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Abstract. It is well-known that two-particle unitarity of the S-Matrix in
quantum field theory implies (modulo regularity assumptions) second sheet
analyticity for the 2-body scattering amplitude. Here this is first used to prove
off-mass-shell analyticity for the 4 point function in a complex neighborhood
of any real mass-shell point under the 3-particle threshold. Then this is applied
to the study of the 5 and 6-point functions near the real mass-shell of 2-* 3
and 3-^3 processes below the 4-particle threshold: the results are those suggest-
ed by perturbation theory apart from the 3-particle cut and away from some
submanifolds. The advantage of this method, which could presumably be
extended to the exploitation of n-particle unitarity, is that the regularity
assumptions only refer to the physical scattering amplitudes.

Contents

Introduction 99
1. Basic Assumptions and the Four-Point Function 101
2. The Five-Point Function 109

2.1. Notations and Completeness Equations 109
2.2. Results I l l

3. The Six-Point Function 116
3.1. Notations and Completeness Equations 116
3.2. Triangle Graphs 119
3.3. Results 121

Appendix 122
References 125

Introduction

The primary source of analyticity of Green functions in quantum field theory
consists of the geometric properties arising from locality and the spectral condi-
tion. However it has been known for a very long time [1-3] that the assumption
of asymptotic completeness entails a considerable improvement of these analyticity
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properties such as typically second-sheet analyticity across the elastic cut for the
four-point amplitude. A powerful method to obtain more general results of this
type (as well as general properties in field theory) initially proposed by Symanzik [4]
and extensively developed by Bros and coworkers [5], is based on the study of
π-particle-irreducible kernels and associated Bethe-Salpeter equations. In this
paper we propose a different method: first the unitarity of the S-matrix is exploited
(in the standard way) to obtain a meromorphic continuation into the unphysical
sheets; then this information is used to enlarge the domain of analyticity of
Green functions off the mass-shell, obtaining in particular new analyticity on the
physical sheet, with poles at the zeros of the 5-matrix determinant, and the process
is in principle to be iterated. The advantage of this method is that it requires only
those extra assumptions on the physical S-matrix which are necessary to avoid
the pathologies discovered by Martin [6]. Such pathologies are probably not
excluded by the usual axioms, and explicit examples can presumably be con-
structed in two dimensions. Hence these assumptions seem minimal. In this paper
only elastic 2-body unitarity is used, and applied to the 4, 5, and 6-point functions.
For the 4-point function the second-sheet analyticity across the elastic cut, already
known on the mass-shell (see [1,2, 6]), is extended off the mass shell. This result
coincides with that of [5a, 5b] which was obtained with somewhat stronger
assumptions in the program using irreducible kernels. For the 5 and 6-point
functions, local results (described in more detail below) are then obtained at real
points near the mass shell below the 4-particle threshold in the total center of
mass energy. Apart from the 3-particle cut (whose crossing would require ex-
ploiting the 3-particle unitarity), and certain parasitic submanifolds (whose
removal would require a more detailed treatment of the 2-body threshold) the
results are those suggested by perturbation theory and, on mass-shell, equivalent
to the properties of macrocausality and macrocausal factorization of the S-matrix
[7]. They agree with those of Bros [5d, 5e], although the technical limitations
appearing in the two approaches are somewhat different. Similar results are easily
obtained for the 3-point function. This strongly suggests that the corresponding
assumptions for the S-matrix in all possible channels imply that the analytic
structure of the Green functions near real points is just as indicated by perturbation
theory. It is to be noted that the technique of obtaining analyticity from unitarity
is closely related to that of many works in iS-matrix theory (see [8-13] and re-
ferences therein).

We consider a theory of one scalar neutral field satisfying besides the usual
Wightman axioms, asymptotic completeness with only one kind of particles with
mass μ>0 and spin 0, and additional regularity conditions described in detail
in Sect. 1 for the 4-particle S-matrix.

In Sect. 2 we prove the following result:
Let P = (Pl9..., P5), Pι + . . . + P 5 = 0 , be a real point on the 5-point mass-shell

pι> p2> pi£ V + i P** ps£ y~ satisfying:
9 μ 2 < ( P 1 + P 2 + P3)

2<16μ2, (P^Pj-P^2ή=μ2 for any permutation i, j , k
of 1,2, 3. Then the 5-point Green function is analytic, near P in complex directions
satisfying Ims>0(s = (pί + p2 + p?)2).

In Sect. 3 the 6-point Green function is studied near the real mass-shell
= 0 pj=μ2j=l,...,6, pu p2, p3eV + , p4, p5, p6eV'}.



Analyticity from Asymptotic Completeness 101

It is expressed as a sum of pole terms, (generalized) triangle graphs and a re-
mainder. Near any P and the mass-shell satisfying 9μ2<(P{ + P 2 + P 3 ) 2 <16μ 2 ,

3)
j — Pk)

2 φ μ 2 for any permutation (i, /, k) of (1, 2, 3) or (4, 5,6), the remainder
term is analytic in complex directions satisfying Ims>0, s = (pι+p2+p3)

2.
It is expected, but not proved here, that, as a consequence of 3-particle unitarity

together with the required additional regularity assumptions, the remainder
term is, in fact, analytic in a complex neighborhood of P and that the result can
be extended to the points of the manifolds (Pί + Pj — pk)

2 = μ2 (at least away from
two-particle thesholds). The same remark applies for the 5-point function in the
above discussion.

1. Basic Assumptions and the Four-Point Function

We consider a theory of one scalar neutral local field A(x) operating in a Hubert
space Jίf and obeying the Wightman axioms including uniqueness of the vacuum
Ω. The spectrum of the energy momentum is assumed to be

Here μ > 0 and the restriction of the representation of the Poincare group to
states with mass μ is assumed to be irreducible with spin 0, i.e. the theory has one
kind of particles with mass μ and spin 0. The Haag-Ruelle theory (see e.g. [14])
then defines two isometries Vin and Vom of the Fock space <F into J f and we assume
the completeness of asymptotic states:

A further essential assumption of a dynamical nature (continuity of the 2-body
S-matrix kernel) will be formulated later.

As a more technical assumption, not indispensable but convenient for our
purposes, we assume the existence of "sharp" time-ordered products as described,
e.g., in [15].

The Momentum Space Analytic Function

Let Hn denote the rc-point momentum-space analytic function, H'n its amputated

version, i.e.
\\(k2-μ2 (2)

each of them being defined and holomorphic on a certain subdomain of the

ί " 1
complex momentum space, Ukl9..., fcJeC4"; £ fc/ = 0f As it is well-known,

I j = i J

various boundary values (in the sense of tempered distributions) of Hn yield
various generalized retarded functions and also the connected chronological
function

? p 1 , . . . , ( l + ie)rf,pII), (3)

Σ PJ) = ί
7 = 1

exp i X pjXjl (Ω, T(A(Xi).. .A(xn))Ω)cdx1.. Λxn. (4)
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The antichronological function is obtained by changing the sign of ε in (3).

