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Abstract. A one parameter family of piecewise linear measure preserving
transformations of a torus which can be viewed as a perturbation of the twist
mapping is introduced. Theorems on their ergodic properties for an infinite set
of parameters are proved. For some parameters coexistence of stochastic and
integrable behaviour is obtained.

Introduction

The celebrated theorem of Kolmogorov (KAM theory) on the conservation of
quasiperiodic motions in classical dynamical systems gave rise to the problem of
ergodic properties in the regions where invariant tori are destroyed. Since that
time no examples were provided in which the situation could be clarified. Katok
[1] gave a construction of a smooth Bernoulli diffeomorphism on the two-
dimensional disc which is equal to the identity on the boundary. Hence this
transformation can be sewed together with whatever one likes. It proves that in
principle quasiperiodic motions and the Bernoulli component can coexist in a
smooth dynamical system.

In this paper we give an example of a one parameter family of transformations
of a two-dimensional torus for which the coexistence of stochastic and integrable
behaviour can be proved for an infinite set of parameters. All transformations are
piecewise linear (with two pieces) and hence are not smooth. This family can be
viewed as a perturbation of an integrable system - the twist mapping (considered
on the torus and not on an annulus as usual). So our example is to some extent
given a priori.

The technique used for proving stochastic behaviour is much the same as in
[2]. By stochastic behaviour we mean almost hyperbolicity: the existence almost
everywhere (in some domain) of local expanding and contracting fibres which form
absolutely continuous foliations. By classical methods this allows us to prove that
the domain consists of sets of positive measure on which some power of the
transformation is a K-system. Actually in our case the methods of Ornstein can be

0010-3616/81/0080/0453/S02.40



454 M. Wojtkowski

applied to prove that it is Bernoulli [3]. Ergodicity cannot be obtained from
general considerations and we are able to prove it only in some cases.

It turns out that the analysis of ergodic properties should be started from "big"
perturbations. In [2] it was proved that for a wide class of "big" piecewise linear
perturbations of the twist map the whole system exibits stochastic behaviour. A
similar result was obtained much earlier by Oseledec ([4, 5]), but to my know-
ledge, the details of his results remained unpublished. In this paper we take smaller
perturbations and study the appearance of islands of periodic (quasiperiodic)
motions. These islands persist for whole intervals of parameters (even up to the
twist mapping). We are able to prove the presence of stochastic behaviour only
for a sequence of parameters. Moreover it seems quite possible that there is a
large set of parameters for which the metric entropy of the system is zero.

Although this work is purely analytical, computer experiments played an
important role in the investigation. These calculations were done by Marek
Soltykiewicz whom the author thanks warmly.

1. Description of the Family of Transformations

Let ΊΓ2 be a two-dimensional torus with coordinates (φ χ ,φ 2 )modl . Let us
consider the twist mapping Fx :TΓ2->TΓ2, Fί(φvφ2) = (φι +φ2,φ2) and the map-
ping F2 : T 2 - > T 2 defined by F2(φί,φ2) = (φvφ2 + εf(φί)) where ε e R a n d / i s the

real function / ( ί ) = | ^ -

Both Fγ and F2 preserve the Lebesgue measure άφγ dψ2. The object of our
study will be the family of transformations Fε>N = F2oF^. We will consider their
ergodic properties with respect to the Lebesgue measure. This family can be
treated as a perturbation of the twist mapping F1^.

We introduce the change of variables

X1=φί,x2 = φί+Nφ2.

In these variables F8fN is equal to TA, TA(x1,x2) = (x2, —x1 + 2x2 + Af(x2)) where
A = sN. More precisely the above formulas define a good change of variables on
IR2 but not on T 2 . On T 2 we have only that Fε>N covers N to one TA and conjugacy
takes place only for JV= 1. However the almost hyperbolic structure of TA lifts to a
similar structure for FEtN, and this allows us to deduce properties of Fε>N from
those of TA. We will not do it explicitly and restrict ourselves to the study of TA.

Let S : ΊΓ2->T2 denote the transformation S(xl9x2) = (x2,xί). Then one checks
that S^T^S^T^1. This symmetry relation simplifies the investigation of TA. It is
called S-reversibility (cf. [6]). It is worth mentioning that it holds for arbitrary /.
TA and T_A are the same up to a change of variables so we assume A>0.

