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of the S-Matrix in Relativistic Classical Mechanics*
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Abstract. The notion of world lines is studied in the constraint Hamiltonian
formulation of relativistic point particle dynamics. The particle world lines are
shown to depend in general (in the presence of interaction) on the choice of the
equal-time hyperplane (the only exception being the elastic scattering of rigid
balls). However, the relative motion of a two-particle system and the (classical)
S-matrix are independent of this choice.

Introduction

We study the notion of particle world lines in the relativistic phase space
formulation of classical point particle dynamics developed in [19] on the basis of
Dirac’s theory of constraint Hamiltonian systems® [4, 6, 7].

Aiming at a manifestly covariant picture we start with a 8 N-dimensional “large
N-particle phase space” I' ¥ equipped with a canonical Poisson bracket structure.
The dynamics is specified by the introduction of a 7N-dimensional Poincaré
invariant submanifold .# of I' ¥, called the generalized (N particle) mass shell. It is

* A preliminary version of this paper was circulated as ICTP, Trieste, Internal Report 1C/79/59
** On leave of absence from Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy
of Sciences, Sofia 1184, Bulgaria

1 The constraint Hamiltonian approach to the relativistic point particle interaction was also
adopted (in fact, rediscovered) in [9]. Recent work by Rohrlich [15], which proceeds on similar lines,
differs from ours in that it abandons the notion of individual particle co-ordinates and trajectory (a
generalized notion of “relative co-ordinates” — whose sum over all particles is not required to vanish —is
used instead). As noted by Prof. Rohrlich (private communication of October 1978) this difference is
not essential: a slight modification of his approach allows one to impose a linear relation among the
relative co-ordinates ¢ of [15] and hence to define single particle’s co-ordinates. A Lagrangian
approach to the problem of relativistic point particle interactions, which leads to similar constraint
equations is being developed in the work of Takabayasi et al. (see [17] and further references cited
therein). The work of Droz-Vincent [5], Bel, Martin [1] and others follows a similar path; their
approach differs from ours by introducing from the outset non-canonical position variables (defined
only implicitly in terms of the canonical four-dimensional co-ordinates and momenta used in this

paper)
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given by N equations
Or=0u(P1s - PN X1z X o1 ) =0, X, =%x,—X,, ki ,m=1,.,N

which determine the particle energies as functions of the remaining variables. The

submanifold .# is subject to some conditions recapitulated in Sect. LA. We

mention here the important requirement that ¢, are first-class constraints, which

means that their Poisson brackets {¢,, ¢,} vanish on .#. The functions ¢, not only

determine the generalized N-particle mass shell .# but also generate N vector
N

fields on which the restriction | , of the symplectic form w= )" dp,, Adx} on I'¥
k=1

is degenerate. The relativistic Hamiltonian is defined as a linear combination of ¢,
(with variable coefficients) that leaves invariant some (6N + 1)-dimensional sub-
manifold .#y of .# which defines a one-parameter family of equal-time surfaces.
(An example of such a surface is the plane nx, =t, k=1, ..., N, where n is a time-like
vector which may depend on the momenta.) The selection of an equal-time surface,
which excludes the unphysical relative time variables, is analogous to specifying a
gauge condition and will also be referred to in the sequel in such terms.

In Sect. IILA we introduce a notion of equivalent dynamics which says,
essentially, that two sets of constraints ¢, =0 and ¢, =0 are equivalent, if they lead
to the same particle world lines (for the same gauge and initial conditions) and to
the same realization of the Poincaré group. (Equivalent dynamics correspond, in
general, to different submanifolds .# and .# of I'™.) This notion is used in
Sect. IL.B to prove (for the case N =2) that only piecewise straight world lines are
independent of the choice of the equal-time surface (and hence, independent of the

Lagrange multipliers 4, in the Hamiltonian H=)’ lkq)k). This is the price one pays

k

for using a single-time Hamiltonian formalism for the description of directly
interacting relativistic point particles (compare with recent results of Sokolov [16],
obtained in an alternative approach to this problem). The relation of this result to
the so-called “no-interaction theorem” of Currie et al. [3, 8, 10] is discussed in
Sect. II.C (for a recent discussion see also [5, 11, 15]). It is demonstrated in
Sect. IL.D that in the two-particle case, the relative motion (expressed in terms of
the variables x, and p

P

xL=x+§v—2—P, X=X,—%;, P=p,+p,, wi=—P¥>0), (1)
m? —m?

L e N R e P R Chve )

orthogonal to the total momentum P of the system) is gauge invariant and so is the
two-particle S-matrix. The latter property is a consequence of the Birman-Kato
invariance principle and remains true in the many-particle case.

I. Constraint Hamiltonian Formulation of Relativistic N-Particle Dynamics

For the reader’s convenience, we start with a reformulation of the constraint
Hamiltonian approach to the relativistic N-body problem developed in [19] (with
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special attention to the case N =2). In order to avoid unnecessary complications,
we shall only deal with spinless point particles in this paper. (The general case of
(massive) spinning particles is considered in [19].)

1.A. Generalized N-Particle Mass Shell

A manifestly covariant description of relativistic point particles requires the use of
four-dimensional co-ordinates and momenta. We introduce the 8 N-dimensional
“large phase space” I'™ defined as the direct product of extended (eight-
dimensional) single particle phase spaces:

=T xTyx..xIy, L=T*M,, (1.1)

where T*M, is the cotangent bundle over the Minkowski space M, of the kth
particle (spanned by the co-ordinate and momentum 4-vectors x,, p,). The
Poincaré group is assumed to act linearly on I'¥

(a,4):(x,p1; - xppy)—=UUx +a,Ap ;.5 Ax y+a, Apy) . (1.2)

Each I is equipped with a Poincaré invariant (contact) 1 form
O, =pdx(=p,dx;), k=1,..,N, (1.3)
whose differential
w,=d0, =dp, A dx, (1.4)

is a symplectic form on I;. The sum
N N
o= w=d)Y 0, (1.5)
k=1 k=1

defines a Poincaré invariant symplectic structure on I' ¥, which incorporates the
canonical Poisson bracket relations

{pkv’ x?} =6kt’5‘\f’ ,U,,Vzo, 19 2’3 (16)

(all other brackets among the basic phase space co-ordinates vanishing).
The total momentum
P=p+ ... +py (L.7)

and the total angular momentum
M=p1/\x1+ "'+pN/\le(p/\x),uv:p,uxv—pvxyl (18)

generate the (Poisson bracket) Lie algebra of the Poincaré group.

