a
fixed point of U.

We note that, if x>0 is such that exp(—x'o0)eL,(n), then exp(—«xo)
eL (xp) for all x>«'. Therefore (xl) implies exp(—ka)eL,(ap) for all
K>1.

For the proof of Theorem 2.1 we need some preparation.

2.2. Lemma (“Lemma of Gibbs”). Let exp(—o)eL,(op), and assume that
feL (o), satisfies

Ifizllexp(=0)l, [fl,=llexp(=0)l,, H(f)=H(exp(—a)).
Then f = exp(—o).
Proof (compare [2, p. 25], [8, p. 5497]). The assumptions imply

0=/l —llexp (=) S H(flexp(—a)=H(f)+ | fll,< H(exp(— )+ llexp (—a)ll,
=H (exp (—u)|exp(—a)) =0,
thus H(flexp(—a)=|f] —|lexp (— )|/, which implies f=exp(—a). [

2.3. Lemma. Let («1) be satisfied. Then the set {exp(—x«ua); k=1} is total in
L,(n|) (i.e. the linear span of {...} is dense).

Proof. On the g-algebra o/’ of Borel sets of [0, 00) we define the image u' of u
under o, ' (B):=u(e"*(B)) (Be«). Obviously u'(B)< o for each compact set



Stochastic Operators, Information, and Entropy 37

Bc [0, 00). The operator J: L,(u)— L,(u|<Z,), Jf':=f"oa(f €L, (), defines an
isometric isomorphism (cf. [9, Chap. 15.2, Proposition 1, p. 318]).

For k=1 we define f,: [0,00) > R, f/(t):=e*". Then f,oa=exp(—xe), and
therefore f,e L, (). Now, the assertion is equivalent to the statement that {f;
k>1} is total in L, (u'); we are going to prove the latter statement.

Because of fieL,(¢),, W':=f{i' is an integrable measure on [0, ). The
operator J': L, (W)— L, ("), J' f'(t):=€'f"(t) (t=0), is an isometric isomorphism,
and we have J'f.=f., where f/'(f):=e~* D" (t20), for all k=1. So it remains
to show that A:=[f; kx=1] (=linear subspace of L,(1") generated by {f.’;
k=1}) is dense in L, (4"). Obviously, 4 is a subalgebra of C([0, o0]) (=space of
continuous functions on [0, co) converging at cc), and A separates the points of
[0,00] and contains the function 1=f]". Therefore, A is ||, -dense in
C([0, 00]), by the Stone-Weierstrass theorem ([1, Chap. X, Sect. 4.2, Theorem
3, p. 36]). Because of p”([0,00])<o00, (C([0,0]), |- [le)=(Ly(w"), - ) exists
and is continuous, and C([0,0]) is dense in L,(u”). This shows that A is
dense in L, (¢"). O

24. Lemma. Let (x1) be satisfied. If feL,(xp), then we have M,feL (ap),
M, (of)=aM,f. Further, if feL (1), and M, feL,(au), then fe L, (ou).

Proof. The bounded .« -measurable function «~' can be approximated uni-

formly by a sequence (¢,) of 7 -simple functions. The obvious equalities &, M, f
=M,(&,f) (neN) imply o' M, f=M,(a""f) (feL,(u)). If fe L (ap), then M,f
=M, tof)=a""M,(of) implies the first assertion. To show the second
assertion, let y, be the indicator function of the set {weQ; a(w)<n} (neNN).
Then M, (. f)=tM.f; [ iu(ef)du=[oM,(f)du=] 1, oM, fdp— [eM,fdu,
and afeL, () follows from the monotone convergence theorem. [

Proof of Theorem 2.1. (a) = (b). Let ' >0 be such that exp(—«'a«)e L, (1), and
let k>x'. Then exp(—xa)e L, (ap). If, in Lemma 2.2, o is replaced by xo, then
for fi=Uexp(—xa) the assumptiong are satisfied, and f=exp(—xo) follows.
From exp(—xa)—exp(—«'a) (k—k'+) we obtain U exp(—x'o)=exp (—x' ).

(b) = (c). From Uexp(—«ka)=exp(—«a) (k=1) and Lemma 2.3 we obtain
Uf=f for all feL,(u|.<Z,).

(c) = (d). First we show that feL,(y),, AesZ,, f|[ A=0 implies Uf|[ A
=0. If p(A)<oo, then y,eL,(u|,), f=lim(f Ajy,), Uf=limU (fAjy,), and
from OSU(f A jx)SU(Gx)=jxs (j€N) we obtain Uf|[A=0. In the case
p#(A)=oo there exists an increasing sequence (4,) in <7,, UAJ:A, KA <o
(jeN). We have f=limy, f, and from U(XAJf)lﬁA=0 and Uf=limU(y, f)
we obtain Uf|[ 4=0.

Now, let feL,(u). If A€/, then the fact shown in the preceding paragraph
implies %, U(xaf)=U(af), (1—x) UL —x)f)=U(1—x4)f), which in turn
implies x4 Uf=x,U(xaf)+ 1 U(1 =20 )=U sl

FUfdp=§ UGaf)du= | yafdu= | fdu
A Q Q A

Since this equality holds for all Ae.«/,, the definition of M, implies M, f
=M, Uf. This shows M, =M, U.
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(d) = (e). If feL,(op), then M, Uf* =M, f*eL,(ap) implies Uf e L, (oep),
by Lemma 2.4. For feL,(ap),, Lemma 2.4 implies

IS L= leUf =M U= llaMUf ] = oM, [l =M )l = lof | =111,

From exp(—a)e L, (u|.«Z,) we obtain Uexp(—a)=UM,exp(—a)=M,exp(—o)
=exp(—o).
(e) = (a). This was proved in Corollary 1.6(b). [

2.5. Proposition. Assume that
(2) exp(—xa)eL, (1) forall k>0

holds. Let U: L,(u)— L,(n) be a stochastic operator satisfying one (and there-
fore all) of the conditions of Theorem 2.1. Then |Uf|| Z|fl holds for all
JeLi(wn Ly (w.

Proof. Let feL,(u) N L, (1), without restriction f=0 and |f||,=1. Let fi:=f
nexp(—o/k) (keN). Then f,/f (k— o) in L,(u). This implies Uf, ~Uf in
L,(w), in particular Uf,— Uf p-almost everywhere. From (b) of Theorem 2.1
we have Uf,<Uexp(—a/k)=exp(—o/k)=1, |Ufll=1 (keN). This implies
IUfles1 O
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