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Metastable States of Molecules

E. B. Davies

St. John's College, Oxford OX1 3JP, England

Abstract. We define metastable states to be density matrices which are at local
minima of a certain non-linear functional, and investigate their general
properties, proving in particular that the metastable states are not necessarily
unique but are "modified Gibbs states". The case of an atom in an external
electric field is investigated in some detail.

1. Introduction

We consider a molecule composed of (N-hl) spinless, distinguishable, three-
dimensional particles in the centre of mass coordinate system. The Hamiltonian H
on the Hubert space Jf -L2(IR3N) is

H = H0 + V(x^...^N), (1.1)

where the internal kinetic energy operator H0 of the molecule is translation
invariant and satisfies

-δΔ^H^-δ-^A (1.2)

for some <5>0, and we assume that the potential V arises from pair interactions
between the various particles, and has form bound zero with respect to — A, so
that (1.1), interpreted as a form sum, defines H as a semibounded self-adjoint
operator.

If the set of mixed states ρ on Jf is defined by

X = {ρ:ρ^Q and tr[ρ] = l}

then the entropy of a state ρ is

S(ρ)=-tr[ρlogρ]

and its free energy at the inverse temperature β > 0 is

0010-3616/80/0075/0263/$04.20



264 E. B. Davies

Formally speaking the free energy has a unique minimum on X, at the Gibbs state

However for real molecules this is not actually the case because the trace is not
finite, so the minimising state does not exist. This is because even at very low
temperatures the possibility of dissociation is non-zero, so this process must
eventually occur, and no stable state exists.

The same problem occurs even at zero temperature for a molecule in a weak
external electric field, because the Hamiltonian is not bounded below and
possesses no ground state. However, there may still exist metastable states, or
resonances, which remain effectively bound for very long periods of time. While it
is possible to define resonances in terms of poles of an analytic continuation of the
Hamiltonian [3-5], the relationship of this approach to more operational
definitions is not clear. One possible physical criterion for a metastable state is that
it is a square-integrable wave function whose energy spread is very narrow, so that
it is persistent in time, and whose distributiαn in position space is very con-
centrated [6].

Similarly the precise definition of metastable states in classical statistical
mechanics is by no means obvious, although several criteria for their recognition
are available [8,11]. One approach is to minimise the free energy for states
restricted to an appropriate region of configuration space, which is specified by
disallowing clusters above a certain critical size [1]. All current approaches seem
to depend upon imposing constraints on the allowed states, and therefore involve
a degree of arbitrariness (or physical insight) in the choice of those constraints. Our
present approach is no exception.

Following an idea in [2], we define the variance in configuration space of a
state ρeX to be

3N

W(Q)= Σ{tr[β2έ?]-tr[αέ?]2},
r= 1

where Qr are the position operators on ffl. The non-linear functional W on X is
both translationally and rotationally invariant. We then seek to minimise the
functional

where 0<α, β<co. The parameter α is called the inverse stability of a local
minimum ρeX and β is called its inverse temperature. If we put α = 0 we obtain the
Gibbs state as the unique minimum if the trace is finite, and say that it is infinitely
stable. If we put β~ 1 =0 then we reduce to the analysis of what were called "stable
ground states" in [2]. In this paper we consider the case 0<α, β< GO, so that the
functional $ onX is neither convex nor concave. One of our major goals will be to
determine when $ has local minima in X and to investigate the stability, or
persistence, of these minima under the linear time evolution defined by H. We do
not consider here the non-linear Schrodinger equation associated with $ in [2].

While our procedure is to some extent ad hoc, it has the merit of identifying a
class of states depending upon only two thermo dynamic parameters, α and β.
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Moreover, we shall see that the explicit construction of these states is quite
feasible, and that they may be regarded as "modified Gibbs states".

Another obvious method of circumventing the fact, mentioned above, that the
trace of e~βH is infinite, is to put the whole system in a box. While this may be
numerically more accurate (in some sense), it is slightly more complicated in that
one needs to determine two parameters, the centre and diameter of the box. The
main advantage of our approach, however, is that it suggests a possible method of
determining all stable molecules obtainable from a given set of atoms. As was
indicated in [2], even after fixing α>0 it is possible that $ has several different
local minima, and that these might correspond to chemically distinguishable
configurations of the atoms, known as structural isomers.