The generalized N (interacting) particle mass shell is defined as a
7N-dimensional connected Poincaré invariant submanifold .# of I'V with the
following properties:

(i) In any Lorentz frame .# can be locally defined by N equations of the
following canonical (manifestly Euclidean and time translation invariant) form:

— . 0 — —
(P;anzhk(pls"'?pN‘)XIZ’""xN‘lN)_kaO’ k—l,..,,N, xk{—xk_xfy

(1.9)
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where p, are restricted by the assumption that the total momentum P is positive
time-like
N
P°= % pl(=—-Py>0, —P*=(P°)*—P*=w?20; (1.10)
k=1
here h, are rotationally invariant functions whose further properties will be
specified by the subsequent requirements.
(i) Compatibility says, essentially, that the constraints ¢,(=@§*")=0 are first
class (in the terminology of Dirac [4, 7])

oh, 0h
{ox™ @z} = 536—:.; - 5}5 +{hh,}=0. (1.11)
[The strong equation (1.11) is a consequence of the weak -equality
{o, 05"} ,=0 for @§*" given by (1.9).] More precisely, we shall adopt the
following (stronger) mathematical requirement.
Consider the set Ker (w| ,) of all vectors tangent to .#, on which the restriction
wl , of the symplectic form (1.1) vanishes. We assume that it is an integrable vector
sub-bundle? of the tangent bundle T.#, and that the foliation

M—T, =AM [Ker (] ) (1.12)

is a (locally trivial) fibre bundle (with an N-dimensional fibre) (cf. Appendix to
[6]). The 6N-dimensional base space I, of this foliation plays the role of the
physical phase space.

The existence of scattering states (a prerequisite for a scattering theory)
requires the following additional assumption:

(iii) Separability (or cluster decomposition property): clusters of particles
separated by large space-like intervals do not interact; in particular, whenever the
functions A, in (1.9) are defined globally, we should have

lim h,=|/m;+p;,

Xk —> 0

where my, is the mass of particle k.

Comments. 1. A relativistic Hamiltonian system is defined by the surface .# (and
the form ) and should not depend on the specific choice of (local) equations
¢,=0 describing .#. We shall exploit the independence of the physics on the
particular ¢, by using different forms of the constraints depending on the problem
under consideration. The canonical form (1.9) is useful for displaying some general
properties of relativistic Hamiltonian systems (e.g. in establishing gauge de-
pendence of canonical world lines in Sect. I1.B). It has the drawback, however, of
not being manifestly Lorentz invariant. The assumed Lorentz invariance implies?

2 A vector sub-bundle 7~ of a tangent bundle is integrable if the commutator [X, Y] of any two
sections of 7 is again a section of #". If the submanifold .# C T is given in local co-ordinates y=(y*)eI’
by N equations ¢,(y)=0, k=1,..,N, then the points of I (1.12) can be identified with the
N-dimensional integral surfaces y=y(o,,...,6) of the system of partial differential equations

(%]
70, ={p7} on A
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{My;, 95"} ~0 which leads to a set of (strong) non-linear partial differential
equation for h,:

0

N 0
Z (Xf’a 5 +xfa +h,$)hk—pk=0. (1.13)
‘= ¢

In displaying a class of compatible two-particle constraints in Sect. I.B below
(which includes realistic examples) we shall use manifestly covariant constraints
¢, =0 instead of (1.9).

2. Define the canonical Hamiltonian constraint as the sum of " (1.9)

He* = Z O =h(p, ... PN3 X1 - r X y—1n)—P°=0
( :ZPk>, (1.14)
p

where h= Zh corresponds (e.g. in the non-relativistic limit) to the standard

canonical Hamlltoman We note that the evolution parameter ¢t conjugate to the

. d .
Hamiltonian H®*" (in the sense that f = % ={H®", f} for any smooth function f

on I ) can be identified (within an additive constant) with each of the time

components xp (k=1,...,N) in the reference frame under consideration. Indeed,
we have

dx? )
—k — {Hean x0 =———=1, 1.15a
dt ¢ K aPko apl(c) ( )
so that
xXP=t+c,. (1.15b)

Thus the relative time var1ables x are constants of the motion with respect to the
Hamiltonian (1.14) xjk—c — ¢y Thelr choice is a matter of convention (corre-
spondmg to the synchronization of clocks associated with different particles); we
can set, in particular, ¢, =0 without affecting the physics of the problem. The time
evolution of the “physical variables” (p,,x,) is given by the standard Hamilton

equations
oh

Hean -
p { s k} axk 9

oh
—__{Hcan’xk}:g;’ k=1”N

k

(1.16)

[Note that since (pj,x,) can, equivalently, serve as local co-ordinates on I, Eq.
(1.16) can be regarded as an infinitesimal characterization of the action of the one-
parameter group of time translations generated by P° on I ]

3 Following physicist’s tradition we use the weak equality sign & for equations valid on .#
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I.B. Example : The Two-Particle Case
We shall look for a manifestly covariant pair of two-particle first class constraints

0, =2m*+p>)+¢,~0, @,=3mi+p3)+¢,~0 (1.17a)
or

¢1—¢,=¢+Dx0, @=3(mi+pi—m;—p})=pP, D=¢;—¢,,(1.17b)

H=1,0, +1,0,=3(0> =0’ W) +¢=0, ¢=pu,¢, +u,¢,, (1.17c)

where u, , are defined by (2) and b? is the free on shell value of the relative
momentum square:

