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Abstract. For a system of (infinitely many) nonrelativistic gravitating fermions
described rigorously by Thomas-Fermi theory, a nontrivial limit of infinite
configuration volume \Λ\ is shown to exist for the microcanonical free energy,
and for the entropy divided by log|/L|. It can be calculated explicitly using the
scaling behaviour of the (ground state). Thomas-Fermi equation and shows
a phase transition at zero energy. For all (possible) negative energies, the heat
capacity of the infinitely extended system is negative and a nonzero fraction
of the particles is in the condensed phase.

0. Introduction

For a system of N nonrelativistic gravitating fermions, a nontrivial limit Λf—>oo
exists for the entropy (see [4]), the free energy [5] and the thermodynamical
pressure [8], if those functions, together with their arguments, are appropriately
scaled with N (see [4]). For nonzero temperatures, the system has to be enclosed in
a "box" = bounded open region A £IR3 whose linear dimensions have to shrink
proportional to N~1/3 in order to give a nontrivial limit for the collapsing system.
To work with an ΛΓ-independent confining region (which is conceptually simpler)
we choose an ΛΓ-dependent length scale and replace the original Hamiltonian
[with units /z = (4π)1/3, m=l/2, gravitational constant κ=l/π]
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where ΛN is the contraction (by a factor N~1/3> in linear dimensions) of the
bounded open region A and At the z'-th particle Laplacian with Dirichlet boundary
conditions. Assuming a single kind of electrically neutral, spinless fermions, we
restrict HN A and H^ Λ to JΊfN(Λ)9 the totally antisymmetric AΓ-fold tensor product
of £?2(A) in this case, the ground state energy of HN ΛN is proportional to N7/3

and Hχ>Λ is therefore stable in the usual sense [9].
If 5 is a nonnegative real number and (ΩN)Ne^ a sequence of natural numbers

with lim AT" 1 \ogΩN = s, then a nontrivial limit
N-* oo

lim N~ΊI3E(N9ΩN9ΛN)= lim N~1E~(N9ΩN9Λ):=ε(s9Λ)
JV~* oo N ~* oo

Ω

is shown to exist [4], where the mean energy E(~\N9 Ω, A) is given by Ω~l £ E\~}

(Eί~} are the ordered eigenvalues of H(^A). As s-*ε(s9Λ) is a strictly increasing
continuous function, it can be inverted to give s(ε(s'9 A), A) = sf where

s(ε9Λ)= lim N~lS(εNΊI3

9HN Λ )= lim N-ίS(sN,H^ Λ)N^ oo ' N JV-+00 '

with S(E9H) = logΎrΘ(E-H). Analogously,

lim AT 7/3F(AΓ, TAT4/3, AN) = Jim ΛΓ ^-(ΛΓ, T, Λ)=f(T,Λ),

where

/ 1
F(<W)(N, T9Λ)=- TlogTrexp H(

N

\ τ

1. Notations and Definitions

As shown in [4], ε(s9Λ) respectively f ( T 9 Λ ) are given by the (global) minimum
value of the functional εs(ρ) respectively fτ(ρ) over an appropriate space 3>(Λ) of
nonnegative functions ρ ^l-^IR with j ρ(x)d3x = 1 (see Sect. 2). εs(ρ) : = ε(T(s, ρ), ρ) :

Λ

= τ(f(s, ρ), ρ) + w(ρ) where τ(T9 ρ) : = J Θ(Γ, - μ(T9 ρ(x)))d3x is the (mean) energy per
Λ

particle of a free fermi gas at temperature T with prescribed spatial density
distribution ρ(x) (in a suitable thermodynamic limit)

'dp

T(5,ρ) respectively μ(T9v) are uniquely defined by s(T(s,ρ),ρ) = s and
v(T, -μ(Γ,v/)) = v' where S(T,ρ): = J σ(T,ρ(x))rf3x and σ(Γ,v) is the volume density
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of entropy for a free fermi gas with temperature T and density v. The potential
energy functional w(ρ) is given by w(ρ) : = \ J v(ρ, x)ρ(x)d3x with v(ρ, x) :

A

In the sequel, we shall need the quantities w(T,ρ):==supμ(T,ρ(x)),
X

μ(T,ρ): = sup(μ(T; ρ(x)) + %, x)) .