Reduction Formulae

For any ΨeJtif, <r1 ?..., rm, in|*F) is the value at (ru ..., rm) of the wave-function
of the m-particle component in 3F of V£ Ψ. Hence it is a symmetric L2 function
of (r1 ?..., rm) on the real manifold

{ ( ^ . ^ r J Vj, rjeV+ and ή=μ2} (5)

equipped with the measure

Y \ ] d % . (6)
7 = 1

Suppose, in particular, that Ψ = Θ(X)Ω, where X = (l9...,n) and Φ(X) is a

finite linear combination of terms of the form

${T{X1)...T{Xγ)φ(xl9...9xJdx1...dxn9 (7)

(ΛΓl5..., Xy being some partition of X, φε ̂ (R4")). Then, in the sense of distribu-
tions on the manifold (5), wherever Vj + rk for all j φ fe, <r 1 ? . . . , rm in | β?(X)Ω) coincides
with the restriction to the manifold (5) of the tempered distribution

7 = 1

abbreviated as

(ή-μ2)
7 = 1

J expi 2̂  ΓjyjUΩ,yίl...ymlΘ(X)Ω)dyί...dym (8)

[Π (rl-/i2)](β,r"11..4UWβ) (9)

It is a well-known fact that the tempered distribution (9) is restrictible to the
manifold (5) at non-colinear points. In the case m = 2 it is possible to prove that (9)
is restrictible to the manifold (5) everywhere and that it everywhere coincides
with <r l 5 r 2 , in I Θ(X)Ω) in the sense of tempered distributions on (5). Similarly,
at non-colinear points,

Π ir2-μ4{ΩΛ-h)l.Λ{-rm)ΪΘ{X)Ω) (10)(Q9Θ(X)\rl9...9rm9in> =

7 = 1

(with a similar improvement in the case of 2-particle states) and

Γ m I

(ru...,rmout\Θ(X)Ω}= Π (ή-μ2) (Ω, rί1...J\rm\Θ{X)Ω) (11)

etc An interesting special case is

where -Rt̂ (Z) is the generalized retarded operator corresponding to the cell

and kj = Pj + iqp (1^/^w), q in the cone corresponding to Sf9
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Finally we recall that, if r l 5 . . . , r m (resp. r'u ...,r^) are non-colinear, the am-
putated truncated chronological function

Π (rJ -V2) Π (Λ2-μ2K(ru ...,rm, - r i , . . . , -r',)
j=l k=ί

is restrictible to the "mass-shell" manifold

^ Σ 0 - Σ ^ = 0, rjeV + ,ή=μ2

9l£j£m,
k

where it coincides, in the sense of tempered distributions, with the kernel of the
connected S-matrix

References for the above mentioned facts are [16-18].

Expression of Asymptotic Completeness

Asymptotic completeness is equivalent to the set of all equations of the form

00

{Ω,Θ{X)G{Z)Ω) = Σ \(Ω,&(X)\kι,...,kmm(ouφ
m

δ(k]-μ2)θ(k°)d4kj. (12)

These equations can be transformed into equations involving the Green functions
of the theory by re-expressing the integrand with the help of the reduction formulae
recalled above: this was done in [19]. In this paper the difficulty that reduction
formulae may not hold at colinear points will not arise because only two-particle
asymptotic states will occur as intermediate states. More precisely we shall use

f ( Ω , f ( p l 9 . . . 9 P r ) f ( P r + 2> . ~ , P n ) Q ) ' < P ( P l , -•; Pr) ψ(Pr+1> ~, Pf

. Π δ(kj-μ2)θ(ky4kj (13)
7=1,2

provided φ, ψe 9* with

SuppφC {(pu...,pr); 2 2

and

SuppφC{(pΓ + 1, ...,pJ;

The same relation holds with I replaced by | . Note that the meaning of (13) is
that each square bracket in the integrand is restrictible to the 2-particle mass-shell
manifold, where it defines an L2-function the product is defined as the product
of these L2-functions.
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The Four-Point Function

The domain of analyticity of H'4 is known [20] to contain a set of the form

Jί n {/c; {kγ + k2)
2φ4μ2 +1R+}, (14)

where Jί is an open complex domain containing the real set

ί 4

St= \(kl9 ...,fc4)eIR 1 6; £ kj = O, fc1GF + , k 2 e F + ,

k3eV~,kAeV~ , k) <4μ2 , 7=1,2,3,4,

(15)

Since the holomorphy domain of H'4 is invariant under the complex Lorentz
group, Jί can be chosen to be invariant under L(<C). It is also invariant under
the symmetries (kί<^k2) and (/c3<->/c4).

01 contains the real subset

7 = 1

where 0<m 1 <μ<m2, m2 — mί<μ, (e.g. m1 = fμ, n\2 = \μ). In the variables

σ = k1

Jrk2

p=$(k1-k2)

= σ2

q = {(k3-kA) (16)

the set <f takes the form

| + ,~ ±<je V + ,

a fe ± p ) g m i m ^ ί | ±«)gm 24. (17)

Let M = (l,0)elR4, ^ u = { ( σ , p , q ) e C 1 2 ; σ = ]/su} = {{σ,p, q)e€12; σ = 0}. Then

Simple considerations of general topology about compact sets then yield:

Lemma. For every s o £4m 2 +IR + , there exists ρ(j/s^)>0 and a complex open set
Ωψs0) in (C4, invariant under the real orthogonal group 0(3, IR) (i.e. real Lorentz
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transformations leaving u invariant), such that

| l l , (18)

2) J O {(σ,p,q;σ = zu,zeD,peΩ(RQzlqeΩ(Rez)} (19)

with

D= {zeC, 2mx <Rez, |Imz| <ρ(Rez)}. (20)

If (fel9 fc2, fc3, fc4) is real and belongs to $ [see (17)], the following equations
hold (in the sense of tempered distributions):

(Ω, T(ku

(O T(k
l l ύ ? 1 \ /v i .

= (Ω,

where we have denoted

h(σ,p

h [r [r \ n \ a l

Is Is If \O\^'

If If If \C~)\^

f(kuk2)f{k3i

, for complex

•,9) = H ( | + /

m p = (ί2,/c3|/c4i

= ft(σ + iθM, p

m" = (Ω,fc,|fc2 |

= h(σ-iθu,p

mv + (Ω,f(k1,k:

Λ4)Ω)rp,
σ,p,q

Tiki, /c2)Ω)Γp

,^(.Σ4
f(fc3,fc4)ΩΓp

/ 4 \

V= 1 /

2, fe3, ̂ ) Ω ) Γ P

(21)

(22)

(23)

and, for real (k l 5..., fc4)e #,

± iOw, p, ςf) = lim h(σ ± iη, p, q). (24)

This last limit holds in the sense of distributions. In fact, owing to the domain
of analyticity described above, for every φe ̂ °°(JR) with sufficiently small support /,
the limits

lim j φ(t)h(σ + (t ± iε)u, p, q)dt = J φ(t)h(σ + {t± iθ)u9 p9 q)dt (25)
ε > 0

exist as ^°° functions of σ, p, q9 holomorphic in p and q in a certain domain:
if, in particular, σ = zw with real z>2m l 5 p and g may vary independently in
f]Ω(z + t).

