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Abstract. A characterization of state spaces of Jordan algebras by Alfsen and
Shultz is improved to a form with more physical appeal (proposed by
Wittstock) in the simplified case of a finite dimension.

1. Introduction

In recent years there have been a number of works on the characterization of state
spaces of W* and C* algebras [1-3]. We present here another version, which
seems to have a somewhat better physical appeal, though applicable only to a
special situation (finite type I cases in the sequel).

Our axioms are very close to those of Alfsen and Shultz ([4], Sect. 6) for type I
Jordan algebras except that we replace their P-projections by a weaker notion of
filtering projections, which has been suggested by Wittstock [5].

The state space is assumed to be a compact convex set K as usual, where the
convex combination of points in K represents a mixture of physical states,
extremal points of K corresponding to pure states. We make the simplifying
assumption that the dimension of K is finite.

The first axiom is in terms of filtering projections, which have a physical
interpretation of the measuring process of the first kind for questions (observables
with yes or no answers), as will be described in Definition 2.2. Axiom O in Sect. 3
requires the existence of sufficiently many filtering projections (i.e. one for each
face of K) satisfying a certain consistency condition with an obvious physical
interpretation.

The filtering projection P, associated with a pure state ¢ defines a number
{@,p) for another pure state y through the relation

Pyw=<Lp,v)0, (L.1)
with an interpretation of the transition probability. Our second Axiom is
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Axiom #. For any pair of pure states ¢ and v,
@, ) =<p, 0. (1.2)

The importance of this symmetry property of the transition probability in the
axiomatization of quantum mechanics has been emphasized to the author by
Haag since 1960 [6]. It has been treated also by other authors (see [7-9]).

The Axioms ¢ and # combined are much stronger than each of them
separately, as can be seen from simple examples of Sect. 11. In particular, the
Axioms @ and J# together imply that the filtering projection of the Axiom 0 is a
P-projection in the sense of Alfsen and Shultz [10]. The main mathematical
content of this sequel is the proof of this statement.

Axioms ¢ and # completely determine the case of rank 2 (i.e. when K has at
most two pure states which are mutually orthogonal in the sense defined later).
The set K in this case is a ball (of radius 1/ ]/5), which is the state space of the so-
called spin factors [11, 12].

We have not been able to decide whether the Axioms @ and s already lead to
our conclusion. Therefore we tentatively introduce an additional Axiom:

Axiom 2. The filtering projections in Axiom ¢ map pure states to multiples of
pure states.

We feel that this Axiom is stronger than we need and are using only a small
part of it to conclude that a finite dimensional K satisfies Axioms 0, #, and & if
and only if it is a direct sum of state spaces of the full matrix algebras (quantum
mechanics) over real, complex and/or quaternion, the spin factors and/or the
exceptional Jordan algebra M g [13]. This result follows from Axioms @, /#, and 2
by [4] (especially Theorem 6.16) once we prove that the filtering projections of
Axiom (@ are P-projections.

The case of complex field (the ordinary quantum mechanics) can be distin-
guished from other cases by its good behavior under composition of independent
systems, as is discussed in Sect. 12.

2. Filtering Measurement and Filtering Projections

The following is an idealization of the quantum mechanical measurement (of the
first kind) for questions (observables with yes and no answers alone):

Definition 2.1. A filtering p is a mapping from the state space K into
(K x(0,1])u(0 % 0), sending a state pe K to a pair of a state p-pe KUO0 (a state
coming out of the measurement when the measured value is “yes”) and a number
P(p)e[0, 1] (the probability of obtaining the measured value “yes” on the state ¢,
the special point 0 corresponding to the situation where the probability is O for the
measured value “yes” and hence nothing comes out almost surely), which satisfies
the following conditions:
(1) The repetition yields the same state with probability 1 unless p-@=0:

p-(p-o)=p-o, pH-o=1. (2.1)
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(2) The mixture p=1¢p; +(1- 1), (0=SA=1, ¢, €K, ¢,€K) behaves under a
filtering p as if it is the state ¢, with probability A and the state ¢, with probability
1—-4:

Pl@)=Ap(¢ )+ (1 —D)p(e,), (22)
p-@=0if p(¢)=0 and
P o={p(@)” " Ap(@,)}p- @y + {Pl@) (1 = 1)p(9,)}p- @, (23)

if p(¢)=+0 where the term with p- ¢, should be omitted whenever p- @, =0.
(3) If the state comes out of the filtering with probability 1 for “yes” answer,
then the state is not altered by the filtering:

pro=0 if ple)=1. (24)