2. Lower Semi-continuity of δ

We start by recalling some well-known properties of entropy and relative entropy.
Let {fr} be an orthonormal basis of eigenvectors for ρeX and let Qfr = λrfr, so that

Let {gs} be an orthonormal basis of eigenvectors of σeX and let σgs = μsgs, so that

Suppose also that σ is strictly positive, or equivalently that μs>0 for all s. The
entropy functional S on X is defined by

and satisfies

O^S(ρ)^ + oo.

Moreover S is a concave functional on X and is lower semi-continuous with
respect to the trace norm topology of X [13]. The relative entropy functional is
defined by

so that

The relative entropy is jointly convex with respect to ρ and σ and is also lower
semi-continuous [7, 13].

If K is a non-negative self-adjoint operator on $f we define

so that

g-f oo.
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Moreover

where

is a monotonically increasing sequence of bounded self-adjoint operators on ffl.
Hence tr[Xρ] is a linear and lower semi-continuous function of ρεX.

In order to relate S(ρ\σ) to the free energy of ρ we suppose that σ = e~κ, and
that

so that

We also suppose that

tr[e~yκ]<oo

for all 0<y<oo.

Lemma 1. S(ρ\σ)< oo if and only if tr [Kρ] < oo. // ί/zzs ftoWs

S(ρ|σ) = tr[JKρ]-S(ρ).

Moreover if 0 < y < 1

Proof Since

tr[ρ] = tr[σ] =

we have

Now put

μ = e-

so that μeX and
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Therefore

The lemma follows from these two inequalities.

Lemma 2. // S(ρ\σ)<co then S(ρ)<oo. If \\ρn — gll^O and S(ρn\σ) is a bounded
sequence then

\ϊm S(ρn)

Proof. The first statement follows from the proof of the last lemma. The second
statement may be found in [13, p. 241].

We now turn to the definition of the variance W(ρ). We put W(ρ) = + oo unless
tr [β?ρ] < oo for all r, and in that case put

3N

W(Q)=

Lemma 3. The functional W is concave and lower semi- continuous on X.

Proof. Concavity is trivial. To prove lower semi-continuity suppose that
\\Qn- ρ\\ι->0 and that

c = lim inf W(ρn) .
n-» oo n

By passing to a subsequence and eliminating trivial cases we can assume that

lim W(ρn) = c<oo . (2.1)

If tr[<2rρj is unbounded for some r as n->oo, then by passing to another
subsequence we can assume that

JHoo (2.2)

as n-+co. If PR is the projection associated with the region {x:|x|^.R} of
configuration space then

tr [PΛe J (αB - R)2 g tr [βΓ

2β J - tr [βrρj2

for large enough n. Equations (2.1) and (2.2) now imply that

l imtr[P Λ ρJ=0.

Since R < oo is arbitrary, we deduce that ρn converges weakly to zero, which is
incompatible with ||ρn — ρl^-^ O. The contradiction implies that there exists α<oo
such that
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for all r and n. Hence

This implies that

and that

tr[βΓρ]=Hmtr[βrρJ

for all r. The last two equations imply the lower semi-continuity of W.
We now adopt the convention

3N

e 2 = Σ α 2

r=l

the right-hand side being defined as the form sum.

Corollary 4. // ρnεX and || ρπ — ρ || ! -»0 then W(ρn) is a bounded sequence if and only
if tr[Q2ρπ] is a bounded sequence. In this case one has

Jim tr[βrρj = tr[βrρ]

for all r.

We combine ideas from all the above lemmas in our definition of $. We put

so that tr[e~x] = l, and tr[e~y X]<oo for all 0<y<oo. The finiteness of the traces
follows from the form inequality

derivable for some ε>0 from our hypotheses on H.
ItρεX and tr [Xρ] = + oo we put <?(ρ)= + oo. If tr [Xρ] < oo then tr [Q2ρ] < oo

so tr [βrρ] is well-defined and finite for all r. Moreover S(ρ) is finite by Lemmas 1
and 2 so we can put

(23)

Theorem 5. The functional

<?:*->(- oo, oo]

is lower semi-continuous and bounded below.
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Proof. There exists <5>0 such that dUQ^H^d^1!!,). If we define <ί0 by replacing
H by δH0 then it is clear that <?(ρ)< oo if and only if <f0(ρ)< oo, and that

for all ρeX. Since S0 is invariant under space translations

inf{*0(ρ):ρeA }

= infK0(ρ):tr[βrρ]=0 all r]

rρ]=0 all r}

the inf being achieved by a Gibbs state.
To prove lower semi-continuity of $ we assume that ||ρπ — ρll j-^0 and that

for all n. If ρ^ are space translates of ρn normalized so that

tr[βrρj=0

for all r and n, then

for all n. Lemma 1 implies that tr[(<5ίί0 + αζ)2)ρή] is a bounded sequence and that

