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Abstract. For a certain class of analytic potentials V(x\ matrix elements of
the resolvent of HF = — d2/dx2 + Fx + V(x) with entire vectors of the trans-
lation group have meromorphic continuations from Im z > 0 to the whole
complex plane. The poles of these continuations are restricted to a discrete
set independent of the analytic vectors chosen. Certain random potentials
corresponding to an infinite number of particles distributed on the points
of a Poisson set lie in this class with probability one as do a large class of periodic
potentials.

1. Introduction

It is believed that when a uniform electric field F is applied to a one-dimensional
periodic solid described by

H = - d2/dx2 + V(x)

with V(x) periodic of period 1, each band gives rise to an infinite sequence of
resonances of fixed imaginary part, located at

En = E0 + nF n = 0, ± 1 , ± 2 , . . .

where Im Eo < 0. Although the Hamiltonian

HF= -d2/dx2 + Fx+V{x)

may look rather simple, no rigorous proof of the existence of these resonances
has yet been given, to say nothing of the important problem of estimating the
lifetime. Attacking the problem from a different point of view, Bentosela [6]
has shown, in any number of dimensions, the existence of states φ such that

e~itHF φ j l a s a m o m e n t u m distribution with the momentum nearly periodic
in time over many periods T = 2π/F.
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It is our purpose here to give a framework for the discussion of this problem
by means of the translation analyticity technique introduced in [4]. We show that
the operator

HF(-ia)= - d2/dx2 + Fx + V(x - ia) - iaF, a > 0

obtained by subjecting HF to a complex translation ia has its essential spectrum
contained in U-iaF, provided that V(z) is analytic in a strip | Im z \ < a0, with
a<aQ, and satisfies a growth estimate.

This includes a large class of periodic and almost periodic potentials. Once
this is accomplished, one has standard machinery with which to discuss resonances
[1,4,5]. The difficulty is that V(x-ia) is not a relatively compact perturbation
of — d2/dx2 + Fx. We get around this by treating HF( — a) — z as a perturbation
of a (z, α)-dependent operator B(z, a) whose inverse is known more or less explicitly
from a WKB approximation.

We have also considered the problem for a class of random potentials on U.
Such potentials have been studied widely in recent years as models of unordered
materials. For a large class of V, the operator — d2/dx2 + V has almost surely
a pure point spectrum, dense in, say, [0, oo), if V is positive [9,10] indicating zero
conductivity in the F -» 0 and zero temperature limit. The phenomenon is known
as Anderson localization [2,14]. It seems of interest to consider the case F ψ 0.
We study a model where identical atoms are placed randomly on the line at the
locations of a Poisson ensemble of points. This leads to the potential

V(x)= £ u(x-Xj)
j= - o o

where u(x) is the potential due to each atom, and X. is the (random) position of
the jth atom. If u(x) satisfies certain assumptions (including integrability and
analyticity in a strip), we are able to show that almost surely V(z) is analytic
there and

With this growth estimate, our result on the essential spectrum is shown to be
applicable to this case.

We remark that our results obviously still apply if a periodic potential is
added to our random potential. We then have a model of impurities in a crystal,
the density of which can be varied continuously by changing the parameter in
the Poisson distribution. It would be interesting to have an almost sure result
on the location of resonances as F -• 0 but we have not studied this problem.
It would also be of interest to prove Anderson localization for our model with
F = 0.

Section 2 of this paper is devoted to proving the essential spectrum result
for HF(a) discussed above and the results on resonances which follow from it.
Here we make assumptions about the potential V which we verify in Section 3
for our random potential.

We use the notations 1R for the reals, C for the complexes, and Ran L, Ker
L and 3>{L) for the range, kernel and domain of an operator L.
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2. Translation Analyticity for H

In this section we will be concerned with the operator =• + x + F, (x) + λ
dx

(we set F = 1 without loss of generality) where Vλ(x) = F(x + X) and λ is complex.
Because Vλ will be unbounded at infinity even the definition of this operator is
not obvious. We will always assume that V obeys the following conditions:

(a) V is analytic in Sao = {z : | Im z | < a0 } where 0 < a0 ^ oo.
(b) If 0 < a < a0, | V(z)\ S ca(l + |z | 1 / 2 ~ ε ) for all zeSa and for some ε > 0.
(c) F is real valued on the real axis.

For λ real, it follows from a result of Faris and Lavine [7] that

— - r - τ + x + F2 +Λ, is essentially self-adioint on C!?((R). We denote the closure
dx2 λ °

of this operator by H{λ) and set H = H(0).
Following Reed and Simon [11, p. 236], we shall define the essential spectrum

σess(L) of a closed operator L to consist of all points of the spectrum σ(L), except
for isolated eigenvalues of finite algebraic multiplicity. Thus, the complement
of σess(L) is the set of z on which (L-z)~1 is meromorphic, with finite rank principal
parts at each of its poles. The discrete spectrum is defined as σd i s c(L) =
σ(L)\σess(L).