We will consider the following fundamental domain in the coordinate plane

(xί9x2) {(x l5x2)l ~~ 2 = xi = h * = 1,2}. Furthermore let

and
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We have that TA is linear in @+ and J*_ and TA(^±) = ̂ ±. In ^ + there is a fixed

point ( + \, + \). The differential of TA in 08 ± is given by the matrices
0 1

-1 2±A
Before proceeding with rigorous theorems we will describe properties of TA on

a heuristic level. We start with the following important remark. If TA has a periodic
orbit {p,TAp, ...,TAp = p} which is elliptic - i.e. the linear part of TA in p has
eigenvalues on the unit circle different from 1 and — 1 - then there is a domain @3p
such that TA is a linear rotation in 3). The same is true of the domains TA<3),

i = 1,..., k — 1. If the angle of rotation is rational i.e. of the form - 2π then 3) is a
\ <l I

polygon and TA is periodic in it otherwise it is an ellipse. For brevity we will call
such a domain an elliptic island.

It is easy to see that when A is an integer all points with rational coordinates
are periodic and hence all islands, if there are any, are polygons.

Computer calculations indicate the following picture. For A §; 4 we have one
stochastic "sea" ("filled" with one orbit). For A<4 the fixed point (—^,—|)
becomes elliptic and there arises the elliptic island which is an ellipse if
1 ( A \
—arccos 1 is irrational, and a polygon otherwise. For 2^A<4 outside the
π \2 /
island we have apparently a stochastic "sea", in particular there seem to be no
more elliptic islands. For A<2 the periodic orbit of period 2{(\, — \),{— ϋ ) }

l/Ϊ7 — 1
becomes elliptic and we have two more elliptic islands. For 1<A< — there

are two elliptic orbits of period 3 |one of them is the orbit of the point

. For A around 1 we have also
I A + 5 A + l \

9 )
, the other is symmetric under S

two elliptic orbits of period 5. The stochastic "sea" surrounding the increasing
number of elliptic islands is divided into two parts apparently by two closed
invariant curves for A somewhere between 1.1 and 1.2. For A<\ at first the
invariant curves are destroyed and then the picture becomes more and more
complicated.

The presence of elliptic islands is a matter of straightforward calculations. The
problem is to prove mixing properties of the transformation outside the islands. In
the following this is done for some values of the parameter A.

2. The Notion of Almost Hyperbolicity

In this paragraph we specify some abstract theorems which will be used in the
following. For simplicity we restrict ourselves to a piecewise linear measure
preserving transformations of a torus. To shorten further formulations we
introduce the following definition.

Definition. We say that a piecewise linear measure preserving transformation
T: ΊΓ2—>ΊΓ2 is almost hyperbolic in an invariant domain JΓCTΓ2 iff there are two
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families of disjoint segments passing through almost all points of Jf, called
respectively local contracting and expanding fibres, with the following properties:

Denote by ys(p) (yu(p)) the local contracting (expanding) fiber passing through
peJf.

(i) γs(p) and yu(p) intersect transversally
(ii) T(f(p))Cf(T(p))and T" V ί p K / ί Γ " ^ ) ) ;

(iii) if pvp2ef(p)(yu(p)) then

dist{TnpvT
np2)<comtλn for n>0(n<0),

where λ (0</l<l) and the constant depend on the fiber.
In [2] it was proved that, in general, a partition into segments is measurable

and conditional measures are equivalent to arc length.
By the work of Hopf, Hedlund, Anosov, Sinai, and Ornstein it is now well-

established that almost hyperbolicity in the above sense leads to strong mixing
properties of T in the domain Jf (see for instance [7] or for a simple exposition
[8]). More exactly there is a family of invariant subsets of positive measure JfJ,

i = l,2,..., (J Jf = Jf such that T\x~ι is ergodic. Moreover jfi = X i

1 u

= 0 if kφt, Tjff = J$rf+\ ίf = l, . . . ,w i -l, TX?l = X> and Γι\xη is a
η

X-system. In particular T\%> has countably many ergodic components. In [3] it was
checked that in the above situation (piecewise linear almost hyperbolic transfor-
mation) Ornstein's method [9] can be applied to prove that actually TΛί|^i is
Bernoulli.

To establish the number of ergodic components one needs more information
about T. We will use the following criterion of ergodicity.

Theorem 1. Let T: T2->ΊΓ2 be almost hyperbolic in an invariant domain Jf C TΓ2 and
suppose that for any local expanding and contracting fibres, yu{p) and y\q) there is
N^.0 such that Tkyu(p) intersects T~*ys(q) whenever fc,/^iV. Then T and all its
powers are ergodic in JΓ.