The completeness Eq. (13) yields, for - +p, - —p, — - +q, — - ~q\eS

ZΌM, p, ^) — h(σ — iOu, p,q)= J h(σ + fθw, p, — r)h(σ — iOu, r, q)

• ^ ( σ - r ) « 5 ί r 2 + ^ - - μ 2 ) d 4 r . (26)
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The meaning of this equation is the following: according to the preceding discussion
h(σ + iOu, p, — r), [respectively h(σ — iOu, r, q)~\ defines an L2 function of σ and r on the

manifold σ r = 0, r2 = — — -fμ2, with the measure δ(σ r)δlr2 + — — μ2\d4'σd4'r,

with values in the holomorphic functions of p and q. The integrand in the r.h.s.
of (26) is to be understood as the product of these L2 functions, and the equality
of both sides holds for almost every σ. Owing to the analyticity of/i(σ,p, q) described
above, it can easily be shown that if we substitute σ = zu, then, for a.e. z in [2μ, 3μ],
the two sides of Eq. (26) define the same function of p and q holomorphic in
Ω(z) x Ω(z\ depending in a locally L2 way on z.

The Two-Body S-Matrix

The restriction of h(σ + iOu, p, q) to the real submanifold

\2 ίσ

is the kernel of the two-body S-matrix. In this subsection we shall recapitulate
a well-known result [1-3, 5a, 6, 10] according to which elastic unitarity allows
this function to be analytically continued across the "s-cut" into a second sheet.
This recapitulation will serve to formulate our hypotheses with precision.

Let Gr (respectively G) denote the real (respectively complex) group of rotations
(i.e. Lorentz transformations leaving u invariant), let n be the vector (0,1,0,0),
and G{r)(n)= [geG{r)\gn = n}. Let us denote

KJRuR,) = h zu, --μ'R.n, -\ ~-μ*R2nW ~-

where / - — μ2 is defined to have a cut on z2 e 4μ2 + IR+ and a positive imaginary

^ ' 4 \
part in the cut plane I. This is an analytic function of {z,Ru R2)E^ x G x G in

For any Sje G(n), Rje G with RAf^r -μ2neΩz, (/ = 1,2),

According to the preceding considerations, for a.e. ze[2μ, 3μ], KΣ±i0(R1,R2) is
a holomorphic function of Rl9 R2 in the domain described above and

z + i0(RuR)Kz_i0(R,R2) (27)

Gr

which can be rewritten, in case Rl9 R2eGr, as

= ί. (28)
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Here K, is the operator defined on ΰ{Gr)n {f:f(RS) = f{R) for all ReGr and
all5eGr"(n)}by

(KJ)(R)= $dR'Kz(R,R')f(R').
Gr

Under the hypotheses of this paper, using T(X)=T(X)* and Eqs. (21) and (22)
leads to

and (27) just expresses the unitarity of the 2-body S-matrix in the elastic range.
This suggests studying (ί+KΣ)~ι and, more generally (1+JK,L L 2 ) - 1 , where

K z L u L l ( R u R 2 ) = K s ( R ι L i 9 R 2 L 2 \ R u R 2 e G r , L l 5 L 2 e G w i t h L \ j - j ~ μ 2 n e Ω { z ) ,

zeD, ImzφO. This inverse is obtained by the Fredholm theory as:

where Dz Lί L2 = άet(l + Kz Lί Ll) and NΣtLuL2 are holomorphic in z, L 1 ? L2 in the
same domain.

We now make the following further assumption:

Hypothesis

For Rl9 R2eGr, Kz(Rι, R2) extends to a continuous function of z, Ru R2 in

{zeD, 9μ2 > Rez 2 >4μ 2 , ε Imz^O} xGrxGr

for ε = 1 and ε = — 1.
Physically this means that the 2-body S-matrix-kernel is supposed to be a

continuous function of all its variables. Actually it has been shown by Martin [6],
that this assumption is implied by the weaker assumption that the total cross-
section is bounded in this range, and as will be seen presently, leads to analyticity
of the scattering amplitude across the cut.

From this it immediately follows that Kz(Rί,R2) remains uniformly conti-
nuous in Rl7 R2 as z approaches from below (or above) any closed subinterval
of ]2μ, 3μ[ and therefore (due to Hadamard's bounds on the Fredholm determi-
nants) so do DzΛΛ and NzΛΛ (RVR2) also. In particular Dz±i0Λ1 is continuous in z
and, since 1 +Kz±i0 is invertible for a.e. real ze [2μ, 3μ], Dz + i0ΛΛ does not vanish
in this interval. By continuity, there is a complex subdomain A of D, containing
]4μ2, 9μ2[, such that DzΛΛ does not vanish for z2eΔ. Of course Dz + i0ΛΛ does
not coincide with Dz_iOli. In fact we have, according to (28), for almost every
ze]2μ, 3μ[ and hence in this whole interval, by continuity,

Dz + iΌ,i,i =D:}i0ΛΛ =D*+i0ΛΛ . (29)

Moreover, since D~/ x is holomorphic for z 2 e A, Imz 2 < 0 as well &sNZtlti{Rl,R2),
the operator (1 +KZ)~1 is also holomorphic in the same domain and provides an
analytic continuation of the operator valued function (l+iCJ|im z>o Note that
our continuity assumption plays an essential role here since it guarantees that (29)
holds for all ze]2μ, 3μ[. Without this assumption, the Eq. (29) would not neces-
sarily hold in the sense of distributions, as Martin's counterexamples show.
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It is now clear that(l + Kz), originally holomorphic for z2eD, z2<£4μ2+IR+

admits (1 + K J " 1 as a meromorphic continuation from both sides of the real
interval z 2 e]4μ 2 ,9μ 2 [, i.e. we have recovered the well-known two-sheeted
structure. We now propose to extend this property in several ways. We first note
that (1 +KZ(RU R2)) is holomorphic for z2eΔ, Ru R2eGr and for z2eΔ, I m z 2 > 0 ,

l F^
Ri,2 / ^ - μ 2 e Ω ( R e z ) , so that, by the "local tube theorem" (l+Kz(Rl9R2))

is also holomorphic in z2, Ru R2 in {z2eΔ, R12E ^(z)}, V(z) being some complex
neighborhood of Gr in G with GrV(z)=V(z). In particular Kz±i0(Ru R2) is # x in z,
RUR2 in]2μ, 3μ[x Gr x Gr, i.e. h(σ ± iOw, p, q) as a distribution has a restriction to

k ±
<9μ 2 .