For real a, let U{a) be the unitary translation operator:

U(a)f(x)=f(x + a).

The goal of this section is to prove the following result:

2.1 Theorem Assume V satisfies a), b) and c) above. Then

d2 „ \
.̂̂ wrr̂ x r, ^ closable. Denote(i) The operator I - — ^ + x + λ + F λ

zίs c/oswrβ fey fl(λ). For a e IR we /zαi e L/(α)H(λ) [/(- α) = H(λ + α).
(ii) ForAeSeo,ff(A)* = .
(iii) ForλeSao,σi

(iv) 7/0 < Im/l<α 0 ,

and ifO < Im μ ^ Im λ9 then

^iJH(μ)) = σdiJH(λ))n{z :0 ^ Im z < Im μ}

vvλere ^d i s c(Ή(λ)) = σ disc(^W) n ( z : ^ m z ^ ^ m ^}* Because of (ii) ί/zere is α similar
statement for — a0 < Im A < 0.

(v) (z — iϊ(A))~1 is analytic in λ for λeDz where Dz = {λeSao'Amλ>Imz,
zφσ(H(λ))} and for λeEz = {λeSao:lm λ < Im z, z^σ(H(A))}.

The following Corollary justifies the consideration of H(λ) for complex λ.
Let H(0) = H.

2.2 Corollary. Assume V satisfies a), b), c) αbcwe. Let 9 be the family ofallfeL2{U)
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such that U(a)fhas an 1}-valued analytic continuation to |Im a\ < a0 Let

0<α<α0

Then iffe@, the function G(f z) = (/, (z — H)~ xf) has an analytic continuation
from Im z > 0 to {z : Im z > — α0} \ ̂ f l o w/zic/z is meromorphic in {z : Im z > — α 0}.
IfzQe^ao then there is anfeQ) such that G(f-) has a pole at z 0 .

The proof of Corollary 2.2 parallels the dilation analyticity proof in [1,5].
(See also [4]) Thus we do not give it here. Before proving Theorem 2.1, we make
a few remarks:

1) We follow precedent and call the points of Mao resonances. Note that if
we do not assume the electric field F = 1, or the electric charge e = 1, the Hamil-
tonian H(λ) becomes

HF(A) = - ^ p + Vλ(x) + eFx + eλF

a n d <Mao b e c o m e s <MeFaQ.

2) If V is periodic, with period β then

U(β)HF(λ)U( -β) = HF(λ + β) = HF(λ) + eβF

and thus if E o is a resonance so is £ 0 -h neβF for all integers n. This infinite sequence
of poles with constant imaginary part is called the Stark ladder. Thus, if there is
any resonance at all (which we have not shown), there must be a ladder. According
to the lore, there is supposed to be a ladder for each conduction band, of which
there are an infinite number. When a0 = oo, then since resonances, in our sense,
cannot accumulate at a finite point, the imaginary parts of an infinite number of
ladders must tend to infinity. Thus, for high conduction bands, the ladder
resonances must be far removed from the axis.

3) It should be possible to use our techniques to prove analyticity of the
resonances in F in some region away from jp = 0. We shall not attempt this here.

Proof of Theorem 2Λ: Our technique of proof relies on a more or less explicit
computation of the inverse of an operator of the form

d2

- -^2 + x + y

λ (x) + Q fe K x) - z

where for fixed (z, λ), Q is a function of x which vanishes at oo. The solutions of
the corresponding differential equation are WKB approximations to the original
equation.

We then perturb this operator by subtracting Q. This procedure has much
in common with Titchmarsh's treatment of the one-dimensional Stark problem
[15] and the work of Rejto and Sinha [12] on Stark-like Hamiltonians.

The WKB approximation is based on the action integral, which in our case is

+ Vλ(x)-zdx.

However, to prove analyticity in the variables (z, λ), we find it easier to work with
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an asymptotic approximation to this, valid for large \x\. Accordingly, we define
instead

S(z,λ;x) = lχV2-zx1/2 + ̂ x

0Vλ(t)Γ1/2dt, x>0

= γ.(- xf12 ~ iz( - x)m - l^l Vλ(t)(- t)- 1/2dt, x < 0. (2.1)

For I Im λ \ < a0 and Im z Φ 0, define

and

if + Im z > 0. To be definite, consider Im z > 0 similar arguments work for
Im z < 0. By direct computation, φ ± satisfy

where

ox

For small x we modify the potential by defining:

- 1 { - l t l ] (χ)(χ + vλ(x) - z) + yχ[-1/2Λ/2](χ)

where χA is the indicator function of the set A. The reason for the parameter γ
will emerge later.