A necessary condition for ρe^(Λ) to minimize έ5(ρ) respectively /Γ(ρ):
= έ(T,ρ)— T s(T,ρ) is the validity of the Thomas-Fermi (: = T.F.) equation which
reads Dέs(ρ) = 0 respectively D/τ(ρ) = 0, D being the Gateaux functional derivative.
Both T.F. equations can be written in the form

μ(T9ρ(x)) = μ(T9ρ)-e(ρ9x) (1)

for all xeA, with T=f(s,ρ) in the microcanonical case.
We denote by d?' (s, A] respectively '̂(T, A) the set of all solutions ρ of (1) which

lie in &(Λ). ^(s,A\(^(T,A)} is the set of all ρe@(Λ) which minimize έs,(/τ)
globally.

2. Properties of the (Microcanonical) Variational Principle

The functional T(s,ρ) is well defined and <oo for all
): = {0^ρe£'1(A)\$ρ(x)d3x = l} because there is a relation

A

[3M|(6 + a) + sTlskp < τs(ρ) = f(s9 ρ) < 5c2/3(exp(fS) + 4) : = a (2)

which can be shown with the help of the inequalities (A1.3) and (A2.2)-(A2.5) in
the appendix (τs(ρ): = τ(t(s,ρ),ρ)).

Here, \Λ\ : = j d3x, τF(s, v) = v2/3kF(s) is the energy per particle of a free fermi gas
A

(with entropy per particle = 5 and density = v) and 0 < c < oo is a positive real
number with Jρ(x)Θ(c — ρ(x))d3x^l/2 which exists for every ρeS>(Λ). [If

we can choose c = 21/(p"1)||ρ||J/(p-1), but
sup{t(s,ρ)|ρe^(yl)}-= + oo for all s>0.]

As 5(T,ρ)^|/l|σ(T,|ylΓ1)<oo, s(T,ρ) is uniformly bounded on 3>(A) for every
fixed T^ 0. The nonnegative functionals f(ρ) respectively — w(ρ) can be defined on
the whole set S>(A)9 but as they are simultaneously + oo on some points, έs(ρ)
= τ(Γ(s, ρ), ρ) -f w(ρ) is not everywhere well defined. If we restrict εs(ρ) to @P(A) with

p > 3/2, w(ρ) is everywhere > — oo and εs(ρ) therefore unique. Choosing p = 5/3, we
get the bound

(3)
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where we have used (2), (A2.5), and (A2.2) in Appendix 2 and [7]. Minimizing the
right hand side over @(Λ) gives the inequality

||ρ||^<l + 35μr2/3(exp(f5) + 5) (4)

for every minimizing density ρ. This allows to restrict the variational principle to a
subset of @5I3(A) bounded in the $£ 5/3(/t)-norm as given by (4). The Gateaux
functional derivative exists on a norm dense subset of @5I3(A) [containing all
functions ρ(x) ^δ>0 almost everywhere on A with arbitrary δ~] and DPεs(ρ)](ρ' — ρ)
can be defined for arbitrary ρ, ρ'εe&5/3(A), but may be — oo. Therefore Dεs(ρ) has
to be the zero functional at every (local or global) minimum of ρ->εs(ρ) which gives
the Thomas-Fermi equation (1).

As the functional ρ— »τs(ρ) is convex [because it is the minimum of the jointly

convex functional (σ, ρ)-> J ρ5l3(x)kF(σ(x)/ρ(x))d3x over the convex set of functions

= s}],ρ-^τs(ρ) is lower semicontinuous in the weak
Λ

topology on @5/3(A) (because \Λ\ < oo, see [1], p. 263), but not continuous. If the
sequence (ρJπeN:g^5/3(/L) converges to ρ weakly in £?5/3(A), then ρe@5/3(A) and
sup || ρΛ || 5/3 ̂ c< oo by uniform boundedness. |vP(ρ)-w(ρn)|^c||K1*(ρ-ρJ||5/2
«eN

where * means convolution and VΛ(x): = \x\~1Θ(d(A) — \x\) with d(A): = sup
{\x-y\\x,yeA}. As y-^lx-yΓ1 Θ(d(Λ)-\x-y\) is in ^5/2(IR3) for every xeR3,
[VΛ*(Q~~QJ](X) converges pointwise to zero. By dominated convergence (which
follows from || Ky l*(ρ-ρ l l)||0 0g2c||KΛ | |5 / 2 because |/L|<αo),]im \\VΛ*(ρ-ρn)\\5/2 = 0