S(Qn} = S(Q'n)

is also a bounded sequence. Moreover

is a bounded sequence, so Corollary 4 implies that

Hm

for all r. This equation combined with (2.3) and the lower semi-continuity of
S(ρ\e~κ) implies

Corollary 6. // ||ρn — ρllt-^0 and $(ρn) is a bounded sequence then

lim S(ρn) = S(ρ) , Jim tr [_Qrρ J - tr [Qrρ]

/or αίl r.

The lower semi-continuity of $ does not imply that it has a minimum on X,
since X is not compact in the trace norm topology. However the existence of local
minima may be demonstrated using the following lemma.
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Lemma 7. // L^O is a self -adjoint operator such that (L+ 1)~1/2 is compact then
for every c < oo the set

is compact in the trace norm topology.

Proof. If 3Γ(2tf) is the Banach space of trace class operators then the bounded
linear operator if on 3Γ(3tf) defined by

is compact. Therefore

has compact closure. Since S is actually closed, it is compact.

Theorem 8. If Ω is a compact subset of IR3]V then $ has a finite minimum in the set
XΩ = {ρeX: δ(q) < oo and tr [βρ] 6 Ω} .

Proof. Suppose that ρneXΩ satisfy

Then (2.3) implies that S(ρn\e~κ) is a bounded sequence so Lemma 1 implies that
tr[(H-hαβ2)ρJ is a bounded sequence. Since (H + aQ2 + λ)~112 is compact for
some λ>0, Lemma 7 implies that there is a trace norm convergent subsequence of
ρπ. The proof is now completed by using the lower semi-continuity of $ on this
sequence.

The following easy modification of the above theorem is useful for applications
to molecules in an external electric field. The extra term is handled by using
Corollary 6.

Theorem 9. // Ω is a compact subset of lR3n and AeR3N then the functional
3ΛΓ

r= 1

has a finite minimum in the set XΩ.

3. Definition of Metastable States

A state ρQEX is said to be a metastable state with inverse stability α and inverse
temperature β if there exists ε>0 such that ||ρ — ρ0|| <ε implies

In order to identify the metastable states we introduce the real-valued function E
on R3N, defined by

E(x) = min (<?(ρ) : tr [βρ] - x}

= min{^(ρ):tr[ρρ]=x}, (3.1)

where



Metastable States 271

The existence of the minimum follows from Theorem 8. Its uniqueness is a
consequence of the fact that for each xeIR3]V, J x̂ is a free energy functional on X
and so is strictly convex. We denote the state which minimizes (3.1) by ρx.

Lemma 10. For all αe!R3ΛΓ the function

s convex.

Proof. It is sufficient to consider the case α = 0. I f O < / l < l and y, zeR3N and

and

σ = (l-λ)

then

tr[f iσ]=x.

The equalities

£(x) + αx2

imply that

Lemma 11. The state ρx depends continuously on xelR3N in trace norm.

Proof. We prove continuity at x = 0 only

Since £(x) + αx2 is convex

is continuous and hence bounded as |x|->Ό. Equation (2.3) now implies that
^(ρ^l^"^) is bounded and Lemma 1 implies that

is bounded as |x|->0. By Lemma 7 there is a sequence x(n)-»0 such that ρπ(π)

converges in trace norm, to σ say. The lower semi-continuity of $ implies that

= liminf£(x(n))
n-+ oo

= £(0) .
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Also Corollary 6 implies that tr [βσ] = 0. The uniqueness of the minimum in (3.1)
now implies that σ — ρ0. Since ρ0 is the only possible limit point of ρx as |x|->Ό we
see again by Lemma 7 that \\QX — ρ 0llι"^^ as M-^O

For the proof of the following lemma, and for the rest of the paper, we make
the following strengthened hypothesis on the potential V, namely

It is a consequence of (1.2) and the uncertainty principle that this condition is
satisfied if V arises from two-body Coulomb interactions.

Lemma 12. The function E(x) is differ entiable on IR3N.