Note at this point that Qy(z,λ,x) is bounded in x for fixed z,λ and γ. For
Cauchy's formula

and our assumptions yield the estimate

for zeSa, 0 < a < a0, and this yields an estimate

\Qγ(z,λ;x)\Sc(y,z,λ)(l + \x\)~ε (2.3)

where c(y, z, λ) is bounded uniformly on compact subsets of C x Γ with
Γ = { z : I m Z > 0 } x S α o .

We now define φ* (z, λ x) respectively to be the solution of

-y-2 + x + vλ(χ)-z + QAzΛ x) )Φf (z,λ;x) = o (2.4)
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for all x which is equal to φ ± (z, λ x) for ± x ^ 1. Let

Gy(z, λ x, y) = φy (z, λ x>)φ~ (z, Λ. x < ) (2.5)

where x > = max(x, 3;) and xκ = min(x, 3;). It is shown in the Appendix that the
operator

Ay(z9 λ)f(x) = $+™Gγ(z,λ;x, y)f{y)dy

is bounded for yeC, and (z,λ)eΓ, with norm uniformly bounded on compact
subsets of Γ, for γ fixed. From analyticity of φ* (z, λ x) and the uniform bound,
it follows that Λy (z, λ) is a bounded analytic family of operators in Γ.

Let Wy(z, λ) be the Wronskian of φy (z, λ x) and φ~ (z, λ x). It is easy to see
that for any (z, A), y can be chosen so that Wy (z, A) ̂  0. Note also that Wy is analytic
in the variables (z, A) for (z, Λ,)eΓ. Fix (z, λ)eΓ and choose 7 so that Wy(z, λ) ψ 0.
Define the operators

and

with domain ^(5 y (z, A)) = C*((R). Integration by parts gives

Ay(z,λ)By{z9λ)f=f (2.6)

Xy(z,λ)*By(z,λ)*/=/ (2.7)

for/eC«(R).
By (2.7), Ran ̂ * is dense so that Ker Άy = {0}. Equation (2.6) then implies

that By(z, λ) is closable; for if/πeC^,/n -• 0, and By(z, λ)fn -+ g, then Jϊy(z, λ)g = 0,
and so g = 0. Hence (2.6) extends to

Άy(z9λ)By{z,λ)f=f, fe®(By(z9λ)) (2.8)

where β (z, A) is the closure of B (z5 A). This implies that Ran By(z,λ) is closed.
Moreover, Ker By(z,A)* = {0}, for 23y(z,Λ)*/=O implies (by elliptic regularity!)
that/is an L 2 solution of

Z)A;x)l/=O

which is shown in the Appendix to imply that/vanishes identically. Hence, B (z, λ)
is surjective, and has the bounded inverse

By{z9λ)-*=Ay{z9λ). (2.9)

It now follows that the restriction of

to C^ (U) is closable, since Qy is bounded. The fact that U(a)H(λ)U{ -a) = H{λ + a)
follows from the definition oϊH(λ). This proves (i).
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Let

Ky(z9λ) = Qy(z9λ)Ay(z9λ) (2.10)

where Qy(z, λ) is multiplication by Qy(z9λ;x). We claim that K (z, λ) is compact.
By a limiting argument (and the bound (2.3)) we need only show that

0Ay(z9λ)

is compact for geC™.
But this operator is Hilbert-Schmidt. In fact, if g is supported in [ — a, a],

the Hilbert-Schmidt norm of the y > x half of this operator is

]]\g(χ)\2\Φ-(χ)\2\Φ+{y)\2dydx

\g(χ)\2\ΦM)\2dχ]Π\φ+(y)\2dy)< oo

and similarly for the other half.

We now prove (iii) of the theorem. Let

H(λ) = H(λ) - λ

and note that for b real

U(b)H(λ)U{ -b) = H{λ + b) + b. (2.11)

We claim that

?R (2.12)

for all λeSao. Define Σ to be the set of all λe Sao such that (H(λ) — z)~* is meromor-
phic in Im z > 0, with finite rank principal parts at every pole. We shall prove
that Σ=Sao. For choose γ such that Wy{U0)φ0, so that 5?(i,0) is invertible.
We then have

H-i = By(i9 0) - Qy(U 0) = [1 - Kγ(U 0)]5y(ί, 0). (2.13)

Since H is selfadjoint, (H — ί) is invertible, and so 1 — Kγ(U0) is also invertible.
By the analytic Fredholm theorem ([11, Theorem IV. 14] or [13]) 1 - Ky(i9λ) is
invertible, and Wy(i,λ) does not vanish, for every λeSao\T where T is discrete.
For λ in this set, [7 - Ky{z, λ)]'1 is meromorphic on Im z > 0, with finite rank
principal parts at its poles so the same is true for

(H(λ) -z)-^ W;' (z, λ)Ay(z9 λ)(I - Ky(z9 λ))'1.