2 2)2
b2(w) =1 |w? — 2(m>3 + m2) + % (1.18)

(¢, or ¢ and D are assumed to be functions of the scalar products of translation
invariant vectors). In order to make the separation of the interaction terms ¢,
unique, we shall assume that they may depend on p through the scalar product x  p

=xp+ WE (xP)(pP) only*, and satisfy the separability condition :

lim ¢, =0 for r= /x7, —x—l— (xP)P (1.19)

In terms of the relative variables p and x, the total momentum P, and the
dependent variables D and ¢ (1.17) the compatibility condition (ii) assumes the
form

(0002} =to+D. 1} =P 5% 4 (D g}~0. (1.20)

0x
For a given D Eq. (1.20) can be regarded as a first order linear partial differential
equation for ¢ (whose solution involves a functional freedom). It was pointed out
in [19] that the special solution
6¢
D=0=P=E, or ¢,=¢,=¢(.px,;w) (1.21)
involves enough freedom to accomodate (in its quantized version, including spin)
the quasipotential equations [14] successfully applied so far. A solution with D=0
is considered in Sect. IL A, below.
The requirement (i) [asserting the existence of the local canonical form (1.9) of
the constraints] implies

det(gz)") >0 for P°=p%+pd>|P|. (1.22)
3

4 Different sufficient conditions can be put forward for the uniqueness of the decomposition (1.17a)
of ¢, into free mass shell (kinetic part) and interaction. [Separability (1.19) is not enough as it is
demonstrated by the free mass shell constraints ¢, =4(m?+p?)+ o(r)(m? + p3), ¢, =3(m3 + p3) (¢—0 for
F— 00, g$0)] A (—1) dependence of the potential, where ¢ is the total angular momentum
[£?=x%p*—(x,p)?], is also encountered in the quantum case (in which £=0,1,...) — see [14]



Directly Interacting Classical Relativistic Particles 117

That gives, in particular, x, >0, or w? >|m? —m?| in the case of unbounded motion
(in which lim ¢ =0) ; we can actually derive the stronger inequality w>m, +m,

in that case.
We note that for ¢, =¢, (1.21) the free particle constraint

@=%(m}+pi—mj;—p})=pP=0 (1.23)

remains valid in the presence of interaction. It is conjugate to a gauge condition of
the form
_ nx

= 5 =0, where n*=n?—n}<0 (1.24)

X(")

(in the sense that {¢,3™}=1). Equation (1.24) which selects a family of equal-time
surfaces, is left invariant by (all multiples of) the Hamiltonian constraint

1 0 0
H"= —[(npz—n—¢>¢1 + (”p1 +n%) P2

nP ap

1/ 0¢
= —_—— _ ~ 1.2
H- {052 +np) om0, (1.25)

where H (1.17c) preserves [on ., for ¢ satisfying (1.21)] the manifestly covariant
Markov-Yukawa gauge

1
x(=x‘P))=——w—2sz0. (1.26)

The practical usefulness of the Hamiltonian constraint (1.17c) in the local
quasipotential approach [14] stems from a far reaching similarity of the centre-of-
mass dynamics based on (1.23), (1.17¢c), and (1.26) and the corresponding non-
relativistic Hamiltonian dynamics. Setting (in the centre-of-mass frame)

P=w,0), x,(»x)=0,r), px0p), (1.27)

we observe, in particular, that the three-dimensional angular momentum
1
{=PpATY (/2 =/= o W?=r?p? —(rp)* for W, =%8KMVP)‘M”V) (1.28)

is conserved and hence the (phase space) relative motion takes place in a plane
orthogonal to ¢ (just as in the non-relativistic case).

I1.C. Two Examples: Electromagnetic Interaction
and Elastic Scattering of Relativistic Balls

The above framework allows us to interpret the relativistic two-particle in-
teraction as a one-particle problem in an external field. Indeed, let us introduce,
following [18, 20], an effective particle with relativistic reduced mass

_mym,
= ——2

- (1.29a)
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and reduced energy
w2 —m?—m3

—1/m2+bE =
E=|/m,+b(, = o

(1.29b)
Then we can write the Hamiltonian constraint (1.17¢) for the case of relativistic
electromagnetic interaction of two oppositely charged particles in the form
[18, 14]

2

o
H,, =3|m,+p*—(E—V()*+ It

=307 — b)) + P (s WO, (1.30a)
where
V(r)——g o= ﬁ>0 é __EE_;£+ o (1.30b)
= ¥ P - 47.[ B em ™~ r 2 7’2 8W2}’4 . .

(The (E—V)? term could have been guessed as a “minimal Coulomb coupling”;
the whole expression ¢,,, is derived from the one-photon exchange diagram of
quantum electrodynamics. The corresponding Schrodinger equation H,,,pp=0 in
the quantum framework gives the correct relativistic energy level including fine
structure and recoil effects of order o* [18, 14].)

We shall use here this realistic example to argue that it is not reasonable to
replace positivity condition (1.10) for the total energy by the stronger requirement
that individual particle momenta are (positive) time-like. Assume indeed, for a
moment, that

—pi=E2—p*=m2+2¢,,20 for m,<m,. (1.31)

It is straightforward to verify, for example, in the case of ep scattering (in which
m,=m,, m; =m,=1836m,), for the physical value of « (=137) that the equation

2 E2u4

1 m
?(m§+2¢em):E—§—2u—u2+W=0

has two positive solutions u, and u, for u=a/Er for any w=m, +m,; obviously
the inequality (1.31) is violated for u, <u <u,. Thus Eq. (1.31) implies for any fixed
w in the scattering region a non-trivial restriction on the range of r. An analysis of
the approximate solution of the Hamiltonian equations of motion obtained for
kinematical configurations for which the last two terms in ¢,, (1.30b) can be
neglected (see Sect. 4.B of [20]) shows that for sufficiently small total angular
momentum /2 =r2p? — (rp)? the two particles, originally (for t— — oo) far apart, will,
for finite times, come to the region (u,>)u>u,, in which Eq. (1.31) is violated. If
one postulates that Eq. (1.31) defines a wall (an infinite potential barrier) in phase
space effectively forbidding small distances (of order r <2uaE/m?) then the classical
Rutherford scattering would be drastically changed for sufficiently small impact
parameters in contradiction with experiment.