and ρ— >w(ρ) is continuous in the weak J^5/3(/l) topology. Therefore εs(ρ) is lower
semicontinuous in this topology and reaches its infimum on ί?5/3(/L), because
every subset of @5/3(A) bounded in the ^f5/3(yl)-norm is compact in the weak
^5I3(A) topology, £>5I3(A) being reflexive. Consequently <?(s,/l)Φ0 for all 5^0
and all bounded open regions A £ IR3 . The same is true for 3F( T, A) as ρ -» — T - § ( T, ρ)
is convex (and bounded) on 3f(Λ) for fixed T. From the convexity of s-»τs(ρ)
together with (2) we conclude that s-+ε(s,A) is continuous and strictly increasing,
so that the inverse function ε-+s(ε,A) exists on the closed half-line [e*(Λ), oo)
where ε*(A) : — ε(0, A). [We shall see later on that ε*(A) = ε* = const independent of
/t, if A contains a sphere S^* with radius #*.] As an easy consequence of the above
discussion, we get

Lemma 1. // a sequence (ρn)πeN with Qne$(sn, Λ) converges to ρ in the weak
topology and if sn^c<oo for all rceN, then lim sn = s exists, ρeS(s,A} and

n-+ oo

ε(s,Λ)= lim εs(ρn)= lim ε(sn,Λ).
M^ CX) »->00

As, for sufficiently large A, the function s ^ε(s9Λ) is not convex on the whole

domain, the existence of a microcanonical temperature T(s,Λ): = —ε(s,A) is not
as

clear a priori therefore we introduce a generalized version of this notion in
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Lemma 2. // we define

Tr

+(_} (s, A) : = lim sup (inf) -(s(s + d,Λ)-ε (s, A))
o<d^o a

Γz

+ ί_,(s,yl):=lim sup (int)-(ε(s,A)-ε(s-d9Λ))
o<d^o a

T+(s,Λ): = r_(s,yl), T_(s,A): = Tl

+(s,A),

T'+(_}(s,A):=sup(inΐ){f(s,ρ)\ρE<ί(s,A)},

T"+(_}(s,A):=lim Q<ίnf Q (sup) Tf

+(_}(s(±}d9Λ)

then every accumulation point of d~ ί ( ε ( s + dn9 A) — ε(s9 A}), dn Φ 0, lim dn = 0 lies in
n— >• oo

the closed interval I(s,Λ):=[Tr_(s,Λ), Γ!

+(s,/l)] and

The easy proof follows from the variational principle and a uniform estimate of
difference quotients.

Remark ϊ. If ε(s,A) is convex in a neighborhood of a point s0, then it is
differentiable there. If $ (s0, /I) consists of a single point and ε(s, Λ) is concave in a
neighborhood of s0, then it can be shown that the derivative at s0 exists, using
special properties of the solutions of the T.F. equation (1) (see [2]).

3. The Main Result

It has been shown numerically in [6], that for a sufficient large, spherical Aξ\
the function ε-»s(ε, A) is no longer concave on the whole domain [ε*, oo), but there
is no first-order phase transition in the microcanonical picture. The latter only
occurs in the canonical case where the function T-+f(T9Λ) is not differentiable for
a certain critical T= TC(R) depending on the radius R of the spherical "box" SR.
Although the existence of this box is an unphysical assumption (but necessary to
guarantee the existence of all partition functions because the gravitational force
alone, vanishing in the limit of infinite interparticle distance, would not prevent the
complete evaporation of a star at nonzero temperature) we try to get rid of its
influence by taking after all other limits leading to the T.F. theory, the limit
/l-»IR3. This limit exists for the microcanonical free energy
fr^(ε9A) = ε—T±(s(ε9A)9A)s(ε9A) and for the "rescaled" entropy (log|yl|)"1s(ε, A)
and shows a phase transition in the microcanonical description of the spatially
infinite system at ε = 0 which corresponds to the beginning of the formation of
a condensed phase in cold gas cloud, i.e. the birth of a star. We state our results
quantitatively in the

