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Abstract. We propose a construction of static magnetic Yang-Mills-Higgs
monopole solutions of arbitrary topological charge. They are axially sym-
metric and contain no free parameters except for their position. The regularity
of the solutions has yet be proved doing so would complete the constructive
proof of existence.

I. Introduction

The purpose of this paper is to present new static magnetic Yang-Mills-Higgs
monopole solutions of arbitrary topological charge. The solutions are axially
symmetric and contain no free parameters except for their position in three
dimensional Euclidean space. Our solution thus generalizes the recent and
remarkable construction of Ward [1] on the charge 2 monopole. Unlike Ward's
construction, our construction is based on a systematic framework for obtaining
monopole solutions with arbitrary topological charge. As a byproduct of the
systematic framework, we are able to explicitly construct the complex gauge
transformation that makes Ward's (and our) solution real. In a separate paper [9]
we have verified regularity of these solutions in various regions, but we have not
yet shown that these regions cover the three dimensional Euclidean space.

Let us define in four dimensional Euclidean space (xvx2,x3,x4) the gauge
potentials Aa

μ where a = 1,2,3 and μ= 1,2,3,4. The gauge field strength is defined
by

AlAl, (1.1)

where e is an arbitrary constant, the gauge coupling constant. The problem, simply
stated, is to solve the self duality equations:

$ e (1-2)

(our convention is ε i 2 3 4 = +1) for the gauge potentials Aa

μ subject to the following
requirements:
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(i) In all gauges, Aa are static (independent of x 4 ): d4A
a

μ = 0. In this case A\ is
referred to as the Higgs field.

(ii) In some gauge, Aa

μ are all real non-singular functions of (x1,x2,x3).
(iii) The gauge invariant quantity H2 = Aa

4A
a

4 has the following asymptotic
form:

( 2 ) a s r - >

er

where r2 = x\Jrx2

2

Jrx\, f is an arbitrary constant with dimensions of inverse
length and n is a positive integer called the topological charge. We assume that
ef>0. (To compare our formulas with Ward's one should set / = 1 , e = 2.) The
energy E of the monopole is then:

E = f l/4Fa

μvF
a

μvd
3x = 1/2 J F2ff2d3x - 4π/#, (1.4)

where we have defined the magnetic charge g to be (n/e).
We now proceed to outline the general framework [2] within which we look

for monopole solutions. We then present case by case the known n= 1 and n = 2
solutions and a new n = 3 solution, after which an obvious pattern emerges
allowing us to present the solution for arbitrary n.

II. Formulations of the Self Duality Equations [2]

We begin by defining the 2 x 2 matrix valued fields:

Aμ = ̂ Al and Fμv = e ̂ Fμv = dμAv-δvAμ + ίAμ,Av-], (2.1)

where σa are the Pauli matrices. For real gauge fields, Aμ and Fμv are antihermitian
traceless matrices. We now analytically continue Aμ into complex space where
xvx2,x3,x4 are complex. The self duality equations (1.2) are then valid also in
complex space, in a region containing real space where x's are real. Now consider
the four new complex variables p, p, q, and q defined by

] 2 ] 1 2 ] 3 4 ] 3 4

(2.2)

The self duality equations (1.2) then reduce to:

Fpq = 0, F M = 0 and Fpβ + Fqξ = 0. (2.3)
The equations Fpq — 0 and Fpξ = 0 can be immediately integrated, since they are
pure gauge, to give:

Ap = D-'Dp, A^D-'D^ AP = D-%, A-q = D^D-q9 (2.4)

where D and D are arbitrary 2 x 2 complex matrix functions of p, p, q, and q with
determinant = 1 and Dp = 8pD, etc.

Gauge transformations are the transformations:

(2.5)
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where 5£ is an arbitrary complex matrix function of p, p, q, and q whereas V(V) is
an arbitrary complex matrix function of p, q(p, q) and we take the determinants of
^£, F, and Fto be one. Under the gauge transformation (2.5) the gauge potential Aμ

and gauge field strength Fμv transform as

The energy density Fa

μvF
a

μv= jΎr{FμvFμv) is invariant under gauge transfor-

mations. Let us define a matrix J by:

J =LfU , \L. I)

then the remaining self duality equation Fpp + Fqq = 0 becomes:

(2.8)

(2.9)

Under the gauge transformations (2.5), J transforms as:

J^V(p,q)JV(p,q).