Extension off the Mass-Shell

This allows us to give a straightforward meaning to

h((z + i0)u,p9q)-h((z-i0)u,p9q)

= l- \ ft((z + ΪΌ)M, p, -r)h((z-iθ)u, r, q)δ(u-r)δ (r2 + °- -μ2 J Jr (30)

2

at first in the case when, e.g. p is real and "on the mass-shell", i.e. u p = 05 p
2 = —:—

+ μ2, 4 μ 2 < z 2 < 9 μ 2 . Indeed the second factor in the integrand is restrictible as

a distribution on the manifold u r = 0, r 2 = — ^ - + μ 2 where it depends holo-

morphically on geΩ(z) [see Eq. (25)] and the first factor is ^ on that manifold
in all its variables. Thus both sides of (30) are well-defined as distributions in z
depending holomorphically an qeΩ(z) and ^ ^ in p (on "mass-shell"). The two
sides are equal because they coincide when integrated with test-functions in p
and z. But the r.h.s. is the continuous boundary value of a function, ^ in p,
holomorphic in z and q in {z2eΔ, I m z 2 < 0 } x Ώ(Rez). Hence (by Schwarz's
reflection principle) h((z + iθ)u,p,q) extends to a function ^°° in p, holomorphic
in z and q in (z2ezl,ge£2(Rez)}. The same holds for h((z — iθ)u,p,q). We now
repeat this argument with both p and q off the "mass-shell" and thus prove:

Theorem 1. The function h(zu, p, q) admits an analytic continuation across the cut
4μ2 < z 2 <9μ 2 , from both sides to a function holomorphic in

{z,p, q:z2e A, z2φ4μ2 + IR+,p, qeΩ(Rez)}.

Remark. 1) It is clear that, in fact, h(zu,p,q) has a meromorphic continuation,
in the second sheet, in the whole of

the only singularities being the zeroes of the (first-sheet) function Dz = DzΛΛ.
These zeroes are resonances of the theory. It is their accumulation at the real
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interval 4μ2<z2<9μ2 (here prevented by our explicit assumption) which might
prevent the analytic continuation of h to the second sheet.

2) Dz is entirely determined by the S-matrix.
3) On the mass-shell, the domain D can actually be replaced by a quite sizable

domain, namely the "partial-wave anatyticity" domain as obtained in [2, 21, 22].
4) The invariance of the domain of analy ticity of h under the complex Lorentz

group L((£) allows an obvious extension of Theorem 1.

2. The Five-Point Function

2.1. Notations and Completeness Equations

We denote below
Γ 4 I / 4

)= Π (P*-μ2)\τc(Pi>P2>P3>P4)δ[ Σ
b-i 4 J W

4 x i Σ Pjxj

Σ Pj) =ϊeJ=1 τ c (x 1 ,x 2 ,x 3 ,x 4 )dx 1 . . .dx 4 9

=1 /

where τc is the connected chronological function. In the real region of momentum
space where 0<p2<4μ2, (p1+p3)

2<μ2, (Pi+pd2<μ2, 4μ2<(p1+p2)
2<9μ2,

T is the product of δlΣpλ by a locally analytic function t (see Sect. 1). Hence

I\ j I
its essential support at any real point P in that region is the essential support
of the ^-function, given by

where ; Z J Q = : Ϊ is a symbol for T.

We denote similarly: F(pι,..., p5) = δi ]Γ PnfiPu ^PsX

Π (Pj-μ 2)

the amputated Fourier transform of the 5-point connected chronological function.
The region of interest will be a real neighborhood Jί(β) of the region :

«={(?!, . . . ,p 5 ): Pl=μ2,j=l,...,5, PjeV+ for 7=1,2,3, p ^ F " for; = 4,5,
2 2 1 6 M

2 } . (33)

In this region, / is the boundary value of a function (the momentum space analytic
function) analytic, near the reals, in

V-9 lm(Pι +p2)e V\ lm(Pι +p 3)e V\ Im(p2 + p3)e V + }. (34)

It is, as is well-known (see Sect. 1), restrictible to the (real) mass-shell region 01,
(away from colinear points), and coincides there with the physical (connected)
scattering amplitude (4,5-^1,2,3). We also need other boundary values of the
(amputated) momentum space analytic function in the region Jf(β) denoted

fir(Pu...,p5), (ϊ,τ) = (l,2) or (1,3) or (2,3)
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The corresponding analyticity domain is (near the reals)

{Im (p4 + p5)e F~, Im(p i + pj)e V~9 lm(Pi

(i,j, k) being a permutation of (1,2,3). In Jί{β\

J

(35)

The methods of [18, 12, 23] yield in a straightforward manner the essential
supports, at any real point P in 0t> of F and F^ . The following result [which
goes beyond (34)] is obtained:

u C 3 , (36)

+ ,xi = xpxj — xke V + } (37)

where, for any permutation (i, /, k) o

Q = {(xu ...,x5):x4 =

(see Fig. 1).
x, = x2

Fig. 1. The cone C 3

Similarly

where

Ck =

(38)

(39)

(We recall that, so far, only microcausality and the spectrum conditions have
been used.)
These essential support properties show that near any Pe& with Pi + Pj, both
F^j and F can be restricted to the submanifold {pu ...,p5: ^ p k = 0, pf=μ2,
pj = μ2} (where iφ/, 1,7= 1,2, 3). The insertion of a complete set of incoming
2-particle states in (34), for (f, j) = (l, 2), and the use of reduction formulae show
that, in a real neighborhood of the region ^?, if pj Φp 2 ,

(40)-δ{k\- μ2 )θ(kϊ) δ{k\ - μ2)θ(k°2) dk {dk2
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and similarly for any permutation of 1,2,3. (For a general theory of these
formulae, see e.g. [19, 5b].) A graphical representation of this formula is:

(41)

Remark. Since t{pι,p2, — fc1? —k2) has been shown to be real analytic in the
integration range, and Fj~2 is restrictible to the integration manifold, the meaning
of the integral in (40) is simply that of a distribution (F^2δδ) integrated with a
test-function (r), the result being then multiplied by δ(Σpj).

2.2. The Results

Under the same assumptions as in Sect. 1, we shall prove:

Theorem 1. Let P be a physical point of the process 4, 5->l, 2, 3

5

>2 = μ 2 , / c = l , . . . , 5 , P°k>0 for fc=l,2,3, P ° < 0 for fc = 4 , 5 , £ Pk =
k= 1

such that 4μ2 < (P, + Pj)2 < 9μ2 and (P, + P} - Pk)
2 φ μ2 whenever (/, /, k) is a permuta-

tion of l)-3). The essential support of F is contained in the cone C:

Equivalently, f is the boundary value of a function analytic, near PJrom directions
with imaginary parts satisfying

Im(Pί+p2+p3)eV+. (43)

Remarks. 1) The theorem follows from the essential support properties mentioned
above for T, F, F^ and from Eq. (40).