The limit in which the interaction term ¢ tends to infinity in some domain of
the invariant variables may be a meaningful idealization from a physical stand-
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point and is perfectly admissible mathematically. A neat way to take care of such a
limit is to restrict (in a Poincaré invariant manner) the range of phase space
variables. We shall illustrate the idea on the example of the elastic scattering of two
relativistic (spinless) balls of finite (energy dependent) radii.

The 14-dimensional “space of states” .#(R) of the system is defined as the

portion of the free particle mass shell .#, in which the invariant distance ]/x?
between the particle centres is larger than some positive number R(w):

MR)={(p1,p2;%1,X,)el?; pp =1/ mi+pp, *=x7 ZR*w)>0}.  (1.32)

We assume the following continuity properties at the boundary of .#(R): (a)
particle trajectories are continuous everywhere (although particle velocities may
have a jump on the boundary |x,|=R); (b) the generators P, and M, of the
Poincaré group are conserved.

The restriction of the range of the invariant distance together with the above
continuity assumptions lead to a well-defined gauge invariant dynamics. It
involves non-trivial scattering provided that the impact parameter

{

a= ) (1.33)
does not exceed the total interaction radius R. Using the definition (1.32) of .#(R)
as well as conditions (a) and (b), we recover the familiar reflection law : at the point
of contact with the boundary |x |=R the tangent component of the relative
momentum p = p(t) is continuous®, while its normal component changes sign. The
differential cross-section is (just as in the non-relativistic case) independent of the
scattering angle 6, defined by

aZ

1 .
cosfl= b—zp"‘p"“‘=2F -1 (1.34)

(where p is the three-dimensional relative momentum in the centre-of-mass frame).

II. World Lines and Scattering Matrix
11.A. Equivalent Dynamics

As noted in Sect. LB the evolution parameter ¢, conjugate to the canonical
Hamiltonian (1.14), can be identified with the O components of the 4-vectors x,.
The gauge conditions

w=xy—t=0, k=1,...,N (2.1)
are consistent with the Hamiltonian (1.14), since [due to (1.15)]
dy _ fyycan M _
it ={H ,xk}+—a—t——0. (2.2)

5 Note that this continuity property is, in general, an independent assumption (see e.g. Appendix II
of [21]). In the two-particle case it comes out as a consequence of energy and angular momentum
conservation
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Given N points (£, ..., ¢ ) on the plane x? = ... =x9 =t, and initial velocities
vy =Xl,=,, we have a unique set of world lines® (x,(t), ..., x (1)), satisfying the initial
conditions

X(to)=¢&,,  X(t)=wv,, k=1,...,N.

These world lines will depend, in general, on the Lorentz frame, which can be

labelled by a unit time-like vector n (n, = —n°=|/1+n?) such that x} =nx,.

Two generalized mass shells .# and .# will be considered as physically
equivalent if for any fixed choice of the time-like vector n they lead to the same
world lines for the same initial conditions, and if, in addition, they give rise to the
same realization of the Poincaré group [the latter means that there is a one-to-one
correspondence y—7 of .4 onto ./, which leaves the world lines and the Poincaré
group generators (1.7) and (1.8) invariant].

A necessary and sufficient condition for physical equivalence is the existence of
a canonical (ie. preserving the 2-form ) isomorphic map f of some neigh-
bourhood UCT'™N of .# onto a neighbourhood UCI'N of .4 satisfying the
following conditions: (a) f(.#)=.4 ; (b) f weakly preserves the particle positions
X, ; in other words, if 7 is the projection of I' ¥ onto the configuration space M*"
(M* being the Minkowski space), then 7| ,=m|z°f|,; (c) the Poincaré group
generators (1.7) and (1.8) are f invariant.

If the mass shell .# is separable [in the sense of (iii)] we demand (as a further
condition for physical equivalence) that .# is also separable and that the difference
of the corresponding canonical constraints @f** — @g*" vanishes for x7,— oo (£ +k).

Note that this notion of physical equivalence singles out the Minkowski space
trajectory along with the Poincaré group generators as a more fundamental object
than the phase space picture. The notion of particle momentum (for fixed co-
ordinates) is not determined by the canonical Poisson bracket relations. Indeed the
transformations

X=X =X, D D= DO F({3X7,0), 23)
k., m=1,....,N, Xx,,=%X,—X,,,

are easily verified to be canonical (for any choice of the smooth function F).
Moreover, they leave the co-ordinates unaltered and because of the Poincaré
invariance of F, the generators of the Poincaré group do not change either:

k;ﬁk=2pk(=P), k; Pr A Xe=D.Di A X (=M). (2.4)

In fact, it is not difficult to prove that locally the transformations of type (2.3) are
the most general with all these properties. If, in addition, F—0 for x,— co then the

6  An alternative physical interpretation is proposed by Droz-Vincent [5] (see also [1]). Our x’s are
regarded as auxiliary mathematical variables, while particle positions are defined as some functions
q,=q,(x,p) such that {¢,,q,} =0 for k=¢ (say, for ¢,=¢§*"). As a consequence, the corresponding
world lines {q,()} are gauge invariant (in the sense to be specified below), but particle positions are no
longer canonical. The difficulty in such an approach consists in actually finding the physical co-
ordinates g,(x, p) for arbitrary interactions
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asymptotic states also coincide: p{*=p¢’. In the two-particle case the second Eq.
(2.3) can be rewritten in terms of the single relative co-ordinate x =x, , as follows” :

py=p, +xB(Gx?), P,=p,~xBGx?), 2.5)
[where B(u)=dF/du]. Such transformations leave the x-space trajectories in-

variant and, therefore, relate physically equivalent theories (in the above termi-
nology) to each other.