Since J is an arbitrary complex 2 x 2 matrix function with determinant one it can
be parameterized as: Γ .

Φ Φ
J =

lψ φ

(2.10)

where φ, ρ, and ρ are arbitrary and independent complex functions of p, p, q, and q.
The self duality equations (2.8) in terms of φ, ρ, and ρ become:

(dpδP+δqd?)\nφ+ = 0 , (2.11a)

(2.11b)

To construct the gauge potentials Aμ from J requires a selection of gauge [i.e.,
there are an infinite number of ways of factoring (2.10) in the form (2.7)]. We will
work exclusively in Yang's R gauge which is defined by JΞΞRR'1 where:

1

VΦ
0

R = VΦ

VΦ\ \ o
/

The gauge potentials in the R gauge take the form:

0

VΦ

(2.12)

A ,.=
2φ

Ar =

2φ,

(2.13)
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where u = p,q. Now because of requirement (i) the gauge potentials (2.13) must be
x 4 independent and we require this to be true in all gauges which implies that the
gauge transformation matrix if must be x 4 independent.

d^ = 0 (2.14)

2
by virtue of (2.6). In particular H2 = Aa

4A
a

4 = jΎτ(A^A^) is gauge invariant.

_ j I

e.g., A4 = —— (Aq — Aq) areEven if the gauge potentials Aμ derived from (2.13) e.g., A4 = (

static, they will not in general be antihermitian as demanded by requirement (ii).
For real gauge fields A* = — Aμ (the symbol = is used for equations valid only for
real values of x 1 ? x 2 ,x 3 ,x 4 ), we have from (2.4) and (2.7)

A^ = -Aμ=>D = (D + y1^J = DD-1=DD+ (2.15)

i.e., for real gauge fields J is a positive definite 2 x 2 hermitian matrix. A necessary
and sufficient condition to meet requirement (ii)1 is that we be able to find matrices
V(p,q) and V(p,q) in Eq. (2.9) such that V(p, q)RR~1V(p,q) is a positive definite
hermitian matrix. If we can find such matrices V and V, then the gauge
transformation matrix JS? in (2.6) is simply a square root of the matrix:

^?^?+={R+V+V-1Ry1 (2.16)

and this matrix if will make Aμ and Fμv antihermitian as demanded by
requirement (ii). We now proceed to the solution of the self duality equations (2.11)
and the implementation of requirements (i)-(iϋ).

III. Implementation of Requirement (i)

We will begin by insuring that the gauge potentials (2.13) are x4 independent. We
do this by looking for solutions of the self duality equations (2.11) in the following
form:

Φ = eie'x*Qφ, ρ = eie'x<QQ, ρ = eie^Q-, (3.1)

where

Qφ9 Qe, Q^ are functions of xl9 x2, x3 only. (3.2)

The gauge potentials (2.13) constructed from (3.1) are manifestly x4 independent.

IV. Solution of the Sefl Duality Equations (2.11):
The Atiyah-Ward Ansatz [3]

The Atiyah-Ward ansatz can be stated as follows. Let (nφ, nρ, nρ) be solutions to the
self duality equations (2.11), then so are (n+1Φ,n+ιQ,n + 1Q) where:

,

1 We must, of course, also check that the gauge fields are nonsingular functions of xv x2, and x3



iV-Monopole Solution 141

o -
n+lQp~

nΦ

nQ

.nΦ +nQnQ.

n+lQq=

n+ lQq~

4
nQnQlp

4 > (4 ib)

nQ

.nΦ +nQnQ.
• (4.1c)

The proof of (4.1) is given in Appendix A. Thus the Atiyah-Ward ansatz
provides a recursive method of obtaining solutions to (2.11). Let us now define:

(Φ>Q>Q) associated with the Atiyah-Ward ansatz j ^ n = (nφ,nρ,nρ). (4.2)