Hence, Sao\T c Σ. But by (2.11), Σ is closed under real translates, so the points
of T are in Σ9 too. This shows that σess(H(λ)) does not intersect Im z > 0. By a
similar argument, it does not intersect Im z < 0, so (2.12) holds. This proves
(iii) of the theorem.

We now concentrate on part (v) of the theorem. We show that given z0 and
a point ^0EEZO,(Z0 — H(X)yl is analytic for λ in a neighborhood of λQ. This and
a similar argument for Dz will prove (v). Thus choose γ so that Wy(z0 — λQ, λ0) Φ 0.
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Because Wy(z0 — λ, λ) is analytic in λ in a neighborhood of λ0, we
have \Wγ{zo-λ9λ)\>0 for \λ-λo\<δ. Note that since H(λo)-zo =
H(λ0) — (z0 — λ0) is invertible and

H(λ0) - (z0 - λ0) = (1 - Ky(z0 - λo,λo))By(zo - λo,λo)

we have 1 — Ky(z0 — λ0, λ0) is invertible and thus by continuity 1 — Ky(z0 — λ, λ)
is invertible in a neighborhood of λ0. Hence

(H(λ) - zoy
1 = Ay(z0 - λ, A)(l - Ky(z0 - λ, λ))~1

in a neighborhood \λ — λQ\ < δf of λQ where the right hand side is analytic in λ.
This proves (v).

To prove (iv), first note that σ(H(λ)) = σ(H(λ -f μ)) if μ is real (see (i)) and since
the isolated eigenvalues of H(λ) (away from 1R -H Im λ) are branches of functions
of λ with at most algebraic singularities, they are independent of λ (as long as the
line U + ilmλ does not intersect these eigenvalues). Since H(0) is self-adjoint,
if a0 > Im λ > 0, H(λ) has no eigenvalues in {z :Im z > Im 2 or Im z < 0}, since
if there were their constancy would imply they remained eigenvalues for H(0).
This proves (iv).

To prove (ii), suppose λQeSa is given with Im λ0 < 0 and suppose/, #rare entire
vectors for the translation group. Denote byfλ the analytic continuation of U(λ)f
from λe U to C. Then for Im z > 0

and since the right hand side is analytic in λ for λeSa r\{λ :Im λ < Im z} we have

(/,(Z - HΓ'g) = (/3o,(z - H ^ ) ) " 1 ^ ) . (2.14)

Similarly

fe, (z - HΓ V) = (0 1 o, (z - H(I 0))~ y^). (2.15)

Taking the complex conjugate of (2.14) gives

(g,(z- H)- V) = (gλo,(z - H{λo)*y %).

Comparing this to (2.15), we have equality of the matrix elements of (z — H(I0))~1

and (z — H(λo)*)~x for a dense set of vectors. Hence H(λ0)* = H(λQ).
This completes the proof of Theorem 2.1.

3. A Random Potential

Let the probability space (P, Ω, <F) correspond to a Poisson ensemble of points
in IR, with mean density α. For each ω, let X.(ω\j = 0, ± 1, ± 2,... be the points
of the Poisson set, numbered so that

... <X λ <0<Xn<X, < ...
— 1 U 1

This defines Xj{ω) a.s. The number iV[S] of points X. in the Borel set S is then
Poisson, with mean α|S|, where \S\ is the Lebesgue measure of S. The variables
N(S) for disjoint sets S are independent.
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Let u(x) be a real-valued function on U, representing the potential of a certain
type of particle, centered at the origin. If an infinite number of such particles are
stationed at the points of a Poisson set, their total potential is

V(x9ω)= f uix-Xjiω)). (3.1)
j= - 0 0

The goal of this section is to prove Theorem 3.6 which verifies that V(x, ω)
satisfies the conditions of Theorem 2.1 almost surely for a wide class of u.

In preparation, we shall prove a number of properties of the process F(x, ω\
from which the result follows easily. Unless we state the contrary, u(x) is assumed
below to be complex valued.

3.1. Proposition Let u{x) be bounded and ίntegrable on U. Then
(a) V(x) is a well defined, strictly stationary process, with mean

+ OO

EV(x) = u f u(y)dy (3.2)
~ 00

and variance

E\V(x)-EV(x)\2 = a+f\u{y)\2dy (3.3)
— oo

(b) For a.e. ω, V(x9 ω) is a finite-valued measurable function ofx, and

γ T +oo

lim - J V(x, ω)dx = α J u(y)dy a.s. (3.4)
Γ^oo 0 -oo

Proof: (a) By linearity, we may assume u(x) ^ 0. If un {x) ί u(x\ then the correspond-
ing sequence Vn^V for all x and ω, so it suffices to prove the result for simple
functions, and hence for indicators. If u = ls for some Borel set S, then V(x) =
N( [ — S -f x]), the number of points Xjin — S + x, which is Poisson with mean