Proof. This is just the repetition of the classical proof [8]. Let / : TΓ2->IR be a

continuous function. We will show that the ergodic mean /, = lim - Y f °T is

almost constant. It is constant on local contracting fibers (if it exists). Consider the
set & = {peJf\f+(p) and f_{p) exist and f+(p) = f-(p)} where

I * " 1

/_ = lim - Y / o T \ 9£ is T-invariant and has full measure. So except for a set of

contracting fibers of total measure zero, almost all points of a contracting fiber in
the sense of arc length belong to ΘC. (Of course we use absolute continuity of the
foliation into local contracting fibres.) Suppose y\q) has the above property. Let
^ be the sum of local expanding fibres which intersect T~*ys(q) in the points from

00

9C. T~*ys(q) is a broken line. It follows that I) ^ has full measure in view of the

assumption and because the set of segments intersecting a fixed segment on the set
of arc length zero has measure zero (once again absolute continuity).
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/_ is constant (if it exists) on local expanding fibres. So we obtain that /+ is
constant on <&€ for any / ^ 0 and hence almost everywhere. •

It is easy to see that under the assumptions of Theorem 1 T is topologically
transitive in j f (if it is continuous).

To establish almost hyperbolicity for S-reversible transformations it suffices to
find expanding fibres. Then contracting fibres are given by ys(p) = S(yu{Sp)). We will
use the following criterion of almost hyperbolicity which we formulate only for
S-reversible transformations.

Let JΓ be some domain on a torus not necessarily invariant and suppose that
for almost all points peJf there is a sector U(p) in the tangent space so that the
following properties hold.

(i) DTXr{U(p))CU(TXr{p)) where T# : J f-+Jf is the first return map;
(ii) for veU(p)\\DTn+1υ\\ ^ \\DTnυ\\, n^O and for almost all points peJf there

a r e θ < / l < l and fc>0 such that ||D7*t;|| ^λ'^lυl

+ OO

Theorem 2. If (i) and (ii) hold then T is almost hyperbolic in jfT1= [j T{Jf).
i = — oo

Proof. We give a sketch of the proof. Most of the details can be found in [2].
By the property (i) we can extend the sector bundle U(p) on the whole set

+ oo

(J V(jf) with preservation of property (i) for T in place of Tx and property (ii).
i = 0
+ oo

IJ V(jf) is almost equal to Jfv

Now we put Un(p) = DTn(U(T-np)). We have obviously Un+ί(p)cUn(p)
n = O,l,.... Let %λιk = {pεX1\\\DTkv\\^λ-1\\v\\ for veU(p)} where 0<λ<ί and
k> 0. By property (ii) the sum of the sets &λ>k over all k> 0 and any sequence λt z11
is the whole Jf^ Fix 9£λ k with positive measure. We will construct expanding
fibres through almost all points from 3£λΛ.

Almost all points from ΘCKk return to it with positive frequency under iterates
of the map T~k. It follows that for almost all points pe2£λtk there is 0 < v < l such
that

m\\v\\ for veU(T~knp),

So there is 0<λί < 1 such that

lli ll for veU(T~np),

00

It follows that for almost all points t/oo(p)= Π Un(p) is a single line. Now we
n = 0

consider a segment through p with the direction of U^ip). Under the action of T~ι

it is contracted exponentially. At the same time by a standard argument almost all
points approach singularity lines at a rate not faster than constn~2 where n is the
number of iterations. So taking a sufficiently short segment we obtain that it never
cuts singularity lines. We define yu(p) as the maximal segment with the above
property.

Thus yu(p) can be constructed for almost all points pe Jfx and obviously they
have the required properties. So T is almost hyperbolic in Jfv •
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3. Ergodic Properties of TA for A ^ 4

In the tangent space to T 2 we introduce coordinates ξ^dx^ i= 1,2, and the norm

IK^!,^)!! = = m a x(l^iU (^2l) We define the following bundle of sectors on TΓ2

E/(p) =

where a = — ^ 2. The differential of TA9

0 1

if

if

= Jί±, is a hyperbolic matrix
- 1 2±A\

(i.e. with eigenvalues outside the unit circle) in J*+ for all ,4>0 and in & _ for
A > 4. The boundary directions of the sectors above are defined by the expanding
eigenvectors of the matrices Jί±. Such a choice of sectors is optimal for further
considerations. Moreover this remark enables us to prove the following lemma
without computations.