Proof. We prove differentiability only at x = 0. If we define

σx = e-ίp χρ0e
ίp χ ,

where Pr are the usual momentum operators then

Hence

E(x) ^ tr [if σ J - β~ ̂ (σ,) + *W(σx)

where

by the space translation invariance of H0, S, W. We thus get

= tr[F<7j-tr[Fρ0]

Now tr [P2ρ0] < oo so

for some μe&'ffl). Therefore

G(x)-G(0)=tr[l/σJ-tr[F<70]

= tr [(1 +P2Γ

- tr [F(l + P2Γ 1/2 μ •(! + P2)~ 1/2(eίp "- 1)]

from which the differentiability of G(x) at x=0 easily follows. Now

= G(0) + x G'(0) + o

x G'
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as |x|-»0. The convexity of the left-hand side implies that

for all xelR3N. Hence E(x) is differentiable at x = 0 with JE'(0) = G'(0).

The relevance of the function E(x) to the metastable states is revealed in the
next theorem.

Theorem 13. The state ρeX is a metastable state with respect to $ if and only if
ρ = ρx for some xeIR3jV and E has a local minimum at x.

Proof. Let ρ be a metastable state with tr [Qρ] = x, and for 0 < λ < 1 put

σλ = (l~λΪQ + λQx

Then tr [βσj = x and

with equality if and only if ρ = ρx. Since || σλ — ρ \\ ί ->0 as A-»0 the metastability of ρ
implies that ρ = ρx. Lemma 1 1 now implies that E has a local minimum at x.

Conversely suppose that ρx is not a metastable state. Then there is a sequence
σneX such that ||σπ-ρx||1-*0 and <ί(σn)<σ(ρx) for all n. If xΛ = tr[Qσπ] then
Corollary 6 implies that xn-»x. Also

so E does not have a local minimum at x. Hence if E does have a local minimum at
x, ρx must be a metastable state.

4. Characterization of Metastable States

The next step in our analysis depends upon the introduction of the function F on
1R3N defined by

For each x, ̂ xis a strictly convex lower semi-continuous functional on X which
takes its minimum at the Gibbs state

from which we obtain

F(χ) = - β - * log tr [e " β{H + α(Q " x)2]
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so that F is in principle computable. It is clear from the definition that

for all xeIR3N

Lemma 14. The function F(x) — ax2 is concave and differ entiable on 1R3JV. Moreover

Proof. If x,}>,zeIR3 NandO<;i<l and

then

This proves the first statement. From the identity

we see that the other statements follow provided

trΓc~/?{g+αQ2~2α(2'x}Ί
dx

This may be proved by use of the Dyson expansion if Q is replaced by a bounded
operator, and the required equality may then be obtained by an approximation
procedure.

Note that Corollary 25.5.1 of [10] may be used to establish that E and F are

actually continuously differentiable on IR3]V.

Theorem 15. The following three conditions are equivalent.
(i) E(x) =F(x),

(ϋ) F(x) = 0,
(iii) F(x) = 0.

Proof. Since E(x) and F(x) are both defined by minimizing ^X(Q), but with
constraints in the first case, and since in both cases the minimizing state is unique,

we see that (i) holds if and only if σx = ρx, or equivalently if

tr[Q<rJ=x.

Lemma 14 shows that this is equivalent to (ii). If (i) holds then E(x) = F(x\
F(x) = 0, E(y)^F(y) for all yelR™ together imply F(x) = 0.

If E(x) > F(x) we have
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If 0</1<1 and

and

μ = (l-λ)ρx

then

and

Hence

^ - λ{E(x) - F(x)} - aλ2(y - x)2

which implies that

E'(x) (y-x)£-{E(x)-F(x)} (3.2)

so E'(x)Φθ.

We have thus shown that although E and F are not the same function, they
have the same turning points. By combining (3.2) with Lemma 14 we get the
further inequality

which may be used to obtain more relationships between E and F.

Theorem 16. Metastable states are states of the form

where xeIR3ΛΓ is one of the points for which

= x . (3.3)

The proof is just a matter of drawing together Theorem 13, Lemma 14, and
Theorem 15. For each 0<α, β< oo we obtain a family of "modified Gibbs states"
σx depending on xeIR3]V. The side condition will then in general restrict x to one of
a few discrete values. Each such value xeIR3]V describes a "classical" configuration
of the atoms into a molecule as considered in traditional approaches to the
problem of molecular structure.
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Theorem 17. If β~1=0 and 0<α< oo then the metastable states are of the form

where ψx is the ground state of [H + a(Q — x)2} and xeIR3N is one of the points for
which

The proof of this degenerate case is as before if one replaces "Gibbs state" by
"ground state" throughout.