2) The complex Lorentz invariance of the analyticity domain of F com-
bined with (43) shows that / is analytic, near P, in directions satisfying Ims>0,
s = (Pi +P2+P3)2- This shows that non-linear properties yield not only analy-
ticity in "the second sheet", but also improve the analyticity in the "physical
sheet".

In terms of essential supports, Lorentz invariance replaces in (42) the condi-
tion x1 —x4e V+ by: x{ —x4 = λ(Pι +P2 + P3\ λ^O.

3) This analyticity shows that the restriction of F to the mass-shell is itself
the boundary value (from the direction Ims>0) of an analytic function, near
any real P satisfying the hypotheses of the theorem, an appreciable improvement
over the linear results of [18]. Furthermore the same method shows the same
analyticity for F J [by inserting outgoing states in (35)] which is, therefore, also
restrictible to the mass-shell.

Proof of Theorem 1. The proof of Theorem 1 is based on the general mechanism
described in the introduction however one application of this theorem, while it
does yield an increase of the analyticity domain of /, is not sufficient to give the
desired result, and two more iterations of the procedure will be needed. Since only
infinitesimal results are stated in the theorem, its proof is most conveniently
expressed in terms of essential supports. We shall apply general results on products
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and integrals of distributions, as stated in Theorems 10 and 11 of [23, pp. 326

and 329], to the term <^3~O—• *n ^ ^ *
In particular these theorems imply that the following "rule of the game"

can be applied in steps (i) to (iii) below: the only possible points (x l 9 ...,x5) in
ESp(\zQ)~~ζy—\) are those for which there exist (fcl9 k2) in the integration domain,
i.e. kj=μ2, k°} >0, 7= 1,2, kι+k2 = Pι +P2, and space-time points yu y2, y3, y4

such that ^ 3

t, y29 x3, x4, x5)e ^S ( M > J ί 2 ip 3 >p 4 >p 5 )0=i(JEϊ), (44a)

(44b)

y3-y2 = λιkl9 (44c)

y4-y2 = λ2k2, (44d)

where λl9 λ2 are real scalars.
We shall not go into the details of the proof of this "rule of the game" which

is a standard application of the theory of essential supports and is applicable
whenever P is not a u = 0 point for the integral β=Qbθ=?. [P is u = 0 point for
this integral if Eq. (44) can be satisfied with xι=x2 = x3=x4 = x5=Q, 3^Φ0 for
at least one k.~\ In particular, it is applicable in steps (i)-(iiί), where 4μ2 <(Pί-\- P2)

2

<9μ2, since the integration range does not include points where kx =k2

In geometrical terms the rule means that (x 1 } . . ., x5) is not in
if we cannot find two space-time configurations (yί9y2,x3,X4.,x5) and (x l 5 x 2 ,
3/3,3/4) representing points in the E.S. of ίnQEΞj and ,'ZjQzzί, respectively,
at points (kι,k2,P3,P4,P5) and (Pι,P2, —ku —k2), respectively, (kι,k2) being
some point of the integration range, the two configurations being required to
"fit together" in the sense that y3 (respectively y4) must lie on the space-time
trajectory parallel to k{ (respectively k2) passing through yx (respectively y2).

As already mentioned, the proof will require three steps.

(i) First Step

Let P be any point in the region 01 [Eq. (33)] with Pi Φ P 2 From Eq. (40) it follows
that ESP(F) is contained in the intersection of Cί u C 2 u C3 (original information)
with the union of the E.S. at P of the two terms in the r.h.s. Since, at P, the E.S.
of T is given by Eq. (32), the "rule of the game" yields

where C3 arises from the corresponding part C3 of ESΠiifj^—j), and

C'1)2 = {(*i, •••? ^5)^1 —X5,χι=x2, 3(/c1? k2) such that

x3—xi=λιkί,3x such that x — xί=λ2k2,

(46)

As mentioned before, the essential support of F is contained in (Ci u C2 u C3)
n [(Cj υ C 2 u C^)uC 1 2 ], so that:

(47)
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where

3(fcl5fe2) with /c? = ^ - μ

kί+k2 = Pι + P2, suchthat xι-x3=λίkuλι^0}. (48)

Here C3 is bigger than C'lt2nC3 and some information has thus been lost;
but this will suffice for our later purposes. Configurations (x1? ...,x5) occurring
in (48) are schematized in Fig. 2; x3 must be on a trajectory parallel to kλ, passing
through xί = x2, and must satisfy λ ^ - λ ^ e ^ , x3 — x 4 eK + , x4 = x5.

x,= x .

Fig. 2. The Cone C,

Permuting 1, 2, and 3 we obtain, for any P in $:

ESP(F)cC\uC2uC3 if PiΦPj9 1,7= 1,2,3, 1Φ7, (49)

£S P ( f )CCiuC)uC k if P^PJΦP^ {i,j,k} = {1,2,3}. (50)

These results, in turn, together with Eqs. (40) and (45), also yield information on

Fv: ES P (F- 2 )cC 1 uC /

2 uC 3 - if PiΦPj, U = l , 2 , 3 , ΐΦj. (51)

E y F i J c C . u ς u C ^ if PιφP2,P3=Pi ( i=l or 2). (52)

f πV Second Step

In this second step we again use Eq. (40), (i.e. first concentrate on F^), and consider,
as in the 1. step, any real P in the region ffl such that P{ Φ P2. But, in the evaluation
of £SF (!ZQF-Q~~J). we shall now use the new information (51), (52) on Fj~2;
Eq. (51) will be used for all (kί, k2) in the integration domain such that k{ ΦP 3 ,
/c2ΦP3; Eq. (52) will be used for the points (fe1,fe2) such that kι=P3 or k2=

:P3

if they exist.

Remark. The occurrence, in the integration domain, of points fcl9 fc2 such that
kt = P 3 would be excluded if we supposed (as in Theorem 1) that (Pί + P 2 — P 3) 2

φμ 2 . But this assumption cannot be made at this stage because the results of the
second step will have to be reinjected into the third step.

According to the "rule of the game", a point (xί,..., x5) may be in the essential
support of ' ^ Q h c r d if; 3fc1? k2e V+ with k\ = k2

2 = μ2, kι+k2 = Pι + P 2 , il^
y 2eR 4, ^elR, A2elR such that:

X!=x2, xι-yί=λιk1, xι~y2=λ2k2
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and

ϋ>i > 3>2> X3> x^ xs)ε CΊ u C'2 u C3 if k{ φ P 3 Φ/c2

(3>i > 3>2> X3> *4>* 5 )eC; u C 2 u C 3 " if fct = P 3 φfc2 .

If /q Φ P 3 φfc2, the contribution of C^ is again in C^ and the contribution of C2

or C\ is contained in the set of points such that, for some λ\eWL+, k\e V +, k'2e K + ,
with k\ +kf

2 = kι + P 3 , k\2 = k'2
2 = μ2,

xx=x2, xί-x3 = λίkι, x{-y2=λ2k2, x3-y2=λ'1k'ίeV+, y2-x±eVl, x4 = x5.