Theorem. Let (An)ne^ be a sequence of bounded open regions g]R3 with
lim |ΛJ = + oo and lim (log^ + (/tJ)~1logK_(yln)=l [where R + (_}(A) is the
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radius of the smallest (greatest) sphere containing (contained in) A], then

ii) Jim

iii) lim /±
R-+OO

lim fn(ε,A)= — oo, 0<ε<oo;
Ml -+00

iv) lim
Ml +oo

v) lim
Ml-oo

vi) lim {Γlog|^||ρe^(T,^),έ(7;ρ)-ε}-(-lε*)(ε/ε*)4/7

K-+QO

= lim {-
R^ao

vii) lim {-
Ml -»«>

Remark 2. For ε = 0, there is no definite volume dependence of T or μ in the limit
/1->IR3 which may be considered as an indication for the microcanonical phase
transition [ = nondifferentiability of the (rescaled) entropy (ii) as function of
energy = nonuniqueness of the (rescaled) temperature (vi)] which occurs at ε = 0.
Furthermore, the microcanonical free energy is discontinuous there. The limit of
the (rescaled) temperature equals the inverse derivative of the (rescaled) entropy
for ε*^ε<0 and 0<ε< oo being +00 for ε>0. The canonical free energy f ( T 9 Λ )
has the trivial limit lim (log\A\)~l f ( T , A) = - Tfor all T^ 0 and the interesting

Ml -x»

region ε^O corresponds to the single point T=0. Although, physically, an
interstellar gas cloud is not an isolated system, it can only lose energy (by
radiation) but not take it from a heath bath, so that the microcanonical
description seems closer to reality.

Remark 3. The way Λn is allowed to tend to infinity, is strictly more general than
the usually considered van Hove-convergence (see [9]) where surface effects have
to vanish. This generality is a consequence of the logarithmic rescaling of the
entropy and its monotonicity in A as this monotonicity is not necessarily valid for
the microcanonical temperature, the (nontrivial part of the) limit for the micro-
canonical free energy is only proven for spherical regions.

Proof, i) It is shown in Appendix 3, that there exists a nonincreasing function
T-+A(T), 0<T,A(T)<oo such that ύ(T,ρ)^Q for all ρe&'ftΛ) i f \ A \ ^ A ( T ) and
constants 0<b,B< oo with ||ί)(ρ, ) | | Q O <fe,&>|ε* | for all ρ e&'(T9Λ) and all Γ^O

Using the inequalities (A1.3) and (A2.5) in the appendix we obtain the bounds

),ρ)>ε
( J



Gravitating Fermions 89

for ε*^ε<oo and ρe^'(3(ε + b)9Λ)9 if \Λ\^A(3(ε + b)) + B. As
s(ε9Λ) = sup{S(T9ρ)\ρe^f(T9Λ)9 έ(T,ρ) = ε} this proves i).

ii), iii), and vi) are treated in Sects. 4 and 5. iv) follows from the estimate

for all xeΛ (6)

and all ρe^f(T,A) with u:=ύ(T,ρ)<,0 [see (A2.4) in Appendix 2]. This last
relation holds for all A with \A\ ̂ A(T). The normalization condition J ρ(x)d3x = 1
implies that H ρ H ^ and consequently Λ

[see (A3.1) in Appendix 3] converge to zero when \A\ goes to infinity so that in this
case έ(7^ρ) tends to the energy per particle of an ideal fermi gas at temperature T
and vanishing density which equals the classical value \ T. To prove v) we may
restrict the discussion to {T^Q\ρe3?'(T,A), ε(T9ρ) = ε9 ύ(T,ρ)^u} for an arbitrary
uelR, because of the relations

following from (6) [for u^ύ(T,ρ)^Q~] and from (32) [for ύ(T9ρ)>0].
As T<3(s + b) for \Λ\^A(3(ε + b)) + B9 the set oP T's in v) has limit points. If

one of them is >0, then according to the proof of iv) it equals f ε [because H ρ U ^
and \\v(ρ, -^^ both vanish in the limit |Λ|-»oo]. Therefore, all nonzero limit points
coincide. If zero is a limit point, then it follows again from (6) that \\Q\\ ̂  and
\\v(ρ, - J H ^ both converge to zero. The inequality

$T<^θ(T9-μ)<4(μθ(μ) + T)9 μ = μ(T9v)9 (8)

[see (A2.5) in Appendix 2] shows that in this case ε must be zero.
vii) is an easy consequence of the inequality (6).