We can use the freedom in the choice of B in (2.5) [or F in (2.3)] to select a
standard representative of the constraints (1.17). One way to do that is to assume
that for the Markov-Yukawa gauge (1.26) and corresponding Hamiltonian the
relative velocity vanishes weakly for p=0. We have

S PR AT

-t ) e

S|(1-3P )5+ p2pr )| 0.
dp)op s Op op)lp=o

Hence, our standardization condition is

oo

i ~0. 2.7)

p=0=x

[Note that for
@, =3[m3 +(p, +xB(3x%)* ]+ A(x3,5),

o2= 4+ (paxb (5| |+ a0t

we have

2
§ =A%, 5)+ pxBGX) + 5 B(x?)
and (2.7) implies B=0.]

11.B. Gauge Dependence of Interacting Particle’s World Lines

We shall demonstrate in this section that particle world lines are not repara-
metrization invariant in the presence of non-trivial interaction (they depend on the
vector n that specifies the equal-time plane). More precisely, we shall establish the
following negative result.

7 The fact that the functions @, ,=3[m} ,+(p, , £ xB(3x%)?] are in involution was first noticed in
[22]
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Theorem 1. Let .4 be a generalized two-particle mass shell, satisfying conditions (i)
and (ii) [but not necessarily (iii) ] of Sect. I.A. The projection m,(y,) of each (two-
dimensional) fibre y, C.M of the bundle .M —1T, into the Minkowski spaces M, of
each particle (my(x,,p, ;X5 P;)=X3 k=1,2) is a one-dimensional submanifold of
M, iff # is (locally) physically equivalent to either a free particle mass shell or to a
surface of type (2.14) (see Lemma 2, below ). In both cases the space-time trajectories
of the particles are straight lines.

Remark. In a less technical language the theorem says that a two-particle system
has gauge invariant world lines (in Minkowski space) only if we deal with a free
motion or with the elastic scattering of rigid balls (described in Sect. 1.C). Indeed, if
the projections are two-dimensional, we need a (gauge dependent) subsidiary
condition to define the one-dimensional world line of each particle.

Proof. In one direction the theorem is trivial. If the constraints are given by

free_l[m +(p1+xB(1 2))] 0

fr 1 1.2 (2.8)
Q=3 [mz (p,—xB(3x ))*1~0
(cf. Sect. I1.A), or, more generally, if % =0= %, then obviously
op, ap,
Ox 0x,
a — ={px,}=0= 5;; (={p1,x,}), (2.9)

and hence, the projections T, =m,y,, of the fibre y, are one-dimensional.
The inverse statement is both more interesting and more difficult to establish:
given that
dimT, =1, k=1,2, (2.10)

prove that the constraints ¢, can be chosen in the form (2.8). We shall proceed in
two steps. First, we shall see that the assumption of the theorem leads to Eq. (2.9)
for the canonical constraints (1.9). Second, we shall show that the general solution
of (2.9) satisfying conditions (i), (ii) of Sect. I.A is given essentlally by (2.8). These
two steps form the content of the following two lemmas®.

Lemma 1. If the world lines are one-dimensional then

0 0
can_ Z p =0 for /=+k (2.11)
ap[(/)k al k

(where @;*" are given by (1.9)).

Proof of Lemma 1. Let ¢,,...,0 y be some (time) parameters on the world lines
T, ..., Ty. Assumption (2.10) means that one can choose (in the neighbourhood of
each point ye.#) these parameters as local co-ordinates in the fibre (smoothly
depending on the fibre). Then,

dx*
{pp™, Xt} =By, ——~

k’d—o[’ k,/=1,...,N (no sum!), (2.12)

8 A complete proof is given in the appendix of ICTP, Trieste, Internal Report 1C/79/59
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where B,, may depend on the point ye.# but not on the Lorentz index *. Since,

according to (1.9)
{o™", x; } Okss (2.13)

it follows that B,,=¢,,. Lemma 1 is proven.

Lemma 2. The constraints g =0 (1.9), satisfying (1.11) and (2.11) can be replaced
for N =2 by equivalent constraints either of type (2.8) or of the form

@ =px+iCY/ —x*+B(Ex?),  @,=p,x+iC})/ —x*—Bx?. (2.14)
Proof of Lemma 2. Poincaré invariance, along with (2.12) tells us that each ¢g*"
can be replaced by an equivalent constraint ¢, depending on three scalar variables
s, =3pF, w=xp,, k=12, v=3ix>. (2.15)
Using the Poisson bracket relations
{spurt={ups,}=pp,, {spv}=uy, {vs}=u,, (2.16)
{u,v}=2v={v,u,}, {u,u,}=u,+u,,

we obtain
~fm = _ (991 5(02 aq)l 6902 09, 00,
0 {q)l’ qDZ} (a auz 0“1 2 p1p2+ asl 61) ul

6(01 a(Pz a‘Pl 8472
v s, 2 21 B, ou, Ou,

09, 00, , 09, 09,

== (uy +uy)

Since the variable p,p, only appears in the first term, its coefficient should vanish.
There are three possibilities:

a(P1 a‘Pz
6 +0+ — s,

As a consequence of the implicit function theorem, in this case, the equations
»,=0=0, can be solved with respect to s, and s, (in some neighbourhood of the
point under consideration) so that the equations defining the generalized mass
shell . (in that neighbourhood) can be written in the form

a)

Q=5+ F(u,v). (2.18)
Then the vanishing of %0, 09, 8<p1 792 gives the strong equation
Os, du, = Ou, Os,
OF, oF,
G~ o, (2.19)

Since the left-hand side of this equation is independent of u,, while the right-hand
side is independent of u,, we deduce

F,=C,(v)—u,B(v), F,=C,(v)+u,B(v), (2.20)
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or
@1 =3L(p, —xB(Gx*)* +mi(3x*)](=0),
@2 =3[P, +xBGX?)* +m3GxM)] (% 0).