(4) There exists another map p’ from K into (K x (0, 1])u(0 x 0) (corresponding
to the filtering measurement of the “no” answer) satisfying the same properties
(1)~(3), such that it is complementary to p (i.e. the total probability is 1) in the
following sense:

ple)+p(p)=1 forany ¢ekK. (2.5)

To linearize this definition, we imbed K in a vector space V of one dimension
higher such that the affine span of K in ¥ does not contain the origin of V. Then

the cone V, with the base K ( v, = lK) defines an order (¢, < @, iff @, — @, €V,)
and a norm =0

loll =inf{lo|+1B]; o =00, + B, ¢,€K, 9K} (2.6)
in V.
Definition 2.2. A filtering projection p is a linear mapping of V into V with the
following properties :

(a) p is a projection: pZ=p.

(b) p is positive: pV, CV,.

(c) pis contractive: ||p|| =1. (Equivalently, pe K implies |pp| =1.)

(d) p is neutral: ||pp| =] ¢| implies pep = .

(e) p is complemented: there exists another positive, contractive, neutral
projection p’ satisfying for every pe K

Ipel+lprel=1. 2.7)
The two definitions are related by the following:

Proposition 2.3. If p is a filtering projection, then p defined for @K by

pro=0 if pe=0, (2.8)
p-o=lpel 'pe if pe=*0, 29)
pe)=lpel (2.10)

is a filtering. Conversely, if p is a filtering, there exists a unique filtering projection
p such that (2.8), (2.9), and (2.10) holds for the given p and any peK.
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Remark 2.4. [In Definition 2.2, the contractive property (c) for p and p’ actually
follows from the properties (b) and (2.7).]

Remark 2.5. The dual of V can be identified with the set A(K) of all affine functions
on K (by restriction and linear extension) and the polar of V, is given by
AT (K)={xe A(K); x(¢)20 (peK)}.

In particular the norms of eV, and xe A(K) can be expressed in terms of ee A(K)
satisfying e(y)=1 for all ye K by

loll=e(e), (2.11)

x| =inf{A1=0; —Jle<x<le}. (2.12)
[The unit balls of ¥V and A(K) are the convex hull of K and — K, and the double
cone with vertices e and —e.]

Proof of Remark 2.4. By (b) and (e), pK is in the convex hull of K and 0. Hence p
maps the unit ball of B into itself.
Proof of Proposition 2.3. If p is a filtering projection, then p defined by (2.8), (2.9),
and (2.10) maps K into (K x (0, 1])u(0 x 0) due to (b) and (c) and clearly satisfies
(2.1) due to (a), (2.2) due to (2.10) and (2.11), (2.3) due to the definition (2.9) and
(2.10), (2.4) due to the neutrality (d) and the condition (4) due to (e).

Conversely, if p is a filtering, then define pp =0 if p- =0 and

pe=p@)p- ¢ (2.13)
if p-p=+0 for peK and
pp=opp,+Bpe, (2.14)

whenever g =a¢, + f¢, with ¢, €K and ¢,€ K. Then p defined on K by (2.13) is
affine due to (2.3) and hence pp given by (2.14) does not depend on the
decomposition ¢ =a¢, +f¢,, and p is a linear map of V into V. The property (a)
follows from (2.1), (b) from (2.13) and p(¢)=0, (d) from (2.4) and (2.13) which
implies ||pe||=p(p) for peK, (c) by Remark 2.4 and (e) from (4).

3. Faces of K

Definition 3.1. A face f of K is a convex subset of K such that
p=Ap;+(1—AN)g, for ¢ef, ¢eK, ¢,eK

and
0<i<l imply ¢,ef and o¢,ef.

A face is a subset of K stable under mixing (¢, ¢,—~@=41¢, +(1—1)¢,) and
purification (¢—¢@,, ¢,). A face consisting of one point is an extremal point (a pure
state).

We denote the set of all faces of K by F(K) and the set of all extremal points by
F,(K). Likewise, we denote the set of all non-empty faces of ¥, and A™(K) by
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F(V,)and F'(4"), respectively, and the set of all one-dimensional faces (extremal
rays) of ¥V, and A™(K) by F,(V,) and F,(47).