4. An Upper Bound for the Rescaled Entropy

In order to derive an upper bound for lim sup (log|ΛJ)~x s(ε, An) we only need to
Π~* 00

consider spherical regions, because s is an increasing function of A due to the
choice of Dirichlet boundary conditions for the kinetic energy. It has been shown
in [2], that $(s,SR) only contains spherically symmetric densities. We replace
therefore ^'(T9SR) by ^"(T9R), the nonvoid set of spherically symmetric solutions
of the T.F. equation, which in this case, becomes the ordinary differential equation

(9)
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1 R 1
where ρ(r)= -χ(r)Θ(R-r\ 4π Jρ(r)r2dr=l, -χ(r)= - μ(7;ρ(r)) = %*•)- #7; ρ) if

r o r

0^r^.R; the dot means the ordinary derivative — . The constraint ρe£^oc gives

) = 0 so that χ(r) is uniquely specified by T and χ(0)= — u= — ύ(T,ρ). It is
sufficient to find an upper bound for

g(ε) : = inf ίlim sup (log \SR\)~ 1 s'(u, R)\ε'(u) > ε\ ,
-co /

where

and

By calculating explicit bounds for the partial derivatives of the function v(T,a)
which is convex decreasing in 1/T and a separately, one gets

v(T,a)-v(T,a + d ) ^ d ( ] T + ]

if -u^a and Q^T, d, a.
As χT)U(r), the unique solution of (9) with χ(0) = 0 and χ(Q)= — M, is convex in r,

-χr M(r)is increasing in r and consequently -χ(r)^ — u= —ύlT9-χTtU(r)Θ(R —

Therefore the estimates (10) give a (uniform) Lipschitz constant for v iτ,-χτ >M(r) I.

By standard perturbation methods of ordinary differential equations we get the
bounds

if O^α, β^l and w>0, where

for all r ̂  0 and ̂  (α, u) : = sup < ̂  > 0|4π J Q'Λ u (r) r 2dr ̂  H . The prime indicates that
I o J

ρά>M(r) is the infinitely extended solution on IR3 not subject to any normalization
condition. For notational convenience and dimensional reasons, we have put
T= an and restricted α, respectively u, to 0 ̂  α ̂  1 and u > 0, because, in the sequel,
we will only consider the case T converging to zero at fixed w>0 (which
corresponds to ε*^ε<0), the remaining cases being already discussed in Sect. 3.

If R(α,ιι)<oo, then obviously Hρ.J^l and ρα>Me^"(αw,£(α,w)). If \\ρ'ajι
would be < oo, then 0 < || v(q'aL M, ) || m = — v(ρ'^u, 0) = c < oo and consequently,

w, ρ'a >M(r)) = u — c — V(Q'Λ >M, r) > — c which gives, together with inequality (A2.4) of
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Appendix 2 a constant lower bound O5^(αw)3/2exp[ — (^u)~1c]<ρ'OL u(r) for all
r^O contradicting the assumption | |^,Mlli= = 1 if α>0. Therefore R(a,u)<co for all
α,w>0. To invert R(u,u) as a function of α? we first conclude from estimate (11)
that there is a 0 < c(α, u) < oo with

|£3(α, u) - R\β, u)\ ̂  |α - flcfo") (12)

for |α —j8|^c~1(α,M) [because v(αw,α) and consequently ρα>M(jR(α,w)) are strictly
positive for α>0 and ρatU(r) is nonincreasing in r] showing that α-»JR(α,w) is
(Holder) continuous. To calculate JR(0, u) we conclude from the T.F. equation for
α = 0

3/2

that χ0 M belongs to the one-parameter family of solutions

For the corresponding QotU(r) = -χQtU(r) which has compact support, there is a

unique /I* with A*||ρ /

0 ί l l | |1 = l. Therefore ρ*: = ρ0,M* wu"n w* = A* 4 / 3w is the ground
state density, i.e. the unique element of ^"(Q,R) if #^#*: = sup{r>0|ρ*(r)>0}.
Consequently, H^JU =(Φ*)3/4 and £(0,w)= + oo if 0<w<w*, R(0,w)^K* if

and

/
Because Q'ΛtU(r) is nonincreasing in r and ρ'0j|<(r) = 0 for r^r(w), we get

K«-0oJoo^Λ* (14)

with c* = exp(w*1/4R*) + 3 and, finally

JR3(α, u) ̂  (5c*Γ Haw372)" Hi ~ (w/w*)3/4)

for 0<w<w*. Therefore

Conversely, it is possible to show (by an appropriate lower bound to ρ^M) that
K(α,w)^2(αt/)"1/2 if θί^(5u)~1. As the range of the continuous function a->R(a,w)5

ae(0, oo ) is therefore the open half-line (0, oo), there exists, for every R>0 and
every 0<w<w* at least one α>0 with R(u,u) = R. We define α+ (_ }(jR,w) to be the
sup (inf) of {α > 0|̂ (α, M) = #} and denote the closed interval [α _ (J ,̂ u), α + (R, uj] by
J(R,u). Given an energy ε with ε*:gε<0, we fix a M with 0<w<w*(ε/ε*)4/7, define
λ(u):=:(u/u*)3/4 and choose an (arbitrary, but fixed) rf>r(u) = λ~ll3(u)R*.