Inserting ¢, and ¢, into Eq. (2.17), we find that m? and m3 are independent of x.
This leads to (2.8). _ ~
b) 99, 0= 99,

0s, 0s,
The canonical presentation of .# [consistent with (2.17)] in this case is (2.14). Note
that {@,,0,} =0, +q02(z0)afor @, given by (2.14).

09, ?, 09, 0P,
_ :0 —_ E —— = —
3s, ¥ O &, T0=3,

(locally). 2.21)

¢) locally).
There is no solution of the compatibility condition (2.17) in this case.

This proves Lemma 2.

To complete the proof of the theorem it remains to verify that the constraints
(2.14) also lead to (locally) straight line trajectories. The simplest way to see it, is to

use the Hamiltonian
H ,=¢,+¢,=Px+C]/—x?, (2.22)

which gives x=0, x,(t)=x,(0)+ [x,(0)—x,(0)]t, x,(t)=x,(0)+ [x,(0)—x,(0)]r.
The independence of the world lines of the choice of the Hamiltonian is implied by
(2.9). Note that condition (1.22) implies that x =x, —x,(=x,(0)— x,(0)) should be
a (positive) time-like vector (for C>0).

11.C. Comments: Relation to Earlier no Interaction Theorem

We proceed with a few remarks concerning Theorem 1 and its proof. We state, in
particular, (in Comment 4), Theorem 2, which extends the result of Theorem 1 to
the N-particle case under the additional assumption of non-degeneracy. The fact
that the non-degeneracy assumption is essential is illustrated by the example of a
gauge invariant dynamics in two space-time dimensions involving a 0 mass
particle (Comment 3). The precise relation of Theorem 1 to the “no interaction
theorem” [3, 10, 8] is analysed in Comment 6.

1) The constraints (2.14) violate the separability condition (iii) of Sect. I.A and
seem globally unphysical. One could also exclude them locally by assuming that
all coordinate differences are space-like on .#. We did not need, however, such an
additional restriction, since these strange looking constraints appeared to be
rather harmless (again leading to straight world lines).

2) Since our treatment (especially in Lemma 2) is local and uses smoothness in
open neighbourhoods, it does not apply to boundary points of the generalized
mass shell (if such exist as in the case of scattering of elastic balls, considered in
Sect. I.C). Thus it leaves room for piecewise straight world lines, which are also
frame independent.

3) The above proof can be extended to N particle interaction in D-dimensional
space-time [of signature (D — 1,1)] provided that

D=2N-1. (2.23)
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Otherwise, the argument after Eq. (2.17) fails, since the scalar products of the
translation invariant vectors are no longer independent. For example, for
N =D =2 the determinant of the scalar products of the vectors p,, p,, x vanishes:

pf DPiPy PiX
pipy P pox|=0 (for D=2).

PiX  pyx  x?

Moreover, if D <2N — 1, then the conclusion of Theorem 1 does not hold. This fact
is illustrated by the example of D=2, two-particle scattering with constraints

L, 0 m? +p2 o UDT
—_— ~ zO, . 4¢
?yq 2p1 0(py>0), ¢,= + (&) — (S )(pIX)Z (2.24a)
where
=D u=ep) (X —px), ) =signpy (2240)
1

and the (smooth) function f satisfies f <0 (to make consistent p? >0 in the centre-
of-mass frame), f(0)=0 (that ensures separability) and
(0]

09, 0 Dy
%2 < p0+ (&2 >0
ap(z) p2 f( )plx

whenever

x*>0, pY=|p,|>0, PU=p+p3)>0, —P’=w?>m? (224c)

[Eq. (2.24c) guarantees the existence of the canonical form (1.9) of the constraints. ]
The above conditions on f are automatically satisfied for

fO=-3F (%), F=0. (2.24d)

(Note that « is a Lorentz scalar on the forward cone pY=|p,|; it is also invariant
under space reflections.) The Poisson bracket {¢,, ¢,} is proportional to ¢, and,
therefore, vanishes weakly. In order to see that the constraints (2.24) generate a
gauge invariant dynamics, it suffices to verify the equation

(0% 1}__% f(é)(pl P2 — (plpzz)x—vpl ~0. (2.25)
(pyx)

[The vanishing of (p,x)p, —(p,p,)x — p, for p{ =|p,| is indeed characteristic for two-
dimensional configurations including a light-like vector.]

The simplest way to find the relative motion is to use the Markov-Yukawa
gauge (1.26) which is preserved by the Hamiltonian

!

= |
~ +
x Py —Hy+ ﬂlp Py TUPy

H: [ﬂ2+

—uy N1 m2 + p?
=(Nz+ul—p;£f)ipf+.“1< 22p2 +f)z0- (2.26)
1
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For the centre-of-mass variables [P=(w, 0), p=(0, p), x=(0,x), p, =(|p|, p) etc.] we
have

x={H,x}=p, p=-r2LX,

f (2.27)
- . p
H(=x9=x3= [s(p)w—p— <y
The energy integral, derived from the Hamiltonian constraint (2.26), gives
wi-m? 1 w? —m?
[p| o Wf= o >0 for =<0, w>m. (2.28)

Thus p never vanishes and, hence, &(p) is a constant of the motion. From (2.27) and
(2.28) we find the (t,x) trajectory

&(p) (t—to) = %(w2+m2)+ f(—eg) % (2.29)

If xf is singular for x—0, for instance, if f= — — —, then x never vanishes for

2 x
finite times and &(x) = —&(p). If, on the contrary, f is regular and sufficiently small,
say if
. owr - 4 p6 a2 2
f= RAwe 42 r=Ix|, O<a< 31/§R wH(w* +m?),

then the correspondence t<>x given by (2.29) is one to one and x is an odd function
of t—t,, so that the scattering matrix is trivial.