Lemma 3.2. The following gives 1 —1 relation between F(K) and F'(V.).
f=UMeF0.), f=]nKeFK), (3.1)

where F(K) is in 1 —1 relation with F (K) and f=0if f=0.
The proof is immediate as ¥ is a convex cone with a compact base K.
Lemma 3.3. If p is a filtering projection,
Im* p=pVnV,=pV,.eF(V,), (3.2)
pVnK=pV,.nK=pKnKeF(K). (3.3)
The two faces are related by the 1 —1 correspondence of Lemma 3.2.

By this lemma, a face of K is associated to each filtering projection. It is the
totality of states coming out of the corresponding filtering measurement. In
general, a face can be associated to many different filtering projections (in contrast
to a P-projection of Alfsen and Shultz) as in an example of Sect. 11.

We are now ready to state one of our Axioms.

Axiom O. For each fe F(K), there corresponds a filtering projection p, such that
(i) p;VnK=f (cf. Lemma 3.3),

(ii) if f; € f,, then DPpPr,=Pysys
(iii) for each fe F(K), there is another f”e F(K) for which p . is complementary
to p, in the sense of (2.7).

Remark 3.4. The condition (ii) expresses a coherence of filtering to a bigger face and
a smaller face. The following relation, however, holds without an assumption:

Pp.Py =Dy, it fis/s, (3.4
because of the following general property of a filtering projection :
Lemma 3.5. The image of a filtering projection p (denoted by Imp=pV is the linear
span of the associated face pKnK).

Because of (3.4), the condition (ii) can also be formulated as the compatibility
Ps.bs,=D;,Py, of the associated filtering measurements. The condition (i) simply
says p,-K=fu0 (or K if f=K).

Proposition 3.6. If K satisfies the Axiom O, any of its faces also satisfies the Axiom
0. The same holds for the Axiom # .

Main reasons for this are Lemma 3.5 and the following immediate consequence
of Definition 3.1:

Lemma 3.7. For two faces f, and f, of K, F(f,)SF(f;) and Fo(f))SFo(f,)if f1 S 1>
Proof of Lemma 3.3. Since VOV, DK, we have

pVnKDpV,.nKDpKnK,
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while @epV satisfies pp=¢ due to p?=p and hence @epVnK implies
@ =ppepKnK. Therefore equalities in (3.3) hold.

Next pVnK is convex, being an intersection of convex sets. To prove thatitis a
face of K, let

pepVnK, o=ip,+(1-1p,, ¢,€K, ¢,eK, 0<i<l.

Since pp = ¢, we have App, +(1—2A)pp,=¢ and hence
Ae(pp;)+(1—De(pg,)=e(p)=1.

By (2.11) and (c), we have e(pp;) <1 (j=1,2) and hence e(pp,)=e(pp,)=1. By the
neutrality (d), we conclude that pp, =¢,, pp,=¢, and hence ¢,epKnK and
@,epKnK. This shows that pV’nK is a face of K.

Since any subcone V] of V, is determined by ¥; K and is a face if and only if
VinKeF(K) due to Lemma 3.2. Hence (3.3) implies the rest of the conclusion of
the lemma.

Proof of Lemma 3.5. Since V=V, —V,_,pV=pV, —pV,.Since pV, is in the linear
span of pV,nK (due to pV,_CV.,), pV is in the linear span of pKnK, by (3.3).

Proof of Proposition 3.6 will be given in the next section.

4. Lattice of Faces

Faces of a convex set form a lattice relative to the order by inclusion with the
whole set and empty set as the largest element and the smallest element,
respectively, due to the following Lemma.

Lemma 4.1. (i) An intersection of an arbitrary number of faces is a face.
(ii) There exists the smallest face f,(L) containing a given subset L of K.
(ii)) f(L)={e;3p;eL,0'eK,1e(0, 1],

420, 4=1,5 Awp;=2p+(1— g’} 4.1)

Our aim of this section is to prove the following:

Theorem 4.2. Under Axiom O, F(K) is an orthocomplemented, orthomodular lattice.