5. Metastable States in a Weak Electric Field

As an illustrative example, we apply the above ideas to a two-body system at zero
temperature in a weak external electric field. After eliminating the centre of mass
motion the zero field Hamiltonian H on 3#? = L2(1R3) is taken to be

-- ,
2m

where

| |F(l-ZlΓ1 / 2 | |<oo

and

lim 7(x) = 0.
|x|-»oo

To reduce the complexity we also suppose that V is central. We assume that H has
a (non-degenerate, central) ground state φ0 with energy E0 < 0. Then

where E1 =0 if φ0 is the only bound state of H and E1 is the energy of the first
excited state otherwise. We investigate the existence of a metastable state near to
φ0 in the external field (yA-Q), where ^elR3 is a fixed unit vector and y>0 is
sufficiently small. For a discussion of the relationship between our approach and
that of [3-5] see the next section.

Since δ is concave onX when β~ 1 =0, we may restrict attention throughout to
pure states and redefine δ on {ψE #? : \\ip\\ = 1} by

where

3

r=l

The function E on 1R3 is given by

= l and <βφ,φ> = x} , (4.1)
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where

This operator is self-adjoint and semibounded with pure point spectrum, for all
α>0. The minimum in (4.1) exists by Theorem 9. It is clear that E(x)^F(x) for all
xeIR3, where F(x) is the ground state energy of Hx. By Theorem 17 we can obtain
metastable states by finding the local minima of F(x), and our goal is to locate
these when α, γ > 0 are both very small. Note that if α = 0 the Hamiltonian Hx is not
semibounded, so no true ground state exists.

Lemma 18. The minimum of F(x) within the set {x : \x\ ^c} occurs when x = λA for
some

Proof. If L(y) is the ground state energy of (H — y Q + uQ2) then

Now L(y) is concave and central on 1R3, so it has its maximum at y = Q and is a
strictly monotonically decreasing function of \y\. If we minimize F(x) with \x\ fixed,
we see that x must be a positive multiple of A. The abolute minimum within
{x:|x|^c} is then obtained by varying |x|.

The following lemma shows that if α > 0 is too small relative to y > 0, then there
is no metastable state close to φ0.

Lemma 19. Given c>0 and y 0>0 there exists ε>0 such that F(x) has no local
minimum within {x:|x|<c} if 0<y<y 0 and 0<αy~ 2<ε.

Proof. If || φ || = 1 and <βφ,φ> = x then

βφ, φ> + α<(β - x)2φ, φ>

Hence

E(x)>E0-y0c .

On the other hand if c0 is chosen so that

is a unit vector then

F(x) ^ (Hφ, φy-

> - ε- 1/2 + c2(l + ε1/2

7oc)2 + βy2c2 .

Since <ί/φ, φ> has a uniform bound with respect to α>0 we see that if ε>0 is
small enough then

F(x)<E(x)

so F does not have a local minimum at x, by Theorem 15.
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From now on we put oc = ay2 where a > 0 is sufficiently large, but fixed, as y— »0.
We use the formal perturbation expansion

.} (4.2)

as a guide for determining approximations to the ground state energy F(x). Note
that the spherical symmetry of φ0 implies that

so Fί =0. Moreover

ψί=S(A-Q)φ0,

where the bounded operators S,X are defined by

S = (H-£0)~1X

and

X = ί-\φ0 ><φ0\.

We shall need the following technical lemma.

Lemma 20. One has

\\QsQrψΛ<^ (4-3)
for all r, s.

Proof. We refer to [12] or [9, Theorem 13.70] for the proof that

\\\Q\a<Po\\«x> (4-4)

for all n^O, and start by proving that

n α v i i K o o .
Since

β,Vl =XQrΨ1 + (S(Q A)φ0, Qrφoyφ0

it is sufficient to prove the finiteness of the norm of

= S(H-E0)QrS(Q A)φ0

= SQr(H-E0)S(Q A)φ()

= SQr(Q A)φ0-^SPrS(Q A)φ0.
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One sees that

\ + \\SPrS\\ \\(Q A)φQ\\

<oo .

Similarly

QsQrΨl =XQsQrVl + <$(Q ' ̂ )ΦO» QrQS<Pθ><Pθ

so (4.3) follows once one proves the finiteness of the norm of

= S(H-E0)Q,QrS(Q A)φ0

= SQsQr(H-E0)S(Q A)φ0

+ Sί(H-E0),Q,Qr ]S(Q A)φ0

= SQsQ,(Q A)φ0

The first term has finite norm by (4.4) and the second term equals

-ίm-1S(PsQr + QsPr)S(QΆ)φ0

= -ίm- iS(iδr, + PrQs + PSQ

which has finite norm by (4.5).