The recursion starts with the stfx ansatz which is defined by:

sίγ ansatz: ^Qp = γφ^, \ρq—~ιΦp^ iQp = iΦq> i

which implies:

We look for solutions of (4.4) in the form (3.1):

which implies a Helmholtz equation for Λo

We will take the general solution of (4.6) to be:

Qa:=-ιΦp> ( 4 3 )

(4.4)

(4.5)

(4.6)

(4.7a)

* ΐ Ξ * ϊ + *2 + (*3-z*)2> (4.7b)

where otk and zk are arbitrary complex constants constrained only by the
requirement that Ao be a real function of xvx2, and x3. If we now define a real
function Aλby

^o=P~ldpΛi=P~ldpΛi ( 4 8 )

then we can integrate Eq. (4.3) to give

(4.9)

Note that when we integrate Λo to obtain Ax we do not keep any constants of
integration.

V. Integration of the s$n Ansatz

In Eq. (4.9) we have completely integrated the stfx ansatz. Corrigan et al. [4] have
integrated Eqs. (4.1) for any n ^ 2 . Their solution begins by defining (2n+l)
functions Δ€, where —n^ί^n, which satisfy the following equations:
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Then the (φ,ρ,ρ) associated with the j / n ansatz for n^2 are given by:

\_n + 3 . . . Δ 1

A γ . . . Δ n

A,

...Ao

. . . Δ ί

...4.-

(5.2a)

Δ_n+ί

nQ=~

A o Δ 1 • - . A n _ 2

A _ n + 2 A _ n + 3 . . . A 1

A - n + 3 A _ n + 4. ••• A 2

Δ 1 A 2 . . . Δ n

(5.2b)

Δ_n
...Ao

(5.2c)

Δo Δ1 . ..4,-2

Where |...| designates determinant. Equations (4.1a) and (5.2a) give the following
useful relation:

-n Δ-n+l --ΔΌ

^-n+2 ^-n+3 '•• ^ 0

A _ n + 3 Δ _ n + 4 . . . Δ 1

A o A , . . . Δ n _ 2

Let us define the real functions An for n ̂  2 by:

-n+ί Δ-n+2 " Δ ί

(5.3)

(5.4)
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then it follows by induction that:

A0 = 1φ = eίe"<Λ0, (5.5a)

Λ_„ = ( - lTeiefx«(}/2pΓn(d3 + efYΛn, (5.5b)

"(dd-ef)"Λn. (5.5c)

Note that when we integrate Λn to obtain Λn+1 we do not keep any constants of
integration. The /Γs are given by:

0 = (ef) Σ a
" sinh{efrk)

n

-1 Σ αfccosh(β/rΛ)

n

k= 1

n

k = l

n
1 Ϋ α (βfr

VI. Implementation of Requirement (iii):
A Remarkable Superposition Formula [5]

It is proven in Appendix B that for the jtfn ansatz the gauge invariant quantity
H2 = A%Al is given by:

s/n ansatz: H2 = f2+\ Σ [~^ln^], (6.1)
e k = ι

which represents a remarkable superposition formula for the energy density of the
monopole solutions. Now from (4.7) and (4.9) we see that
lnίφ-^ef(r-\-ίx4) + 0(\nή as r->oo. The Atiyah-Ward transformations do not
change the asymptotic behavior of γφ so that

) as r->oo. (6.2)

Substituting (6.2) into (6.1) we see that the asymptotic behavior of H2 is

jrfn ansatz: H2->f2- — + 0{r'~2) a s r - > o o , (6.3)

which is precisely what requirement (iii) demands. Thus the nih Atiyah-Ward
ansatz srfn is guaranteed to give topological charge n provided only

as r^oo.
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VII. Implementation of Requirement (ii)

We have already shown that reality of the gauge field is assured if we can find
matrices V(pq) and V(pq) such that VRR~* Fis a positive definite hermitian matrix.
Equations (2.13) and (6.1) shows that to assure the gauge fields are nonsingular all
we have to verify that nφ never vanishes for each n.

We now proceed directly to study how the above formalism applies to the
n = l , 2 , 3 monopole solutions, after which we present the arbitrary n monopole
solution.