Here the orthocomplementation is f —f” given by Axiom 0(iii). If f, C f;, then we
say that f, and f, are (lattice) orthogonal. The orthomodularity means that a
sublattice generated by such f; and f, is modular, which is equivalent to the
validity of the following equality for all such f,,f;:

L=fiv{fingd). 4.2)

(These properties have been treated, for example, in [14, 8].)
As a tool for the proof, we denote the transpose of p, acting on the dual A(K)
of V' by p} and

e =pfe. 4.3)
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The Eq. (2.7) for p, and p,, is equivalent to
e,te ,=e (4.4)
because K is total in V.

Lemma 4.3. Under Axiom O, the following holds for fe F(K).
() f={peK;elo)=1}.
(i) f={peK:e,(p)=0}.
(iii) f=Knkerp, (ker denotes “the kernel of”).
iv) fAaf=0.

Proof of Lemma 4.1. (i) follows from Definition 3.1 and (i) from (i) (take the
intersection of all faces containing L). The right hand side of (4.1) is convex,
contains L (set y;=¢, A=1) and is contained in any face containing L. Hence it
must be equal to f(L).

Proof of Lemma 4.3. (i) |p ol =e(p,p)=e,(p)=1 for pe K implies p ¢ =¢ by the
neutrality of p, and hence ¢ef by Axiom (i). Conversely, pef implies
e (@)=elp,p)=1.

(ii) follows from (i) and (4.4) due to e(p)=1 for peK.

(iii) follows from (ii) since (|p @[ =)e,(¢)=0 is equivalent to p.¢p=0.

(iv) follows from (i) for f* and (ii) for f because e,.(@)=1 and e, (p)=0 are
incompatible.

Proof of Theorem 4.2 is divided into several steps:
(I) f—f" isinvolutive: By (4.4), we have e, =¢ .., and by Lemma 4.3 (i), we
have f=(f").

(D) fiCf; if and only if f 25 If f 2 f;, Axiom (i) implies kerp ., Ckerp,,.
This implies f;Cf, due to Lemma 4.3(iii). The converse follows from this
conclusion due to the step (I).

(IIT) fvf'=K and f A f'=0: The latter due to Lemma 4.3(iv) and the former
due to the latter and the step L. Note that p, must be 0, p, must be an identity, and
K'=4.

The above three steps proves that F(K) is an orthocomplemented lattice. We
now derive a few identities leading to the proof of orthomodularity.

(V) If f, =f,, then p} e, =pF e,,: By applying p¥, on (4.4) for f, and using
Axiom ((ii) in the form p} p} =p7 , we obtain [cf. (4.3)]

er, tPien=es, (45)
By adding ¢, and using (4.4), we obtain

er, tPepm ey =e- (4.6)

Likewise by applying p¥, on (4.4) for f, and using Axiom ((ii) for f{ =f; in the
form p¥.p¥, =p¥,, we obtain

phes e =ey, 4.7)
and hence

e, e, Tep=e. (4.8)
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Comparing (4.6) and (4.8), we obtain the desired relation.
(V) If fy £ f,, then pfe, =e, , ;,,: Consider

f=Knker(p,,p,). (4.9)

It is convex as an intersection of convex sets. If pef, 0<i<1, ¢, €K, ¢, K and
Q=219 +(1—2)¢,, then

lpfzpf'lﬁfﬁ +(1—/1)pfzpf’1(p2=0‘ (4.10)
Hence p,,p,,¢, and p;,p,, ¢, being both in V, due to definition (2.2) (b), must be
0. [0=e*nV, is in Fy(V,).] This implies that both ¢, and ¢, are in f. Hence
feF(K).

By (4.9), f2Knkerp,, =f, [Lemma 4.3(iii)]. By the step(IV) and the same
argument, we also have f2 f,;. Hence

fzfivf. (4.11)

Since the image of p;, , ;) is the linear span of f; v f; by Lemma 3.5, (4.11) and the
definition (4.9) imply

PrPriPisivrn=0 4.12)
and hence
P{ v raPTis,=0- (4.13)

By multiplying pf \,, on (4.8) and using Axiom (i) for f,vf;=f, and
fiv f3=f;, we obtain

e, Fep =€y vy (4.14)
Using (4.4) for (f, v f,) and (4.8), we obtain from (4.14)
e v sy =€~ €p,— €y =D 8, (4.15)

In view of the relation (f; v f3) = f{ A f,, this is the desired relation.
(VI) If £y =15, then f,=f, v (f] A f,): since f] =(f] A f,), the equality (4.14) for
the pair (f] A f,) and f] instead of f; and f, implies