EV(x) = oc\S-x\ = oc\S\ = a f u(y)dy.
— oo

This shows that F(x, ω) is a.s. finite for each x.
The formula for variance follows if we establish that for two such functions

u and uγ,

+ 00

cov (V(x\ V1 (y)) = oc J ΰ(x — y + s)u1 (s)ds.
— oo

It suffices again to consider indicators, and to take x = y = 0. Put u= l_s,uί = 1 _ J ?

and let SJ = SnJ. Writing

N[S]JV[J] - (N[S\J] + JV[SJ])(ΛΓ[ΛS] + N(SJ))

yields

cov
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+ 00

= a\JS\ = ot J u^u^ds.
— oo

(b) Stationarity of V(x) for u = l s is simply stationarity of the Poisson ensemble.
Again, if u has compact support with diameter d, then V(x) and V(y) are independ-
ent if |x - y\ > Id, since they depend on N(S) in disjoint regions. The process V(x)
is therefore ergodic (even mixing), and (3.4) follows from the Birkhoff ergodic
theorem. The general case follows by an Lx approximation. For by (3.2), iϊun-+u
inL^R), then

supE\Vn(x)- F(x)|->0.
xeU

The limiting process F(x) is again stationary, and both sides of (3.4) are stable under
this approximation.

Remarks. The formulas for the mean and variance of V(x) are essentially Camp-
belΓs theorem for the shot effect in vacuum tubes [8]. The only difference is that
there one is dealing with a Poisson ensemble on [0, oo) rather than on U as here

3.2 Lemma Let N1,N2,...be independent Poisson variables with mean α,
00

and c1, c 2 , . . . a sequence of non-negative numbers with 0 < ^ ck = C < oo. Let

Y = YJchNk. Then there exist positive constants y and β dependent only on C,m =

sup {ck: k ^ 1} and α such that for allλ>0

P{Y^λ}^λ-?λeβλ. (3.5)

Proof The moment generating function of Y is

1
EetY = Π EetCkNk = Π e x p α j e * ' - 1} = exp<^ a ^ (eCkί ~ 1) \.

k=l k=ί I k = l '

Using β x — 1 rg x^ x for x ^ 0 we have

α X
k = l

where m = max{c t, c2,...}. Hence, by Chebyshev's inequality

^λ} =P{etY ^ eα} ^ β- α £β ί Y ^ exp(/(ί, A))

where

If /I ̂  αC,/(ί, A) is minimized by choosing ί to satisfy aCemt(l -f mi) = Λ, in which

case f{t,λ)= -λt[ Λ

 m t -). We have αCe m ί ( l+mί) < ocCe2mt so that
V 1 + mt J
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1 \ 1 1
—— \λ log(A/αC) ^ — -—-λ log λ -f ~—λ
6m J om om

log eaC. Thus the lemma holds with y = (6m)" * and β = (6m) ~* log eαC.
This lemma yields an estimate for the tail of the distribution of V(x). For if

we write

00

V{x)= Σ Σ uix-Xj) (3.6)
n= — oo n^Xj<n+ 1

then if xe[0,1] we obtain the estimate

00

\V(x)\S Σ cnJV[n,n+l) (3.7)
n = — oo

with cn = sup {I u(x) I: I x -h n I ̂  1}. Thus we have:

3.3. Proposition (a) //
00

£ sup | M ( X ) | < O O (3.8)

n= - oo \x + n\^ 1

then there are positive constants y and β such that for λ>0

P\ sup \V(x)\^λ\^λ-γλeβλ (3.9)

and the series (3.6) converges uniformly for 0 :g x :g 1 almost surely.
(b) lfV(x) = F(x, α) depends on a parameter a lying in a set S, and

| oo (3.10)
n— — oo

(3.9) holds for sup {| F(x)| : 0 ^ x ^ l , α G S } and there is uniform convergence
on [0,1] x 5.

Proof. Part (a) is immediate from Lemma 3.2 and (3.7). Part (b) follows by applying
(a) to the function uo(x) = sup {| u (x, a) \: a e S}.

Remark. From the uniform convergence, it follows that F(x) is a.s. bounded on
every finite interval whenever (3.8) holds. If u is continuous, then V will be continu-
ous a.s., while if ueCn, and all n derivatives satisfy (3.8), then the differentiated
series also converge uniformly, so that V is in Cn a.s.

3.4. Proposition (a) Let (3.8) hold, and let φ(x) be a positive even function, increas-
ing for x > 0, with lim φ(x) = oo. //

o

where y is the constant of (3.9), then

lim sup^— ? <Π a.s. (3.11)
|x|->oo Ψ^ '
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(b) If (3.10) holds, V(x) can be replaced in (3.11) by sup {| Va(x, ω)\ :aeS}.

Proof. Let an = φ(n). By Proposition 3.3,

(x)| ^ φ (x) for some x,n- 1 ^ |x | < n)

g P< sup I V{x)\ ^aj^ a;ya»eβan.