VIII. The n = l Monopole Solution [6]

Here we take the s/1 ansatz with

Λ = s i n l ; ( e / r ) . (8.D

The matrices F(p, q) and F(p, q) which make VRR~1 F a positive definite hermitian
matrix for {γφ, XQ, XQ) constructed from (8.1) are:

and the gauge transformation matrix S£ is formed by:

7+ =(R+ V+ V~ ιR)~x = *re/(<rxWjS? = e~ l'2e^x). (8.3)

Furthermore (8.1) never vanishes so that we indeed have the original real
nonsingular spherically symmetric n=ί monopole solution.

IX. Ward's w = 2 Monopole Solution

Here we take the s/2 ansatz with:

_sinh(β/r1) sinh(β/r2)

where

r\ = x{ + x\ + (x3 - z 0 ) 2 , r\ = x{ + x\ 4- (x3 + z 0 ) 2 . (9.2)

Guided by Eq. (8.2), we now choose the matrices V(pq) and V(pq) to be:

and require that VRR~iVbQ a positive definite hermitian matrix for (2φ, 2ρ, 2ρ)
constructed from (9.1). After some tedious algebra one finds in order to have real
gauge fields:

γ must be a real constant, (9.4a)

- y2(2pp)2e- 2i"x*(2φ
2 + 2Q2Q) = - (4yz0)

2 = + 1 . (9.4b)
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Note that in calculating (9.4b) we have made essential use of Eq. (5.3).
Equations (9.4a) and (9.4b) imply:

zo=+ic, c is a real constant, 7 = (4c)~1. (9.5)

It remains to check that the gauge fields are nonsingular and we find that
(again by tedious algebra)

c=^r (9.6)

so that there are no free parameters left in the solution. Note that in Eq. (9.6) we
always calculate xφ and 2φ using Λo given by Eq. (9.1).

X. The New n = 3 Monopole Solution

Here we take the j / 3 ansatz with

_sinh{efrί) sinh(efr2) sinh(β/r)
/ι — I |_ 2, (1U. J I

r r r

where

r2 = x\ + x2 + x\.

(10.2)

Guided by Eqs. (8.2) and (9.3), we now choose the matrices V(pq) and V(pq) to

-'-(ί 3-
be:

and require that VRR~iV be a positive hermitian matrix for (3φ, 3{?, 3ρ) con-
structed from (10.1). The calculations are now so complicated that we had to resort
to the symbol manipulation computer program MACSYMA, and we find that in
order to have real gauge fields:

y must be a real constant, (10.4a)

- y2(2pp)%Φ2 + 3QiQ)e~2iefXA = ( W = + 1. (10.4b)

Note that in calculating (10.4b) we have again made essential use of Eq. (5.3).
It remains to check that the gauge fields are nonsingular and one fiends, using

MACSYMA:

1φ2φ3φή=0=^zo=
1^ (10.5)

so that again there are no free parameters left in the solution. Note that in
Eq. (10.5) we always calculate 1 φ, 2φ, and 3φ using ΛQ given by Eq. (10.1).
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XI. The Arbitrary n-Monopole Solution

The n— 1,2,3 monopole solutions follow an obvious pattern which has allowed us
to guess and indeed verify the following central result of this paper. To obtain a
monopole solution of arbitrary topological charge n ̂  1 one should take the stfn

ansatz with

Ό= Σ
ύnh(efrk

where

-k
7Π

efj'
( n - l ) !

(11.1a)

(11.1b)

(11.1c)

(ll.ld)

Note that zk—zk_1=iπ/(ef) and αfe are the binomial coefficients.
To verify the above result we choose the matrices V{pq) and V(pq) to be:

1 ff

0 I

0
(11.2)

where y is a real constant, and require that VRR Ψ b e a positive definite
hermitian matrix for (nφ,nρ,ρ) constructed from (11.1). We must also check that

1φ2φ •••nΦ never vanishes. From (5.2a) one finds:

n(n

1Φ2 > = (-!)