In the case fc1=P3, the contribution of C^ is in C3, the contribution of C\
and C 2 are contained in

{(xu ...,x5), xί=x2, x4 = x5, xί-x3=λP3, x3-x4eV + }.

[This situation occurs only if (Pί + P 2 — P?)2—^2^]
Intersecting these sets with C 1 u C 2 u C 3 gives [with again some loss of

information in (54)]:

ESP{F)CCX\JC2\JC^ (53)

where C3 = C^u C3, the term C"3 being absent if (Px +P2 ~P^)2 =¥μ2, and where

C3 = {(*!, . . ,x 5 ):x4 = x 5 J x 1 = x 2 5 x3-x4eV + ,x3-xιeV~,

3kl9k2 with k\ = k\= μ2, k?>0, /c°>0, k ι + fc2 = P, + P 2 ,

3k;, fc2 with /c;2 = k2

2 = μ2, /c;0 > 0, k'2° > 0, fc\ + fc2 = k, + P 3 ,

3J;GIR4 such that xι—x3 = λιku λ{^0

xι-y = λ2k2,λ2^0}, (54)

C ^ ^ X ! , ...,x5):x4 = x5,xι=x2,x3-x4eV + ,xι-x3eV + ,

Xι-x3=λP3(λ^0)}. (55)

By permutations, this yields

ESP(F)CC[UC2'KJCI if P ^ P . φ P . φ P , . (56)

Also

Q-,(U,k) = (l,2,3) if P 1 Φ P 2 Φ P 3 + P 1 . (57)

f//ϊj Third Step

Now we assume that, for all permutations (ij, k) of (1, 2, 3)

P;ΦP 7., (P + P - P ^ Φ μ 2 .

This allows the application of the "rule of the game" together with (57) to the

determination of ESP ( = Q E Q Ξ ' 0 The contribution of C'[ or C"2 consists of the

points (x 1 ? . . .,x 5) such that there exist kίeV + , k2eV + , with ki+k2 =
4, y2GlR4, λ^M, /l2elRsuch that:
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1) If (kx +P3— /c 2) 2φμ 2 [note that fcJ + P 3 because of the condition
(P{ +P2-P3)

2Φμ2~]: there exist k\eV + , k'2e V + , k'[e F + , k\e V + , ZEIR 4 , λ\e1R+,
/1/

1

/GIR+, /t2eIR, with k\2 = k'2 = k'{2 = k2

2 = μ2, kf

ί+k'2 = kι+P3, k" + k'2 = k\+k2,
such that

X 4 - X 5 , Xi = X 2 , y{ = X 3 , X, - X 3 = / 1 f e 1 , X! - ^ 2 = ^ 2 ^ 2 ,

x 3 - } ; 2 = /l
/

1/c/

1GF + ,};2-z = ;/ί/</;eK +

 ?X3-z-2 /

2/c /

2GK+ . (58)

If (x l 9 . . . , x5) is furthermore required to be in Cj u C 2 u C 3 , the conditions (58)
are supplemented with: λίkιeV + . In this case we thus have the kinematical
situation pictured in Fig. 3.

Fig. 3

However a well-known theorem (one proof can be found e.g. in [24]) asserts
that [in view of the restrictions (k{ +k2)

2 = (P{ + P 2 ) 2 < 9 μ 2 , {k'1+k'2)
2 = {kί+P3)

2

<9μ2, (/c'ί+ /c2)
2 = (/c/

1 + fc2)
2<9μ2] such a situation is impossible unless Λ 1=0,

x1=x2 = x3, x3~x4_eV + , x4 = x5. (59)

2) If (/cj + P 3 — k 2 ) 2 = μ 2 , t h e r e e x i s t s Aj ^_0 s u c h t h a t x i = x 2 , x ί — x 3 = λ ί k ί ,
xι-y2=λ2k2,x3-y2=λf

ιk2eV + ,y2-x4C V + ,x4 = x5.
But this implies (λ2—λ/

i)k2 = λιki, hence, since kγή^k2, λι=(λ2—λ\) = 0,
so that x must again satisfy (59).

In conclusion, for Pe M with Pt Φ Pp (Pf + Pj - Pkf Φ μ2,

ESP(F) c {(xl5..., x5), xί =x2 = x3, x4 = x5, X3-X4G K + }. (60)

This concludes the proof of Theorem 1.

Remark. As it was pointed out in [18], the Steinmann identities allow a decompo-
sition (near points of 0ί) of the various boundary values /, j\f, of the momentum
space analytic function into six functions which we denote g* (/c=l,2, 3). Each
g* is analytic in the intersection of a neighborhood of 01 with the tube

(fc, /,/) being any permutation of (1,2, 3), and

3

/ = Σ 9k 1 fίj =9? +Gj
κ = 1

It is possible to give a proof of Theorem 1 by using these functions: it turns out
that each of them has the analyticity asserted for / by Theorem 1.
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3. The Six-Point Function

3.1. Notations and Completeness Equations

In this section, we consider real points ( P l 9 . . . , P 6 ) (with P j + . . . + P 6 = 0) in a
real neighborhood Jί{β) of the set

<X={(pu...,p6):pl = μ\k=U...,6,pjeV + for 7 = 1,2,3,

PjeV~ for 7 = 4,5 ,6 , 9μ2 <(Pι+p2+p3)
2 <lβμ2} . (61)

The condition that (p t +P2+P3)2 < 1 6 μ 2 ensures that for any triplet /cl5 k2, k3

with k{+k2 + k3 = p{+p2+p3, k]=μ2, /cj>0 for all 7, the inequality (/c1+/c2)
2

<9μ2 holds.
We denote / β \

F(pι,...,p6)=°ι^^^δ[Σpj)f(pι,...,pb)
U ; (62)

U=i

the amputated Fourier transform of the 6-point connected chronological function.
In a neighborhood of J>, / is the boundary value of the 6-point momentum space
analytic function from the directions verifying

for every permuation (ij, k) of (1,2, 3) and (/, m, ή) of (4, 5, 6)}. (63)

The restriction of / to the mass-shell region 01 at non-colinear points, is the
connected scattering amplitude for the process ( — p 4, — p 5, — P 6 ) ~ > ( P H P 2 ' P 3 )

The conditions Im(p,+ p j + p/)e K+ in (63) are due to single particle poles.
These can, as is well-known, be extracted in many ways (see e.g. [5b]) and we
choose the following. Let

π2Bψ I d \N~ι

(N-l)l \dL2) [μ L )

ι-{p2-β + i0y1~]d4p,

° x°)F-(x) (64)

\N~ι

Here L>4μ, and /V>0 is an integer so large that F±, Fc are several times
continuously differentiable. Fc will serve as "propagator" in the Feynman-like
diagrams we shall need. In particular we define

(65)
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(Here the indices i φ j take the values 1,2, 3, mφn take the values 4, 5, 6 and there

are 9 such pole terms.)