Lemma 1. DTA(U(p))cU(TAp).

Lemma 2. Let υ = (ξl9ξ2)eU(p) then

if

if

if

if

The proof of the last lemma is obtained by straightforward calculations.
Lemmas 1 and 2 show that when A > 4 the matrices Jί± are compatibly
hyperbolic, i.e. a product of any number of these matrices in any order is also
hyperbolic.

Theorem 3. // A ^ 4 then TA is almost hyperbolic in the whole torus.

Proof For A>4 this follows directly from Lemmas 1, 2, and Theorem 2.
In the case A = 4 we do not have sufficient expansion of vectors on M_ n ^ _ . So

\\DTAυ\\^2(a-l)\\υ\\

\\DTAυ\\^2{a+ί)\\v\\

we take &+ for Jf in Theorem 2 and we have only to show that (J T\& + has
i = — oo

full measure, or equivalently that almost all points from 3& _ leave J L . This follows
from the structure of T% on f . n ^ " 1 ^ . ) : T% preserves the family of lines
xi + X2 — const and on each line T% acts as a nontrivial translation, except for the
line x1 +x2 = — \ which passes through the fixed point (— \, — ̂ ). •

Theorem 4. // A>A0 where to = — is the positive solution of the equation

= 2, then TA and all its powers are ergodic and hence TA is

Bernoulli (Aoπ 4.0329).
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In the proof we shall use the following lemmas.

Lemma 3. Let r, s ̂  0 then

1 rs
inf (max (rμ, 5(1- μ))) = —= Γ = . D

By /(•) we will denote the length of an arc defined by the norm || ||.

Lemma 4. Let A>Λ0 where Ao is as in Theorem 4. Then there is h>0 such that if
γu(p) crosses the singularity lines δέ%+ at most once then TAy\p) contains a segment
yu(q\ qeTAy

u(p) such that

Proof. By the construction of local expanding fibres it follows that yu(p) is
contained either in <€ _ or in # + . Suppose yu(p) intersects the singularity lines dέ$±

at most once. Then we can write φ » n J _ ) = μ/(y"(p)) and
= ( l-μK(/(p)) where O ^ μ ^ l . So by Lemma 2

ΛUyu(p)n@_))^
(a-l+]/a(a-2))μί(yu(p)) if

if

Hence the lemma will be proved whenever

o mf (max((α- 1 + ]/φ-2))μ,2(α+1)(1 -μ)))> 1

and

inf (max(2(α—:

According to Lemma 3 this is equivalent to

and

2(α-l) α+l+l/φ

The second inequality certainly holds for all A^4 and the first for Λ>A0 where
Ao is described in Theorem 4. Π

Proof of Theorem 4. We will prove that sufficiently distant images of an arbitrary
local expanding fiber yu(p) contain segments crossing the square &+ n%>+ from the
lower to the upper side. S-reversibility implies that sufficiently distant preimages of
a local contracting fiber contain segments crossing the square ^ + n ^ + from the
left to the right side. So applying Theorem 1 we obtain our theorem.
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The heart of the matter lies in the fact that TAy
u(p) is a broken line with sharp

angles between consecutive segments (because DTA in J*_ changes the orientation
of expanding sectors) so that although its length tends to infinity with k it could in
principle be confined to a small region.

From Lemma 4 it follows that for sufficiently large k ̂  0 TAγ
u(p) contains a

segment yu(px\ P±tTAy
u(p) which crosses the singularity lines d&#± at least twice.

Hence yu{pλ) crosses one of the four squares J*+ n ^ + , ^ + n ^ _ , ^_ n ^ + , J>_ n(£_
from the lower to the upper side.

In the first case we are done, because by Lemma 2 the length of y " ^ ) is

expanded at least 3 + 2 j/2 times so the image of yu(pί)n&+n(£+ also crosses

In the second case [i.e. yu{p^) crosses &+ n ^ _ ] , we find that TAy
u(px) contains a

segment in <$+ whose length is at least 3 because in & + n%>_ the rate of expansion
is at least 6. So it must cross the square &+n(&+.