4) A characteristic feature of the preceding example is the presence of a (free)
zero mass particle which implies the degeneracy of the canonical Hamiltonian
h(py,p,;X)=|p;|+ hy(p,; x). Independent of the precise expression for h,, we have

0%h
det ( ) =0 for +0.
op,0p, P

It turns out that for a non-degenerate system Theorem 1 can be extended to the N

particle case in four-dimensional space-time. Indeed, we have the following result.

Theorem 2. Let the generalized N-particle mass shell satisfy the assumption
dimm(y,)=1, k=1,..,N

of Theorem! and let in addition the canonical  Hamiltonian
APy Py Xq 20 ...,xN_lN)(zZp,?) satisfy the non-degeneracy condition
k

det( 0*h )#0 (G,j=1,2,3;k, /=1 N)
ap;‘(ap; 9 2 > k & AR
(the left-hand side standing for the determinant of the 3N x 3N matrix of second
derivatives of the Hamiltonian). Then the Minkowski space trajectories of all
particles are straight lines.

The rather technical proof of this theorem is a straightforward extension of a
similar argument by Leutwyler [10] and will be omitted.
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5) The definition of relativistic Hamiltonian dynamics, given in Sect. LA,
admits the following natural generalization. An N particle dynamics of the type k
(an [N|k] dynamics, for short) (k=0, ..., N—1) is defined by a 7N — k dimensional
Poincaré invariant submanifold ., y,; of I'V such that Ker (o ) 18 an N —k-
dimensional integrable sub-bundle of the tangent bundle 7.4, y . If .4 is given
locally by N+k equations ¢, (y)=0, a=1,..,N+k then the skew symmetric
matrix {@,, ¢,} should have rank 2k on .#, y,;. We shall assume that N of these
equations can be chosen in the canonical form (1.9) so that we can regard
My iy CAMy yjoy= . The Hamiltonian is assumed to have zero Poisson brackets
with all N 4 k constraints. For k=0 we are back in the framework of this paper. In
the opposite limiting case for k=N —1, Ker (o] Miwin— 1)) is one-dimensional and so
are the phase space trajectories, hence, particle world lines are gauge invariant for
a trivial reason. An example of a two-particle dynamics of this type is given by the
constraints (1.9), (1.17¢) and the Markov-Yukawa gauge condition (1.26), also
regarded as a constraint. It is actually this [2|1] formulation of two-particle
dynamics which fits the quasipotential approach of [18, 14]. It provides a Lorentz
invariant formulation of the relativistic two-body problem and thus gives a way
out of the “no interaction theorem” of Currie, Jordan, Sudarshan (CJS) [3],
Leutwyler [ 107, and Hill [8]. (It violates, of course, some of the assumptions of the
CJS approach; most important, the three-dimensional co-ordinates x; and
momenta p, (j,k=1,2) in an arbitrary Lorentz frame are not canonical on the
generalized mass shell .4, This point is also discussed in [15].) Nevertheless,
this definition of relativistic two-particle dynamics is not adopted either in [19] or
in the present paper, because it does not fit the separability assumption (iii) (the
expression xP(=0) having no limit for x— c0) and does not appear to be natural in
the N-particle case (for N =3).

6) Theorem 1 is the counterpart (in the constraint Hamiltonian formulation of
relativistic classical dynamics) of the CJS no interaction theorem [3, 10, 8]. The
objective of this comment is to elucidate the precise relation between the two
results. To do that, we start with a conise formulation of the CJS statement of
the problem and main theorem (adapted to the language of the present paper).

A CJS N-particle system is defined by a Poisson bracket realization of the Lie
algebra of the Poincaré group in the space RS, spanned by the (three-
dimensional) particle co-ordinates x; and momenta p,(j,k=1, ..., N) and equipped
with the canonical symplectic form

N
Wcys= kz dp, A dx,. (2.30)
=1

The Euclidean generators P and M(=3¢,, M7) are assumed to have the standard
form (1.7) and (1.8), while the Lorentz boosts M/ and the Hamiltonian h = P° are
required to satisfy

{M% x]} =xi{h,x{}(k=1,..,N;ij=1,2,3). (2.31)
(This assumption is referred to as the “world line condition” in [37.)

A CJS system is called non-degenerate if the equations X, = [/, X, ] =y,(p, X) can
be solved with respect to the canonical momenta p, (or, equivalently, if the
determinant of the second derivatives of i with respect to the momenta does not
vanish — cf. Theorem 2).
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CJS Theorem [3, 10]. Every CJS two-particle system, and every non-degenerate
N-particle system for N =3, is canonically equivalent to a free CJS system (with

Hamiltonian h=Y" |/m} + pf)
k

Note. The CJS theorem was originally established in 4 space-time dimensions. It
fails in 2 dimensions unless one adds extra assumptions [3, 8].

Given a generalized N-particle mass shell [satisfying conditions (i) and (ii) of
Sect. I.A] the question is whether it is possible to construct a CJS system. An
obvious candidate for such a system is given (in some fixed Lorentz frame) by the
set of gauge conditions xJ =t which exclude the relative time variables from the
canonical Hamiltonian h in (1.14). The sub-variety of .# thus obtained, however,
is, in general, only a subset of R®N [which could be even empty, as it is the case for
the two-particle mass shell given by Eq. (2.14) for time-like x; —x,.] Assuming
that it does coincide with IR®Y (or, more precisely, that .#n{x?=1t}=R®" is a
global section of the fibre bundle .# — I ) we shall demonstrate that the property
(2.31) of the Lorentz boosts is a consequence of the assumption of gauge
invariance of world lines in our formulation.

Indeed, according to Lemma 1 of Sect. ILB, the condition dimT,=1
(k=1, ..., N) implies that h, is independent of p, for k=7. Then, the generators P,

(1.7), M;; (1.8), and M® =3} hx}, [for x{ =t and h,~py (1.9)] satisfy the Poisson
k
bracket relations of the Lie algebra of the Poincaré group, and, moreover
{M%, x[} =xi {ly, X} =% {h, X[} ={Z hyxg, xi}
12

in accord with (2.31).