By Borel-Cantelli, if

£ α - y « n e M , < 0 0 (3.12)

then one has | V(x) | ^ φ(x) on infinitely many intervals n — 1 ^ | x | < n with prob-
ability zero, which is simply (3.11) restated. However, if n is large enough that
an^e2βly,then

-~Φ(n)logφ(n)\

so that (3.12) holds by the integral test.

3.5. Corollary. // (3.8) holds, then, as | x | -• oo,

F(x,ω) = 0(log|x|) a.s. (3.13)

If (3.10) holds, this is true uniformly for aεS.

Proof For large x, \y log log x ^ δ > 1, so that

exp{ - \y log x(log log x)} ^ x~δ

which is integrable at infinity.

Remark. Although (3.13) looks like, and is, a growth estimate for V(x), it is worth
pointing out that by the ergodic theorem

lim - J V(x)dx = EV(x) = α J u(x)dx (3.4)

a.s., so that V(x) by no means really grows at infinity. What happens is that V(x)
may have large bumps near points where many X!s are clustered. Equation (3.4)
says that one must go a long way out to find a big bump.

3.6. Theorem. Let u(z) be analytic in the strip \lmz\ < α o ,0 < a0 ^ oo, and real
for real z. Assume that

+ 00

j \u(x + ia)\dx< oo (3.14)
— oo

for — ao<a<ao. Then the potential

j

satisfies the conditions of Theorem 2.1 for a.e. ω.
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Proof. Fix two arbitrary numbers aγ and b satisfying 0<a1 <b<a0. By the
three lines theorem,

+ 00

j I u(x + id) I dx
— oo

is bounded uniformly for — b :g a ^ b. Hence
b + oo + oo 1 b

J j I w(x + iα) I dx da = Σ jdx j da\u(x + n + ia)\
~b— oo n = — oo 0 —b

is finite, so there must exist an x 0 with

+ 00 b

Σ J |w(x0 + n + /α)|dα<oo.
n= — oo —ft

By relabelling, we can take x 0 = 0, so that

+ oo b

Σ f |w(n + ίfl)|rfα<oo (3.15)
n= — oo —b

Let Γ be the boundary of the rectangle with vertices ±2 ± ϊb. Then for |x | < 2
and I a \ < b, we have

u(x + n + ifl) = (2πi)"' J(ζ - x - iα)~x w(C + ̂ )dC
r

where the integral is taken in the positive sense. If we restrict to | x | ^ 1 and | a \ ̂  a1,
we obtain the estimate

where

u(x + n + ia)\ ̂  cn

(\u(x + n + ib)\ + \u(x + n - ib)\)dx
-2

+ c] (|M(2 + n + ia)\ + |M( - 2 + n
- b

and c depends only on αx and fo. By (3.14) and (3.15),

+ 00

Σ cM<co
n= — oo

and so

Mutatis mutandis, this is (3.10), with S = [ — ax, aί ] . We therefore obtain uniform
convergence on compact subsets of the strip by Proposition 3.3 and a bound

for — αx ^ α ̂  α 1 , almost surely. Since V(x) is obviously real for real x, this
completes the proof.
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Remarks. (1) For F ψ 0, it is proved in [18] that

H (ω)-_il
F dx2

is almost surely spectrally absolutely continuous. This means physically that
particles will propagate.

(2) For some random potentials, it is known rigorously that for zero field
HQ (ω) has pure point spectrum a.s. and the same result has been claimed for our
potential with u(x) replaced by a delta function [9,10]. Although our V{x, ω)
does not appear to satisfy the hypotheses of [9,10], it is a reasonable conjecture
that H0(ω) also has pure point spectrum a.s. If this is true, then intuition might
lead one to expect for small field F a large number of resonances near any fixed
interval of the axis. A result in this direction would be quite interesting.

(3) For F = 0 it should not be difficult to show that the spectrum of H0 (ω)
is [0, oo) if u(x) ^ 0, and is( - oo, oo) if u(x) < 0 on a set of positive measure.

Appendix

Proof of Boundedness ofAy(z, λ) and Ker £* (z, λ) = {0}

Proposition A.I. Suppose y is fixed and A c Γ = {z :Im z > 0} x Sa is compact.
Then

sup IIA (z,λ)|| < oo.
(z,λ)eΛ

The proof of this proposition rests on explicit estimates on the solutions
φf (z, λ x) of the differential equation

= 0. (A.1)

These estimates will also lead to

Proposition A. 2. Suppose Wy(z, λ) ψ 0. Then there are no L2 solutions of the differ-
ential equation (A.I).

Since we know φ* explicitly only for + x > 1 respectively we introduce the
solutions ψ* defined by

x i
+ + $ t x = lψy(z,λ;x) = φy(z,λ;x)$ χ.

and

x=~1'\l/(z,λ;x) = φ(z,λ;x) j λ't)V

Note that the Wronskian of I/J* and φy

+ is 1 as is the Wronskian of ψ~
and φ~.