In the third case [i.e. y " ^ ) crosses ^ _ n ^ + ] by the same argument T/^^p^
must contain a segment in 08 + c\%> _ with the length greater than ^. Hence
contains a segment in # + whose length is greater than § - so it crosses έ

The last case, when y " ^ ) crosses &_r\cβ'_, needs more careful consideration
because in &_c\cβ_ the rate of expansion is very close to one. The center of
^_nf€_ is a fixed point co = (—|, — J) which is hyperbolic for A>\. Its local
contracting fiber ys{c0) crosses &_n(£_ from the left side to the right side. Hence
y"(px) intersects ys(c0). It follows that images of yu{p^) approach yu(c0) (more exactly
contain segments arbitrarily close to y"(c0)). So it suffices to prove that images of
yu(c0) cross &+ncg+ from the lower to the upper side.

Denote by c^ and cr respectively the left and the right ends of y"(c0). The
segment coc^ crosses the singularity lines only once and hence by Lemma 4 its
image under TA must contain a segment with greater length. But TA(c^)
= c^crκjcrTA(c^) and hence ί(crTΛ(cg)) >ί(c^cr) - A^t\

This fact together with some calculations shows that the segment crTA(c^)
crosses the opposite sides of the parallelogram ΊA

γ{& _c\c€ _) (see Fig. 1). So
TA(crTA(Cf)) contains a segment which crosses ^_r\c€_ from the lower to the upper
side. Denote by c~[c~2 the segment in the intersection of the latter segment and
T~ 1(J>

+ n ^ _ ) as shown in Fig. 1. It is easy to see that /(TA{Έ^c~2))>\. Further by
Lemma 2 /(TA

2(F^c~2))>^ and so Tj(c^) must cross 3β + n%+. •
I do not doubt that TA is ergodic for all A^4, but apparently a different

approach is needed to prove this.

4. Ergodic Properties of TΛ for A < 4

For A <4 the matrix Ji_ which represents DTA in &_ becomes elliptic - i.e. has
eigenvalues on the unit circle different from 1 and — 1. It is convenient to introduce
coordinates (yι,y2) in which it will be represented by the rotation matrix

y1=x1 — cos/bc2, y2 = sin/fa;2 where cosβ = 1 — a.

In these coordinates TA considered on IR2 rotates the strip & _ by the angle — β

Λ Λ . ίcosβ—1 s inβ
around the point ,

\ 4 A
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Fig. 1. Λ>A0

T A ( c 2 )

, T A ( c , )

+ 00

Let 2 = {p\ T\pe3$_ for all fc}. By S-reversibility we have S@ = S f] \
k= - oo

+00 +00

= Π TA

kS3#_ = Pi TA

kTA38_=@. It is easy to see that in y-coordinates 9)
k = — oo fc= — oo

is a disk inscribed in the rhombus 38 _cλ(β _ whenever the angle of rotation /? is

irrational. If β = - π then ^ is a 2g-sided regular polygon with four sides on the
sides of 38_c\cβ'_. T^ in ^ has period ^ for p even and 2^ for p odd.

Moreover ^ = {p|T\peM_ for /c^O}.
In ^-coordinates the disk becomes an ellipse with axes on the diagonals of

^ _ n ^ _ . The polygon in x-coordinates is no longer regular but it is symmetric
about its center and has two axes of symmetry - the diagonals of 38_n^'_.

Theorem 5. For Λ = 2 c o s — h i , n = 2,3,. . . , there is a In-sided convex polygon
\ n I

Q)(i^_r\(€_ such that TA is almost hyperbolic in Ί Γ 2 \ ^ . Moreover 2) is symmetric
about its center (—4, — 4) and with respect to the diagonals of 3&_ n(&_. The points
(— \, 0) and (0, — \) are common vertices of 2 and 3% _c\c€ _. ΎAinQ) has period n for
n odd and period In for n even.

In the tangent space we consider coordinates η^dy^ i=l,2, and the norm

Now DTA in 3$_ is given by the matrix of rotation by the angle — β
cos/? sin/?

— sin/? cos/?
and in by the matrix where
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So Ώ{Tk

A) on ^ + has the form jM\e M2...Jί2Jίγ[xJί2, £ w. = fc.