Lemma 21. The inequality

F(x] ^E0- y\(Q A)S(Q - A)φ0, φ0>

holds uniformly for \x\<c as y|0.

Proof. If φ = φQ-\-yιpl then

X Φo + 7Ψ i >

(4.6)
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Since

MΓMllrf+y'livJ2)'1

= ι-y 2 l lvιl l 2 +θ(/)
we conclude that

which yields the stated inequality upon simplification.
We next obtain a crude lower bound to the energy G(x) of the first excited state

of Hx. The condition (4.8) below states that states that y >0 should be small and
α>0 should be large. We shall henceforth always assume that this condition is
satisfied.

Lemma 22. // xelR3 then

G(x)^El-yA'X-^. (4.7)

In particular if \x\ ̂  c and γ, a satisfy

yc+^^(E,-EQ) (4.8)

then

G(x)^(E0 + E 1 ) . (4.9)

Proof. The quadratic form inequality

2 A\ 2 2-α?2 X+-— +aγ2x2

4α

leads to (4.7) by a standard result. The proof of (4.9) is now elementary

Theorem 23. // α>0 is large enough then

F(x) = EO - r

2<(β A)S(Q A)φ0, <

uniformly for \x\^c as yj,0.
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Proof. By Lemma 21 we need only prove a similar lower bound for F(x), and we
do this by using Temple's inequality [9, p. 84]. If φ = φ0 + yψ1? as before, we have

By Lemmas 21 and 22 the denominator is bounded away from zero as γ|0
provided a > 0 is large enough. Since also || φ \\ -» 1 as y j 0 we have only to show that

. (4.10)

Now application of Lemma 20 shows that

= E0φ0=+y{Hιpί-(A'Q)φ()}

Therefore

We finally obtain (4.10) by comparing the above equation with (4.6).

Corollary 24. // a > 0 is sufficiently large and y > 0 is sufficiently small then the
function F(x) has a minimum in {x : \x\ < c} and that minimum occurs for x = λA
where

Moreover

minF(x) = £0 + 0(y2) .
\x\Zc

6. Interpretation of the Results

We have described a method for defining a metastable state of an atom at zero
temperature in a non-zero electric field. An entirely different way of approaching
this problem described in [3-5] is to study the spectrum of the Hamiltonian
H — y(A - Q) after a transformation known as complex scaling. It turns out that this
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operator then has a complex eigenvalue K(y] with an asymptotic expansion

where the (real) coefficients Kr are obtained from the formal perturbation
expansion

While this approach is more intrinsic to the problem, in that no "thermo-
dynamic parameters" α or a appear, it is not very clear what its operational
interpretation should be, because the Hamiltonian after complex scaling is no
longer self-adjoint. While this may not be regarded as a serious problem, it seems
that no prescription in these terms has yet been given for defining a positive
temperature metastable state in a non-zero field.

In this particular problem a "better" method than the one we described is to
put the atom in the electric field and also in a spherical box of carefully chosen
radius, depending on y. One should then obtain a real ground state energy which
has an asymptotic expansion in y agreeing to all orders with that obtained by the
complex scaling method. The advantage of our method is that the constraint
introduced by the non-linear term u.W(ρ) is not dependent upon knowing the
answer one is looking for, so that our method is a more fundamental one.

Returning to the example of Sect. 4, we give some justification for calling the
state determined a metastable state.

Theorem 25. Let ip be the normalised ground state of the Hamiltonian

Hx = H-yA Q + ay2(Q-x)2 ,

where x is the point determined in Corollary 24 at which F has a local minimum near
to zero. Then

(5.1)

as y JO, so that there exists a constant b<co such that

for all f^O.

Proof. Since

Hψ = F(x)ψ

we have

\\(H0-γA Q)ψ-E0ψ\\

= \\(F(x)-E0)Ψ-aγ2(Q~x)2ιp\\
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The proof of (5.1) is completed by showing that ||β2tp|| is uniformly bounded as
γ JO. An examination of the proof of [12, Theorem 1] or [9, Theorem 13.70]
shows that the various constants involved can be chosen uniformly with respect to
small y >0 and all x with \x\^c. The proof of (5.2) from (5.1) is elementary.
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