For example

rί 2 τ2\N / ϊ 2 2 i r\\ — 1 / 2 r2 . rv\ — /VT J 4 J.1 / / / x I \ \k n A- /III \ k / - 4 - 7 I M \ n k

= t(P2,P3,p6, -k)t(k,pl9p49p5)(μ2-ΰ)N

-μ

2+ίoyι(k2-L2+ioyNs X Pj
(66)

[in the last expression, k stands for p2+P?> + P6= ~ (Pi + P4 + Ps)]

The term 3 2 E m (65) can be written δ(ΣPj)fι(p)> where j \ is the boundary

value of a (partially) one-particle irreducible analytic function from the directions

satisfying

{lm(Pi + Pj)e V\ Im(p, + pje V,

for all permutations (/, /, /c) of (1-3) and (/, m, n) of (4-6)}. (67)

(68)

p (69)

In a real neighborhood of the region 0t, they are equal to δ(^Pj) multiplied

by boundary values of the m o m e n t u m space analytic function from the directions

satisfying, respectively,

We shall also need the distributions given by

; , (T(U 2, 3,4, 5 , 6 ) - T(Uj) T(k, 4, 5, 6))Ω)ΓP

fe9 4, 5,6)Ω)Γ P ,

1, 2, 3, 4, 5, 6) - 7(/, 1, 2, 3) T(m, n)

, 2,

pf)G K", V(r, s) C (4, 5,6),

V ί = l , 2 , 3 } .

V\ lm(pr + ps)e V,

(70)

and

, lm(pr

(71)

Correspondingly

V m

- Σ : (72)

with a similar identity for ™
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The distributions H j ^ - and 3 j } Ξ a r e equal to δQ^Pj) multiplied by b.v.
of the (partially) one particle irreducible function in domains larger than the
corresponding domains (70) and (71), namely those obtained by striking out,
in (70) [respectively (71)] the conditions of the type lm(pr + ps + pt)e V~ (respec-
tively V + ). These properties will be fully described by stating the essential supports
of these distributions in the region ^ .

The results of the linear program [18] give, for

= U
s=l,2,3
ί = 4,5,6

where e.g.:

C$ = {(x l9... x6):xί=x2, x5=X , x4-x5e

(73)

(74)

the other Cs being obtained by independently permuting 1,2, 3 and 4, 5, 6. Con-
figurations occurring in C\ are schematically represented in Fig. 4.

Fig. 4. The cone C\

Similarly

where, e.g.

(75a)

(75b)

- = {(-^i, -.., X6Y.Xι =*2i -̂ 5 = : ) C 6 ? ^ 1 - ^ 3 G V > X3 ~X4e V + >

- {(x l5..., x 6):x! = x 2 , x5

X4 — X5E V'} .

(76)

It follows that, for any permutation (ij, k) of (1, 2, 3) and (/, m, n) of (4, 5,6),
the distributions

as well as their non-irreducible versions can be restricted to the manifolds
{p:pf = pj = μ2} and {p' P2

m = p2

n=μ2} near points P in SI, with Λ φ P ; or PmφPn
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respectively. Our assumptions imply that the following equations [analogous
to Eq. (40) of Sect. 2] are satisfied in a real neighborhood of ^ :

if

if

(77)

(78)

These equations make sense because of the local analyticity of the 4 point
function in the integration range. Equations (77) [respectively (78)] is obtained
by inserting a complete set of 2-particle ingoing (respectively outgoing) states in
(the untruncated version of) Eq. (68) [respectively (69)]. Other equations of the
same type can be obtained by exchanging the words ''ingoing" and "outgoing".
Explicitly, in the above formulae, we have, e.g.,

ι,p2, -ku -k2)\^k2-μ2)(k2

2-μ2)

• (Ω, y i [y21T(x3,..., x6)Ω)cdy1dy2dxί.. Jxβ

• δ(kj - μ2) θ(k?) d4 k! δ(fcf - μ 2) θ{k°2) d4 k2 .

Equations (77) and (72) yield

(79)

where z φ z (the discontinuity of zχχi) satisfies

zφz = ZJ^XJZ -- ZCCXDZ -- zθz -

[The other pole terms in (75) have no discontinuity in the channel (1, 2).] Similarly

Further expansion of (79) gives

3

and similarly for (80).

3.2. Triangle Graphs

We now introduce auxiliary "six-point functions" generalizing Feynman integrals
associated with triangle graphs. Their chronological boundary values, denoted
Gfc, (fc= 1, 2, 3, / = 4, 5, 6) are given, in x-space by

G|(x 1 , . . . , x 6 )=

(82)
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The Fourier transform G3 of G3 in momentum-space is represented diagram-
matically in Fig. 5.

Fig. 5. Diagram for Gt

The integrand of this expression is well defined (provided N has been chosen
sufficiently large in the definition of Fc). The integration over the y-variables
exists in the sense of a "weak adiabatic limit". This means that, if we introduce
an extra factor gε (yl9 .••,y6)

=::g(εyι, ••-.̂ β) m t o t n e integrand, with g e ^ I R 2 4 ) ,
0(0)= 1, the limit exists and is independent of g. It defines the chronological b.v.
of a 6-point-function with all the standard linear properties. These facts as well as
the correct definition of the other "boundary values" and, actually a general
theory of such Feynman-like diagrams can easily be derived from the ideas
sketched in [15, Sect. 6]. The momentum space analytic functions so obtained
coincide with the G-convolutions defined and studied by Bros and Lassalle by
means of integrations over complex "contours". General results on analytίcity
of the latter in the primitive domain have been obtained in this approach in
[5, 25]. More refined results that go beyond the primitive domain, such as the
derivation of the detailed analytic structure in terms of the Landau singularities
which are specific of a given diagram, have also been established in certain cases,
in [5e, 26] and entail in particular the results below on triangular diagrams.
A short alternative treatment of these triangular diagrams, sufficient for our
purposes, is given for completeness in the Appendix. It yields, in particular, the
following results (in momentum space)

ccf if

^ ; ) if Pe^P^P^P^P^P.Λ-P.-P^^μ2 (84)

with

Cf3A={(xu •••> *e); xι =X2> x 3 = x 4 , x5=x6, 3fc1? fc2, k3e F + ,

k\ = k\ = k\ = μ2, λx, λ2, A3e IR+ such that

XI X3

 == A-^ K^9 X i X 5 -— A 2 K2 5 X 3 ^5 :=z ^ 3 *^3i

u { ( x 1 . . . x 6 ) ; x 1 = x 2 = x 3 = x 4 = x 5 = x 6 } (85)

(see Fig. 6) and

E={(x1,...,x6):xι=x2=x3,x4 = x5 = x6,xί-χ4_eV + }. (86)

Remarks. 1. A more detailed analysis shows, as it also follows from [5e, 26], that
in fact, for points P satisfying the conditions of (84) the set E can be omitted in
the r.h.s. of (84), i.e. ESP{G^)CC'^Λ. This is not needed for the purposes of this
paper.