As M remains unchanged in a great part of the following discussion, we take the
freedom to omit it without further comment. From (15) together with
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(a standard estimate for ordinary differential equations), it is easy to conclude that
there is a Q<d2^ d^ with μα(r): = μ(αw,ρ^M(r))^0 for all r^r' if O^α^ d2 because
χ0}U(r(u)) = λ4l3(-μ*) = u(-μ*/u*)>Q. Here μ*: = μ(0,ρ*)<0 is the chemical po-
tential of the ground state solution ρ* if R^R*; this follows from the relation
χ0 >u(r(u))= — v(ρ'0 tU9r(u))= — μ(0,ρ'0>M) which is not difficult to prove. From the
definition of w, we get

μa-λ^μ* = υa(0)-^(0)9 (16)

where μα: = μ(αw,ρα>M) and vΛ(r): = v(ρΛtU,r), t/0(r): = ί)(ρ'0>I<,r), which gives, together
with (15) and (7), the estimate

/ 3 M 1 / 2 . (17)

Consequently, as fα(r)<0, we get

for 0^r^£(α), (18)

where 0 < cί < oo depends on u but not on α. On the other hand, it is clear from the
foregoing and the concavity of rμα(r), that there exist similar constants
0<c2,c3,ίί3<oo with

μ«W < (/l4/3μ* + αc2)(l - r'/r) for all r ̂  r' (19)

^α^J3^J2, and

4π (20)

Putting all estimates together and using the bound (A2.4) of Appendix 2, we get
the following relation for the (dimensionless) quantity

Aί λ 4π ,,.„ ^ t / ,, , , A,x/ j / « . \ . . . O / Z / Ί T Λ — I/ I?»?ι/vl ί T4 i ' i
ZJ^CΛJ — t/t I J. Λ l V-**- \^/ \ ) )

-W* + α 1 / 3 c/u)l<l-/l + αC (21)
_ « α C J = αC3

and

l-A-αc3^2α1/2w3/2(r')3 + (l-^(α)exp - -(ί/*-α1/3c2/M)(l-α1/3) (22)
L «

if 0<α^rf2, where rf* equals — μ*/w*>0. [The contribution of the interval
r'rgr^α"1/3?-' to the integral of the right hand side of (22) has been estimated
separately.]

Introducing appropriate new constants 0<c, d<oo, c3^c which are, as the
previous ones, α-independent functions of w, r' we end up with

-(J*-α1/3c)^logzl(α)^-(ί/* + α1/3c) (23)

if 0 < α rg d. This relation can be inverted to give

(24)
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where

4π

and e*: = 21/3c(d*Γ2/3, if \ogA'(R)^2c3(d*Γ2 + 2d*/d+l, or equivalently
#^#'(4

From the estimate

sF(τ, v) ̂  2 + f log τ - log v (25)

[where sF(τ, v) is the entropy per particle of a free fermi gas with energy per particle
τ and density v, see (A1.3) in Appendix 1] together with (8), we deduce the bound

sup \4π f σα(r)r2dr|αe J(R)\ < h(u, rf): = 6 + 5 ( ] / u r ' ) 3 (26)
I o J

with σα(r): = σ(αw,ρα>u(r)), using the estimate J ρ(x) Iog(a2/ρ(x))d3x < a2. \Λ\ valid
A

for all 0^ρe^1(A). [In fact, the contribution of the interval Orgr^r ' to 5(αu,ρα)
vanishes in the limit Λ->oo.] On the other hand,

/ R 2 \
\ r' J +

if jR^#', using the inequality - J ρ(x)\ogρ(x)d3x^\\ρ\\1\og(\A\/\\ρ\\ί) valid for all
A