To summarize, Theorem 1 has only a partial overlap with the CJS theorem.
Our result can be obtained from the CJS statement (using Lemma 1 and the above
argument) under the additional assumption that the intersection of .# with the
equal time gauge is IR®Y (and that the Hamiltonian is non-degenerate for N > 3). If
we add to the CJS requirement the assumption that the system under con-
sideration is obtained by restricting a generalized mass shell to the equal time
gauge, then Theorem 1 provides an extension of the CJS result to non-degenerate
systems (which may involve O mass particles) for D =22N —1.

We should also like to point out a difference in emphasis. Gauge dependence of
world lines is the price one pays for enforcing the instantaneous canonical
Hamiltonian framework upon the description of interacting relativistic point
particles. As shown by Wigner and Van Dam (see, e.g. [23]) no such problem arises
in a non-Hamiltonian approach involving retarded and advanced interactions. We
contend, however, that the frame dependence of relativistic particle trajectories is
not too high a price for preserving the Hamiltonian formalism, which, as we shall
see in the next section, still provides reliable asymptotic results.

11.D. Gauge Invariance of the Two-Particle Relative Motion and of the Scattering
Matrix

It turns out that a mathematical theorem — the Birman-Kato invariance principle
— guarantees the gauge invariance of the S matrix and of the Moeller wave
operators whenever they exist.
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Before sketching the general argument, which will require some new apparatus,
we shall present an elementary derivation of this result for the two-particle case.

0
For D(=¢,—¢,)=0= P—d) the Hamiltonian (1.25), which preserves the gauge

0x
condition (1.24), is 1 o
H"=H- —|n== ~0 23

nP(n i +np)<o( ), (2.32)

where H is given by (1.17c). We observe that
{o,x,}=0={0,p}, (2.33)
so that the time evolution of x, and p is indeed independent of the choice of n:
{H",x, }~{H,x,}, {H",p}~{H,p}. (2.34)

The gauge dependence of the canonical centre-of-mass variable

0
Xczgﬁ[(ﬁhp"'l’))ﬁ +(u, P —p)x,]

=X+ Hl—v;&(Px)P, X = X, + X, (2.35)
can be found explicitly by solving the equation
1.4 0*X
4 — — ¢ :O. 2.36
3, — e XI=P s (2.36)
If we denote the variable conjugate to H by 7, so that
X 0H
£ = =_— 2.37
= {HX)= o, @37

then the ¢ dependence of X (t,0) is given by
X (t,0)=X (r,0)+ p(1)o. (2.38)

Assume now that we have an elastic scattering problem, for which the
following limits exist:
in for 7> — o0

1
lim =p®= lim -x/(7,0), as= s
r—vioopk(‘C) Pe= e (©0 {out for t— o0

o (2.39)
(I +p3"=p +p7=P)
and
Aim [x (0 -p -1 )] =a®
- (2.40)

paS:ﬂzp?S_Hlpazs’ aaSpaSZO.

(If the above limit exists, say, for 7,,=0, then it exists for any 7. Assuming p**+0,
there is a unique value of 7, for which a* and p* are orthogonal.) For non-zero
angular momentum, ¢ >0, the three 3-vectors p*, a** and £/ =p* Aa* form an

. Lo .
orthogonal frame in the centre-of-mass 3-space; moreover [a*|= 5 coincides with
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the impact parameter (1.33) (since |[p*|=>b). Noting that for t— + oo, we have

r— o0, and ng —0, we find

Dk
daxy® n axs n
= (uz— ;%) P o= (uﬁ ;}'%) Py (241)
Obviously, the corresponding normalized 4-velocities u}°, k=1, 2 are independent
of n. Since the scattering matrix transforms (by definition) the vectors pi* =m,u}"
and 4™ into p{™=mu"™ and a®"* (all of which are gauge invariant), it is gauge
invariant as well.

A deficiency of this argument is that it relies on the frame independence of the
two-particle relative motion which cannot be expected to hold in the three (and
more) particle case. Therefore, we shall sketch a more sophisticated argument,
which has the virtue of being general. It is based on the notion of a (classical) wave
operator, defined as follows.

Let L, be the Liouville operator (Hamiltonian vector field) corresponding to a
(smooth) function f(p, q) of the canonical co-ordinates in phase space

g:gi—gﬁ. (2.42)

The (classical) wave operators w, for the pair of Hamiltonians H, and H are
defined (whenever they exist) by the strong limits

wy=w,(H, Hy)=s-lim eLrettm (2.43)

t—+ oo

with respect to the L' norm
dpd
171= {1/l TS
L [
The scattering operator is then given by
S=whw_. (2.44)

The Birman-Kato invariance principle (originally established in the frame-
work of quantum theory and recently justified in the classical context — in the
third Sokolov’s paper [16]) says that for any smooth monotonously increasing
function F(&) on the reals [such that F'(£)>0 everywhere]

wy(H,Hy)=w.(F(H),F(H,)). (2.45)
The gauge invariance of the two-particle S matrix is obtained as a consequence

1/ 0
of (2.47) for H,=%(p*—b?, H=H,+ ¢, F(H)=1[H— E(”% +np> 1)
noticing that o &#0={¢, H} ={¢, H,}. The Birman-Kato invariance principle also
applies to the N-particle scattering for N =3 if the N-particle dynamics is defined
in terms of the relativistic addition of interactions® (see [16, 20]).

after

9 We do not discuss here the difficulties in constructing three (or more) particle separable
interactions [13] which are overcome in Sokolov’s work [16]. (If one neglects compatibility then the
remaining conditions are fulfilled by a simple sum of two-particle interactions — see, e.g., [2])
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We note finally that the quantum-mechanical bound state energy levels
(evaluated in [18, 147 on the basis of a Schrodinger equation of the type Hy=0)
also turn out to be gauge invariant.
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