In the tangent space consider the sectors

Ί2
U =\(η19η2)

Lemma5. The only A for which Ji\JJ\CU for all /c^O are L̂ = 2(cos- + 1).
\ n

Proof. Obviously the angle β must be rational, i.e. β=-π. Let M be the matrix of

rotation by the angle π. The required property is now equivalent to

$U1CU. It is easy to see that the latter is equivalent to 2γ< - π where γ is the

angle of the sector Uv

I β\~ι I p \ - 1 π pπ 1
But tany= 2 tan— = ztan — π so we must have tan — tan —- > -.Y \ 2) [ 2q ) 2q 2q~2

For p = q—l the lefthand side is equal to 1, so the inequality holds. For
π

π pπ π (q — 2)π 2q 1
pS^q — 2 tan—-tan —:g tan — - t a n — = < - . •

2q 2q 2q 2q π 2
tan —

Proof of Theorem 5. We apply Theorem 2. We consider &+ with constant sector
+ 00

bundle equal to U. By what was said in the beginning of this section, (J TA J*+
i— — oo

= T2\int£$. Property (i) follows from Lemma 5.
U consists of vectors which are not decreased in norm by Jί2. Mx preserves the

norm of vectors. So the first part of property (ii) holds.
Jί2Jί\Jί2 increases the norm of vectors from U for all k except for multiples of

n.
For pe0β_\3 by £{p) denote the time which p stays in &_ i.e. TApe&_ for

O:gϊ</(p) and TA

ip)pφέ%_. It is easy to see that £{p) can be equal to 1,2, ...,n— 1
(see Fig. 2). The set Q = {pe&_\@\£(p) = n—1} consists of two triangles as
depicted in Fig. 2. TJ for n odd and TA

n for n even act on Q in the x-coordinates as
a rotation of the circles xx = const by a changing angle. It follows that the measure
of points which always stay in &+ once and enter & _ via the set Q is equal to zero.
So for almost all points from M + the vectors from U are eventually increased.
Hence our theorem follows from Theorem 2. •

We conjecture that for 2^A<4 3) is the only elliptic island. But it seems
possible that for some A the metric entropy of TA is zero.

In the end we will consider the case A = l. We have two closed invariant curves
which are broken lines with three segments. One of them has vertices in (0, — §),
(i? 0)5 (I' ί ) = (~~ h 4)5 (A 1) (̂ n ^-coordinates). The other is symmetric under S. These
curves divide the torus into two invariant parts M1 and M2 (Fig. 3). In Mx we have
the elliptic island 3) which is a hexagon.
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Fig. 2. A = 2 + ]/2, in ̂ -coordinates

Fig. 3. A = l, in y-coordinates

Theorem 6. T1 is almost hyperbolic in

Proof, Consider the sectors

=\(ηl9η2) n2

and

1 = \(η1,η2) lυ.

and the constant sector
One checks easily that JίxUίCU and M^Jί\V\ CU1.

We apply Theorem 2 taking Jf = M1n&+nT[ί&
bundle equal to U.

The crucial remark is the following: if a point enters Mιc\&_ and then
immediately leaves it then it must stay in Mίn&+ at least for time 2, i.e. enter Jf.
Since a point can stay in Mγc\&__ only for time 1 or 2, it follows that the property
(i) holds.

Vectors from U are not decreased by Ml [so formally should we rather consider
Tt

2 to obtain the first part of the property (ii)]. .MzJί\Jil increases the norm of all
vectors from U. So the situation that the boundary vector of U is never increased,
can only take place iϊD(Tfk) is equal to (JixJil)k for all k^O. Simple geometric
considerations show that the set of points with the above property has measure

+ 00

zero. Also \J T[jf is almost equal to Mx\9. •
ι = — oo

In M2 the picture is more complicated. The periodic orbit of period 2 {(— \, \),
( i — i)} is elliptic. (It is elliptic for 0 < A < 2.) The corresponding elliptic islands are
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Fig. 4. Elliptic islands in M 2 , in y-coordinates

hexagons symmetric under S. [One of them has vertices in (— \, | ), (0, ̂ ), (0,

Furthermore there are two elliptic periodic orbits of period 5. One of them is
the orbit of the point (JJ, ̂ ) , the other is symmetric under S. The island around
(£, A) has vertices in (£,§), &,& ( i i & ( ϊ ^ λ (£, Tel &,f) (Fig- 4).

There is also a rather degenerate phenomenon: a quadrilateral of periodic
points with period 33 which is not an elliptic island. (There is no point in it with
lower period.)

The question of mixing properties of T1 in M2 is open. Also the behaviour of
the invariant curves with the change of A is unclear computer experiments indicate
that they disappear immediately for A< 1 and persist for A > 1.

Thus Theorems 5 and 6 provide examples with coexistence of stochastic and
integrable behaviour. Perhaps these results have some significance for the case of
smooth perturbations of the twist mapping.

Acknowledgement. The author thanks Prof. Z. Nitecki who read the manuscript and contributed to its
improvement.
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