Q^ρe^\Λ). Combining (26) and (27) we get

S'(M, R) < h'(u, r') + (1 - λ(w)) log J'(R) (28)
/

with h'(u,rf) = h(u,r') + 2cd* + 5>0, and consequently

lim sup (log |SΛ|) ~ 1 s'(u, R) ̂  1 - (w/w*)3/4 . (29)
K-* oo

To calculate ε'(u), we conclude from (7) and (15), that

(αc*)1/3jA; (30)

by (24) we have α+(JR)<2J*(logzl/(JR))~ x, and consequently lim w(ρα(Λ) >M) = w(ρ'0 >w)

for all a(R)eJ(R,u). On the other hand, using

0 ̂  θ(αw, - μa(r)) - 0(0, - μΛ(r)) ^ 2αt/5/2 (31)

[see (A2.6) in Appendix 2] and 0^ρ~1(r)θ(α«, -μα(r))^4αw if r^r' and

[see (8)] we get the inequality \τ(<xu9ρa)- τ(09ρ'0)\^aιu((3rr l/w)3(l + c*) + 4) where
the bound |θ(0, — μα) — 0(0, — μ0)|5^4w||ρ^ — ρ^^ follows from the convexity of
v^0(0,-μ(0,v)) = fv(3v)2/3 and the bound ||ρ;>M||00^2w3/2 for all O^α^l.
Therefore,

ε'(M) = lim έ(α(Λ)u, ρα(Λ)) = ε(0, ρ'0) = (u/w*)7/4ε* > ε (32)
~
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for all α(JR)eJCR), using the scaling property ε(0,ρ'0 M) = (w/t/*)7/4 ε(0,ρ*) of the
ground state T.F. energy functional. As ε'(u)>ε by the original assumption about
M, we finally get

g(ε) ̂  inf {1 - (φ*)3/4|(ιVw*)7/4ε* > ε} = 1 - (ε/ε*)3/7. (33)

Together with (24) and the relation μ* = f ε* (which is a consequence of the scaling
property of the ground state T.F. equation, see [6]), this proves vi) and the first
part of ii) in the theorem.

5. A Variational Lower Bound for the Rescaled Entropy

As the entropy s(ε, A) is given by (a thermodynamic limit ΛΓ-» oo of) the maximum
over all configurations with energies in a given interval, we get a lower bound for
s(ε, A) by considering a special set of orthonormal wave functions

ΨNΛ : <ΨN,ί> lPNj>=δij

 and <ΨN,i> HN,ΛΨN,i>^εN -

For a given ε with ε*<ε<0, we choose a δ with Q<δ<(2\ε*\)~1(ε — ε*\ define
λ(δ): = (ε/ε* + δ)3/Ί <1 and fix an r'>λ(δ)~1/3R*. In the sequel, we shall consider
product wave functions ψN t where M particles are in the ground state of H^ tSr,
and N — M particles are in an eigenstate (with energy Et^\ε*\δN) of the free
(rescaled) Hamiltonian

N-M

N-2/32-2/3π-4/3 £ (_Aj) on tf(SR\Sr,), R>Γ'

J = l

with Dirichlet boundary conditions on both boundaries of AR: = SR\Sr, (the two
spheres are supposed to have the same center). Putting M = min{rce Nrc/Af^ λ(2δ)}
gives M^N and 0 < λ(δ) < λ(2δ) = lim M/N<1. If N is sufficiently large, we get

JV-»oo

therefore

for all zeN with Ei^\ε*\δN9 because the gravitational interaction is purely
attractive. Taking the limit ΛΓ-»oo gives (for sufficiently large R) the lower bound

(l-^Cl+flogtfl-ΛΓV^
(34)

[with λ : = λ(2δ) and cR: = (l — λ)~1\AR\'] where we have used the estimate (A1.3) in
Appendix 1

l + f logτ- logv + 31og(l-2v1/3τ-1/2)<5F(τ,v),

sF(τ9 v) being the entropy per particle of a free fermi gas with energy per particle = τ
and density v. Choosing an ^-dependent δ = δR with lim δR = 0, ί/δR = o(c^) and

R = o(logcR) for ^-^oo [which holds for every δR = const (log cR)a, α<0], we
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have lim λ(2δR) = (ε/s*)*/Ί and the monotonicity of s(ε,A) in A gives the lower
jR-» oo

bound

lim inf (log \An\) ~ 1 s(ε, An)^ί- (ε/ε*)3/7 Θ( - ε) (35)

for any sequence (An)ne^ of bounded open regions with lim |yl l l |~
1=0 and

lim (logM IΓ1 log#_M ) = l/3. (For ε>0, we simply have to put λ = 0 = r', to
n->oo

replace AR by SR and to set δR = ε/\ε*\.) By continuous extension to ε = ε* and ε = 0,
this proves, together with (33), statement ii) in the theorem.