We are assuming throughout that assumptions a), b) and c) of Sect. 2 concerning
the potential V are in force.
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Lemma A. 3. There exist constants cx, c2 > 0 so that for all (z, λ)eΛ and x ^ 1

(i) (ώ+^A xJlgqx-

(ii) \φ;(z,λ; -x)\Scι

Proof of Lemma A. 3. We have

0 /s
We introduce the variable y = t 3 / 2 and write this as

X]2M(y)dy
1

where

2 -1/3 ί 4 1/3 ^ ^ M 5

3 [3 0 yjs

We integrate by parts (integrate exp (~y\ differentiate the rest) and find
χ3/2 χ3/2

j M(y)dy = F(x) 4- f M(y)#()/)dj;
1 1

F(x)= | χ - 1 / 2 e x p < ^ - x 3 / 2 - 2 R e z x 1 / 2 + R e j - ^ - U c o n s t

and

g(y) = 1 Re zy~2^3 + i:)7"1 ~ T Re ^(y2^3)}7"2^3-

If y0 is large enough so that | g(y) \ ̂  \ if j ; ^ j / 0 we have (for x3 / 2 ^ y0)

J M(y)rfy ^ F(x) + const + 1 J M(j;)rf};

^ F(x) + const + \ j M(y)d)/
1

so that J M(y)dy ^ 2F(x) + const.
1

Similarly

J M(y)dy ^ F(x) — const — \ j M(j )d);
i yo

χ 3/2

so that J M(y)dy ^ f F(x) - const. This proves (i) when we note all constants can
1

be chosen independent of (z, λ)eA.
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Now consider

we have

a(x) = - J exp { - φ 3 / 2 - 2izt1/2 + i]vλ( - s) Άdt
i t 3 o Js)

where

y2/3

o λ \β)
Integrating by parts we have

i χ3/2

I = G{x) -f - f N(y)h(y)y~1/3dy (A.2)

where

- —x 3 / 2 - 2izx1/2 + if KA( - s ) - = + const (A.3)
. 3 0 V 5 /

and

Integrating by parts again we have

f N(y)h(y)y~ll3dy = G1(x) + const, f iV(y)j;~1/3(%)2 +Λ'(y))dy (A.5)
1 1

where

Gx (x) = const x" 1/2Λ(x3/2)iV(x3/2) + const. (A.6)

Note

/ 3 - 2 β / 3 ) = 00;- 1 / 3 - ί ) δ > 0, (A.7)

We now estimate Re ( z j Vχ ( — 5)
V 0

Note that integrating by parts gives

(A.8)\
OLO
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and that by Cauchy's integral theorem

39

Y V(z)dz + j V(z)dz
Reλ-x Reλ

and thus

Im $Vλ(-s)ds V{z)dz
Reλ-x

ί V(z)dz
ReΛ

Thus by Eq. (A.8)

< const (A.9)

Because of (A.9) and (A.7)

IG1 (x)| ̂  const x~1 exρ(2 Im zx1/2)

while by Eq. (A.5), for some δ t > 0

JC3/2

J N(y)h(y)y~ιl3dy ^ const x ι exp (2 Im zx1/2)

+ const

Using Eq. (2.8) we have \Vλ{- y2/3)y-413 \ = 0(y~ί-02) for some δ2 > 0.
On the other hand an easy estimate gives

χ3/2

so that

N(y)h(y)y-ll3dy\ ^ const exp(2Imzx1/2)

for some δ3 > 0. Going back to Eq. (A.2) we have

for some dί,d2> 0. This gives (ii) of the lemma.

Proof of Proposition A.2 We must show that neither φ^ nor φ~ is in L2. Since
they are linearly independent (we have Wγ{z, λ) Φ 0), φy

+ (z, /ί x) = a1 φ~ (z, A x) +
î i ^y~ (z, A x) if x < - 1, where β 1 ^ 0. Similarly φ~ (z, A x) = α 2 φ y

+ (z, A x) -f
jS2 ψy (z, A x) if x > 1, where β2 ψ 0. The lower bounds of Lemma A.3 show that
neither is in L2.

Proof of Proposition A.I. We drop the subscripts γ, z, A and only mention the
dependence of constants on (z, A) when uniform boundedness in A is not obvious.
We use the notation θ(x) for the indicator function of [0, oo).
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Let (see Eq. (2.4))

G(x,y) = φ+(x>)φ-(x<).

Since G is symmetric, it is enough to prove that Θ(x — y)G(x, y) is the kernel of
a bounded operator and since J|G|20(x + 1)0(1 — y)dxdy ^ const., it is enough
to consider the kernels θ(y - l)0(x - y)φ+ (x)φ~(y) and
θ(-χ-l)θ(x-y)φ+(x)φ-(y).