Δ-n+l Δ-n+2 Δ0

Δ-n + 2 Δ-n+3-"Δl
(11.3)

The key to verifying our result is to study what happens on the x3 axis where
xi =x2

==®- Equations (11.3) and (5.5) imply that if H2 as defined in Eq. (6.1) is not
to develop line singularities on the x3 axis one must have:

for l ^ ^ and (11.4)

By virtue of Eqs. (5.5b) and (5.5c) we choose to satisfy (11.4) by requiring:

Λ, = 0 for l^ί<n and χ 1 = χ 2 = 0. (11.5)

Of course Λo must never vanish. It is tedious but straightforward to verify that
(11.1) satisfies (11.5). In order to have real gauge fields on the x3 axis one finds,
using Eqs. (5.3) and (11.4), that:

- y2(2pp)nene~ 2iefx φ2 + nQnQ) = y2

( n - l ) ! = + 1 . (11.6)
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Thus requiring the gauge fields be real and nonsingular on the x 3 axis uniquely
fixes the solution to be (11.1). One can prove reality of the gauge fields over all
three dimensional Euclidean space, but this is much more difficult and is presented
in [9]. In [9] we have verified regularity of the solutions in various regions, but we
have not yet shown that these regions cover the three dimensional Euclidean
space.

Discussions

The axially symmetric monopoles presented in this paper contain no free
parameters. However, solutions containing free parameters are known to exist [7]
and presumably they are not axially symmetric. It appears likely that the Atiyah-
Ward ansatz may still provide the framework to study such nonaxially symmetric
monopoles.

Explicit forms of the gauge potentials in various real gauges can be found in
[2] and a real gauge in which mirror symmetry is manifest can be found in [8].

Appendix A: Proof of Equation (4.1) [5]

The proof of Eq. (4.1) rests on two theorems which we now state:

Theorem 1. If (φ,ρ,ρ) satisfy Eq. (2.11), then so do (φ^ρ^ρ1) defined by

and furthermore the gauge potentials derived from (φ1, ρ1, ρ1) are gauge transfor-
mations of those derived from (φ,ρ,ρ).

Proof

2 + ρρ ρ'

(0 - Λ /O i

ίΓ\-i o f i o

so that in (2.9) we have V= I . and F = ί

Theorem 2. //(φ,ρ,ρ) satisfy Eq. (2.11), then so do (φB,ρB,ρ~B) defined by:

1 — —

The proof of Theorem 2 follows from the assumption that ρ is integrable so that

Note that / is a discrete transformation, since when operated twice it gives an
identity (i.e., φ11 — φ, ρ11 = ρ,... etc.). Furthermore, acting with the operator B twice
is a trivial operation (i.e., φBB = φ, ρBB = ρp,... etc.) in that it does not change the
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gauge potentials. Therefore, in order to use B more than once, one must interpose
the / operation of Theorem 1 between two B's.

The Atiyah-Ward ansatz s$n (n = 1,2,3,...) can now be defined by the following
chain of operations

(BI) (BI) (BI)
(A3)

where s/ί is the first ansatz defined by Eq. (4.3) and (BI) means operate with / first
and then with B. Thus we have proved Eq. (4.1).

For comparison purposes we note that the relation of what we call the Atiyah-
Ward ansatz stfn to what Corrigan, Fairlie, Goddard, and Yates call ansatz Re is
the following: s/n = IRn+1. With this transcription the formulas of Sect. V
immediately follow.

Appendix B: Proof of Equation (6.1) [5]

From Eq. (2.13) and the fact A, = —7^(Aa~Ad) we have

(B.I)

Now in Appendix A we proved that / is a gauge transformation so that H2 which
is gauge invariant is invariant under it

(B.2)

(B.3)

(B.4)

On the other hand, under the B transformation:

1 •2β?

ΦB2
Φ2

Φ2

where we have used (A.2) in (B.3) and (2.11a) and (3.1) in (B.4). Thus for the
operation (BI):

H2(BI) = - =-~Tr(/t4Λ4)~^V2\nφBl. (B.5)

For the jrfx ansatz we have, using Eqs. (4.3), (2.11a), and (3.1):

e ίΦ J e Y A i0

1 , .

Equation (6.1) follows by induction.
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