2. Points in C3A (other than xί = . . . = x 6 ) are represented in Fig. 6. The con-
ditions on P in (84) ensure that given fel5/c2,fe3 on the mass-shell with k1+k2

= Pγ+P2, k2+k3= —(P5 +P6\ the functions t associated with each bubble are
locally analytic at the respective points ( P 1 ? P 2 , — fcl5 — fc2), (/c1,P3, —/c3,P4),
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Fig. 6. Configurations in C3A

(k2,k3,P5iP6). The cone C3Λ then coincides with the essential support of the
corresponding Feynman integral where these functions t are replaced by constants.

The other result we need (see the Appendix) is

3.3. Results

Let A be defined by

if Pern P1*P2. (87)

Then:

(88)

Theorem 2. >4ί α// points Pe& satisfying, for every permutation (i, /, k) o/ (1, 2, 3)
or o/ (4, 5, 6), P f Φ Pp (Pt + P} - Pk)

2 Φ μ\

ESP(A)C{(xu...,x6):xι=x2=x3,x4 = x5=x6,xι-x4eV + }. (89)

Remark. The Lorentz invariance of the analyticity domain of the momentum
space analytic function associated with A then shows that this function is analytic,
near P in the directions satisfying Ims>0, s = (pί +p2+p?)2, or, equivalently,

Proof of Theorem 2. It will suffice to prove that, for Pe 01 satisfying the conditions
of the theorem,

ESP{A)C \J {{xί9 ...,x6):xι=x2 = x3,Xf = xm,xn-xtfeV + ,
(t,m,n) = permutations j/+ \ /QΓ\\

of(4,5,6) Xl~~ XnE V / • \SΌ)

Since the same methods will obviously give a similar result with the roles of the
variables (1,2,3) and (4,5,6) exchanged, the result (89) is obtained by inter-
section.

By Eq. (81), for each i = 1, 2, 3.

• ί j 1 ^ 1 - 1 ^ ]

Σ/^^' (91)
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The proof of (90) is carried out in three steps completely analogous to those
of Sect. 2. The cones Cl9C2,C3 of Sect. 2 are replaced now by

Ck= U C'k9 fc=l,2,3 (92)
ί = 4 , 5 , 6

(i.e. the point x 4 = x 5 of Sect. 2 is now replaced by

\J {(x4, x 5 , x 6 ) ; xn = xm, Xf-xne V + }).
(tf,m,n) = permutations

of (4,5,6)

The points P considered in these three steps are such that, for every permutation
V,m9n) of (4,5,6), P,ΦPm and (P, + Pm-Pn)

2Φμ2. Moreover Pl9P2,P3 satisfy,
at each step, the same conditions as in Sect. 2. In the first two steps information
on A follows from (91) together with (83)—(87) and yields [by (81)] information
on ϊ@E. The result (90) is the outcome of the last step. The cones C'h C", C~
appearing at each step differ from those appearing in Sect. 2 in the same way as
the corresponding Ch as explained above. The supplementary terms in the r.h.s.
of (91) do not modify the situation: indeed, in view of (83)—(87),

ESpiG'j) C Cjί5

ESP(Gf) C C' if P satisfies the conditions of Theorem 2,

and the bracket term in (91) has its essential support in Cf~ for Pjή=Pk.

Appendix

We give here a short account of the properties of triangular graphs needed
in this paper, based on "discontinuity formulae" which follow straightforwardly
from Sect. 6.6. of [15]. To describe diagrammatically these formulae, we shall
use the following conventions:

stands for the "chronological b.v." of a
general rc-point function, amputated in all
its variables. It could be denoted

B ! KJK I A τ h e corresponding (T(A)T(B)).

BJ : £ g ; JA The corresponding (T(X)-T(A)T(B)).

An Fc propagator.

h * *i F+(y1 —y2) or equivalently, in the present paper,

- i - 3 J δ(k2 -μ2)θ(k°) exp [ -i{yx -y2)k]d*k.

—jj— Momentum space version of the preceding.
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We consider now a diagram of the form

and ask for the corresponding

in the sense defined above. This is given, in momentum space, when pA = ]Γ pj

satisfies pAe K + , pA<9μ2, by

(Al)

(A2)

Remark. In the general case, individual terms appearing in such "discontinuity
formulae" only make sense before taking the adiabatic limit (while their sum
always has a well defined adiabatic limit). In the cases occurring in this paper,
however, all terms make sense and the formulae hold in the adiabatic limit.

In order to apply these formulae to G3, we first note that, for the 6-point
function defined by a pole term,

the (1,2)-channel "discontinuity"

vanishes in the relevant region, i.e. at points P satisfying

Hence applying (Al) yields

2 0 δ ^ (A4)

Note that, for 4μ2<{P1+P2)
2 <9μ 2 ,

njt: = mto: - XΠE;

and that Hit (when all the variables are on the mass-shell, not at thresholds) is
locally analytic. Hence the last term in (A4) is obviously well-defined, and the
first is equal to

so that it is also manifestly well-defined.
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It is easy to see, by the same methods, that the momentum space analytic
function associated with G% has no discontinuities (near real points Pe M) in any
of the channels: {1,3}, {2,3}, {4,5}, {1,3,4}, {2,3,4}, {1,2,4}, {1,2,5}, {1,2,6},
{1,3,5}, {1,3,6}, {2,3,5}, {2, 3,6}. As a consequence, for

ESP(Gt) C Ci

while the "boundary value" K= Ξ(§Ei satisfies

ESP(Gt-)CC$- .

According to (A4), for P e ^ , (Pι + P 2 ) 2 > 4 μ 2 ,

Hence
G3-

Equation (A9) implies Eq. (87) since it can be rewritten

(A5)

(A6)

(A7)

(A8)

(A9)

Indeed the application of the rule of the game shows that (for P1=t=P2,
both terms in the r.h.s. have their essential support in C\-.

We now derive Eq. (84). First consider the expression

at a point (kuk2,p3, ...9p6)eβt such that ( P 5 + P 6 ) 2 > 4 μ 2 , ( P 5 + P 6 - P 4 ) 2 Φ / A
These conditions imply that the bubble on the left is locally analytic, and so is
the bubble on the right when k3= — ( P 5 + P 6 + /c2) is on the mass-shell, in which
case

ES(kιk2P3...P6)(D)C {(yi,y2>*3> •• >-*6); X5=*6=3>2>

4̂ = ̂ 3=3;i^3-^=Λ5^0} (A10)

(yuy2 being the variables conjugate to k1,k2). If k3 is not on the mass-shell
then ES(D) is simply {x:xί=x2 = . . . = x 6 } , unless ( k 3 — P 4 ) 2 = 4 μ 2 , hence fe1=P3,
in which case

(All)

Applying the "rule of the game" leads to corresponding information on

Ξ The Eq. (84) is then obtained by intersecting C% with

and by using arguments similar to above (and somewhat simplified) on the
equation analogous to (A9) that relates G3 and G\~.
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