For y^l φ-(y) = aφ + (y) + βιl/ + (y) and for x ^ - 1 , φ + (x) = άφ-{x) +
β'ψ~ (x). The constants α, β, α', β' are uniformly bounded in A because the Wron-
skian of φ+ and φ+ (and of φ~ and φ~) is 1. Since φ + eL 2 ([l , oo)) and
φ~ eL2((— oo, — 1]) we need only prove boundedness of the integral operators
with kernels

a) θ(x - y)θ(y - \)φ+ (x)φ + (y) = Kfa y)

and

b)θ(x-y)θ(-x-l)ψ-(x)φ-(y) = K2(x9y).

We use the Holmgren-Schur estimate that shows the operator norms are
bounded by

l/2/ \l/2

\^sup ί\K.(x9y)\dx J

Consider a) first. We let

I1(x) = $\K1(x,y)\dy, I2(y) = ^K^y^dx.

We have

I1(x) = \Φ + (x)\]\Ψ+{y)\dy χ £ l
1

= 0 x < l .

Using the estimates of Lemma A.2 we have
x x (2 \ y dt )

J\φ + (y)\dy S const Jy~1/2 exp<̂  ̂ y312 - Re zy1/2 + -Re J Vλ(t) -= \dy.

Integrating by parts in the same way as in the proof of Lemma A.2 gives

^ const x - ^ x p β x 3 ^ - R e zx 1 / 2 +
and thus lx (x) ̂  const.

We have

00

I2(y)=$\φ+(x)\dx\ψ+(y)\ yϊ

= 0
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A similar integration by parts gives

I2(y) ^ const y" 1.

Thus the operator given by Kx is uniformly bounded in A.
In case b) let

J1(x) = f|K2(x,y)|dy, J2(y) = $\K2(x,y)\dx

and note that

J 1 ( x ) = | r W | ϊ \φ-(y)\dy x S - l
— oo

= 0 x > - l .

Thus

Jt( - x) S const x~m exp {(Im z)x1/2} J exp( - Im z//2)d.y x ^ 1

rg const

while

J2(y) = \Φ~(y)\ ί I < Γ M M * y ύ - ι

= 0 y>-l

and thus

J 2 ( - y) ^ const exp( - Im zy1/2)f x" 1 / 2 exp{(Im z)x1/2}dx 3; ̂  1
i

:§ const.

Hence the operator given by K2 is uniformly bounded in Λ.
This completes the proof of Proposition A.I.

References

1. Anguilar, J., Combes, J. M.: Commun. Math. Phys. 22, 269-279 (1971)

2. Anderson, P. W.: Phys. Rev. 109, 1492 (1958)

3. Avron, J. E.: Phys. Rev. Lett. 37, 1568 (1976); J. Phys. A. 12, 2393 (1979)

4. Avron, J. E., Herbst, I. W.: Commun. Math. Phys. 52, 239-254 (1977)

5. Balslev, E., Combes, J. M.: Commun. Math. Phys. 22, 280-294 (1971)

6. Bentosela, F . : Commun. Math. Phys. 68, 173-182 (1979)

7. Faris, W. G., Lavine, R.: Commun. Math. Phys. 35, 39-48 (1974)

8. Feller, W.: An introduction to probability theory and its applications v. II (2nd ed) New York:

Wiley 1971

9. Goldstein, I. Ja., Molchanov, S. A.: Dokl. Akad. Nauk. SSSR 230, 761-764 (1976)

10. Goldstein, I. Ja., Molchanov, S. A., Pastur, L. A.: Funkts. Anal. Prilozhen. 11, 1-10 (1977)

11. Reed, M., Simon, B.: Methods of modern mathematical physics Vol. I. New York: Academic

Press 1972

12. Rejto, P. A., Sinha, K.: Helv. Phys. Acta. 49, 389-413 (1976)



42 I. W. Herbst and J. S. Howland

13. Steinberg, S.: Arch. Rat Mech. Anal. 31, 372-380 (1968)
14. Thouless, D. J.: Phys. Rep. 13C, 95 (1974)
15. Titchmarsh, E. C : Proc. R. Soc. A207, 321-328 (1951); A210, 30-47 (1951); J. Anal. Math. 4,

187-208 (1954/56)
16. Wannier, G. H.: Phys. Rev. 117, 432 (1960); 181, 1364 (1969); Rev. Mod. Phys. 34, 645 (1962)
17. Zak, J.: Phys. Rev. Lett. 20, 1477 (1968); Phys. Rev. 181, 1366 (1969)
18. Howland, J. S.: Proceeding of the special session on Mathematical Physics. AMS Meeting, Boulder,

Co. April, 1980

Communicated by B. Simon

Received June 13, 1980; in revised form September 26, 1980