As the inequality (24) shows that the convergence

4/7lim T; (s(ε, SRl SR) log |SR| = ( - fε*)(ε/ε*)
R-* co

is uniform on compact subsets of (ε*,0), T"(s(ε,SR),SR)log\SR\ also tends to the
above limit and therefore the length of the interval /(s(ε, SR), SR) vanishes in the
limit R-^co for ε*<ε<0. This generalizes the notation of convergence for the
microcanonical free energy and proves, together with ii) the first part of iii) in the
theorem, the remaining part being a consequence of v) and (35).

6. Appendix 1

It has been shown in [3], that for SF(E,N,A) the entropy of N free fermions at
energy £ in a volume A, the following estimate holds

S'MB(E,N,Λ)^SP(E,N,Λ)^SMB(E,N,Λ), (Al.l)

where

SMB(E, N,Λ): = log ̂  TrMB<9(£ - HNJ

and

S'MB(E, N,Λ): = log ̂  TrMB \Θ(E - HN,Λ) ft

Here TrMβ means trace over the Maxwell-Boltzmann-Hilbert space, i.e. the (full)
N

tensor product £P2(ΛN) of the one particle spaces. HN>A = Σ HitΛ is the (free)

Hamiltonian and e0 the lowest eigenvalue of HN Λ. Taking the (usual) thermo-
dynamic limit we get

/ Λr \1 / 2 '

fIog((3/ι2)-14πmτ) + 31og 1- -"

<flog((3/ι2)~14πmτ)-logv + f ,
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where the Fermi energy τF for (spinless) fermions with density v is given by
h2 16 \2 / 3

τF = — — v . Using our numerical choice of units, we finally get

(A1.3)

F 8m \π /

l+f logτ + 31og(l-2v1/3τ~1/2)-logv<5F(τ,v)<2 + flogτ-

7. Appendix!

From the definition of Θ(T, — μ) and v(T, —μ) given explicitly in Sect. 1, we can
easily obtain the bounds

(All)

respectively

(A2.2)

if μΞϊO and

(A2.3)

respectively

Γ3/2 expOVT) < v(T, - μ) < T3/2 exp(μ/Γ) (A2.4)

for μ^O.
This leads to the estimates

^T<^θ(T,-μ)<4(μΘ(μ)+T), (A2.5)

where μ = μ(T,v) and

ΘF(Q, v) ̂  ΘF(T, v) ̂  ΘF(0, v)Θ(μ) + T(μ3/2Θ(μ) + T3/2) , ( A2.6)

where ΘF(T, v) : = Θ(T, - μ(T, v) and μ = μ(T, v).

8. Appendix 3

Decomposing the Coulomb potential into a short range and a long range part
leads to the estimate

= f(4π)-2/3 | |ρ||i/3 | |ρ||2/3. (All)
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For an arbitrary ρe^'(T9Λ), (A2.2) and (A2.4) in Appendix 2 gives the bounds
μ: = μ(T,ρ)<3\Λ\~2/3 (for all 7^0) and μ< - T (for T^6\Λ\~2/3). Defining
u: = ύ(T,ρ) and v: = μ(T9ρ) — u = mί{ϋ(ρ9x)\xEΛ} for an arbitrary ρe^f(T9Λ) we
get, in the case wj^O, from (A3.1) and (A2.2): ρ(x)<(u+T)3/2. Consequently,

if T^6\A\~21*. This leads to the estimates

M<1, u<ί-T (A3.2)

(if M^O and 6|ΛΓ 2 / 3^Γ<l-w) and

2/3 (A3.3)

(if w^O and T^
In the case of w^O, (A2.4) and (A3.1) give

(A3.4)

and

. (A3.5)

Introducing in (A3.4) the upper bound for j/77 given by (A3. 5) and using
M = |μ|-M if w^O we get

|t;|<sup{min(l/T,2|yir1/3exp(T-1/2))|T^O}<H-6Mr1/3.

Combining all estimates, this leads to the bound

l l % ) l l o o < l + 6MΓ 1 / 3 foral l ρe&'(T,Λ). (A3.6)

From (A2.2), (A2.4), and (A3.6) we conclude that

M<4+T(3-lnμi|) (A3.7)

if T^6MΓ2/3, so that, for every T>0, w(T,ρ)^0 for all ρe^'(T9Λ) if \Λ\ is
sufficiently large.
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