€rvirinry = rinry T e =€,y (4.16)
where the last equality is due to (4.5) and the steps (IV), (V). By Lemma 4.3(i), this
implies the desired equality and hence the orthomodularity. [Replace f, by f; to

get (4.2).] )

Proof of Proposition 3.6. Given ge F(K). For each feF(g), we associate the
restriction p% of p, to the linear span ¥, of g. By Lemma 3.7, f is a face of K and
hence p, is provided by Axiom 0 for K. Since the image of p, is the linear span of
Sf(Eg), p% is a linear map of V, into V, and is a projection. By Axiom (i) for K, and
(3.2), V.nV,=V{ is the cone with base g. Hence p is positive and neutral. We use

f9=fng
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to be the complementation in Axiom ¢(iii) for g. Due to (4.2), we have g=f v f©@
[in F(K)] and hence

e,tepg=e,

due to (4.14) for the pair fand (/) = f v ¢'= f instead of f, and f,. Since e(p)=1
for all peg, we have

e,(p;0)+e,prap)=1
for peg. Hence Axiom ((iii) is satisfied with the complementation f— f@. The
contractivity of p , then follows due to Remark 2.4. Thus Axiom 0 is satisfied for g.
Since Fy(g)CFy(K) (Lemma 3.7), Axiom # holds automatically for g for this
choice of p if it is true for K.
5. Spectral Theory
As a technical tool, we derive decomposition of an element in A(K). The role of
spectral projections is played by e, with mutually lattice-orthogonal f;.
Lemma 5.1. Iff, i=1, ..., n) are mutually lattice-orthogonal faces of K and f= V f,
i=1

then Axiom O implies

(5.1)

e

ef= €fi.

i=1

This has already been obtained in (4.14) for n=2 and the general case follows
by repetition.
For each face f of K, we can associate the following faces of A(K):

Definition 5.2. For fe F(K), we denote
fr={acA*(K); a(p)=0 for all e[}, (5.2)
*=the face of A7(K) generated by e,. (5.3)

A similar notation F* is used for Fe F(A"), where F*CK.
It is straightforward to prove that f* is a face of A*(K) and F* is a face of K.
[This is true for any subsets f of K and F of 4™ (K).]

Proposition 5.3. Under Axiom O, the following holds :

(@) f=(f)* is an order isomorphism of F(K) into F'(A™).

@) (S5 =71 S

In general, the map of Proposition 5.3(i) is neither surjective nor a lattice
isomorphism. If it is surjective, then the spectral analysis can be performed as
follows:

Proposition 5.4. If (f)* with fe F(K) exhausts non-empty faces of A" (K), the
following holds under Axiom O :
(i) For any face f of K and any non-empty face F of A*(K),

fr=(*t, (P =F. (5.4)
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(ii) Any xe A(K) has the following unique decomposition :

x=7, K€y, (5-5)
i=1

where W’s are a strictly increasing sequence of non-zero reals, and f’s are mutually
lattice-orthogonal non-empty faces of K.

Proof of Proposition 5.3. (i) For any fe F(K), the definition (5.2) implies (f*)*>f
and therefore
fH=rf (5.6)

because Lemma 4.3(ii) implies e, f* and (f*)*C(e,)"=f Therefore fi"=f;
implies f; = f,. Since f, 2 f, implies fi"C f5, f—(f")* is an order isomorphism.

(i) By usual argument, (x=4x; +(1—4)x, and x(¢)=0 implies x,(p)=0 if
x{(9)=0 and 0<i<1), (5.3) implies (f*)* =(e,)* which coincides with f* due to
Lemma 4.3(ii). This implies

SR =0 (5.7)

Proof of Proposition 5.4(i). (F*)*=F follows from (5.6) for example (or from a
general argument). Then f*=(f")* follows from Proposition 5.3(ii). Proof of
Proposition 5.4(ii) is in Appendix.

6. The Inner Product

We investigate the consequence of Axiom s# alone. By this we mean that the
existence of a filtering projection p is assumed for each pure states but not for any
other face f, in addition to (1.2).

Proposition 6.1. Under Axiom 3,

ep=) Ae, cAK) (6.1)
for

v=) 40, ¢;eFy(K) 6.2)
is independent of the decomposition (6.2) of we V and linearly depends on ypeV.

v w0 =y (,) (6.3)

defines a symmetric bilinear form on V and induces a non-degenerate symmetric
bilinear form

ey, ep) =<y, 0 (6.4)

on the image A°=eV of the map é. The kernel V, of this map is the intersection of
kerp,, for all pe F((K) and the annihilator of V; in A(K) is A°.

The target of the next two sections is the proof of V,=0 and a stronger
property that the inner product on V is positive definite. The following technical
lemma, which shows some positive definiteness, can be proved under Axiom #
alone.
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Lemma 6.2. For yp,eK and p,€K,
1=y, 9,020, (6.5)

The equality {w,,y,y=1 holds if and only if w, =v, and it is extremal. For any
yek,

<y, p>>0. (6.6)
If w, and v, are distinct extremal points of K,

W1 =50 — w2 >0. (6.7)
Proof of Proposition 6.1. For any @€ F(K),

YA, (0)=). Aie(@)=e,(w), (6.8)

which depends only on 1 and is independent of the decomposition (6.2). Since K is
the convex hull of ¢ in F(K) and is total in ¥, we obtain the independence of (6.1)
on the decomposition (6.2). Likewise, the linear dependence of éy on y follows
from the linear dependence of (6.8) on y. By (6.8),

ey(p)=2p(y) (6.9)

holds for e V and ¢e F,(K) and hence for any @€ V due to the linear dependence
of both sides of the equation on ¢. Therefore (6.3) defines a symmetric bilinear
form on V.

The kernel ¥, of the map & is the set of all pe V which is orthogonal to every y
in V relative to ¢, y)>. Hence (6.4) depends only on éyp and é¢ (and not y and ¢
directly) and is non-degenerate.

By the symmetry of (6.3), ¥, is also the set of all e V which are annihilated by
all éyp, pe V and hence is the annihilator of A° in V. By bipolar theorem, A4° is the
annihilator of V; in A(K).

By (1.1), which is consistent with our definition (6.3) for a pure state y and
hence for any weV for any fixed @peF(K), peV, is in kerp, for all e F(K).
Conversely, if p,p =0 for all pe F(K), then é¢(yp)=0 for all pe F(K) and hence
for all pe V. Hence yeV,,

Proof of Lemma 6.2. If y, and y, are extremal points of K, then the positivity and
the contractivity of the filtering projection p, implies (6.5). In addition,
{wy,p,»=11implies p,, p, =1, € K and hence p,, y, =1, due to neutrality. On the
other hand, {y,yp)=1 for a pure state v due to p,p=wy. Thus {y,p,>=1 for
pure v, and v, holds if and only if p, =vp,.
K is the convex hull of its extremal points. Let y,=) AuWu 4520,
k

Y€ Fo(K)(i=1,2). Then y;eK implies Y A, =1. We have
k

wpwp= Zl /Iik/1ﬂ<1/Jik> wjl> . (6.10)
k,

Therefore (v, ;,1,,» =0, which has been already established, implies {yp;, ;> =0
and, since {1, =1, we also have {y, ;> 2} (4,)*>0, ie. (6.6).
Jj
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If we use {yy, w;» =1, which has been already established, in (6.10), we obtain
{yy, U)j> gkz,/likljlz L.
L1

The equality holds if and only if {y,, ;> =1, ie. if and only if v, =y, for all k
and [, which is equivalent to =y, =vy;=v; Thus {y,p,>=1 for p,,p,eK if
and only if v, =, and it is extremal.

(6.7) follows from (p,, ) =(v,, w,)=1and (p,, p,) <1 for distinct extremal
and vp,.

7. Lattice and Metric Orthogonalities

This section treats easy consequences of Axioms ¢ and s together. Axiom ()
brings in the notion of lattice-orthogonality of faces and Axiom 4 brings in the
metric orthogonality relative to the inner product (6.3). The two coincides due to
the following:

Proposition 7.1. Under Axioms O and H,
J'={peK;<p,yp)>=0 for all ye f}. (7.1)

Two faces f; and f, of K are lattice-orthogonal if and only if they are metrically
orthogonal, which is also equivalent to (e, ,e.>=0.

The notion of the rank of a face can be introduced in terms of mutually
orthogonal extremal points of the face.

Proposition 7.2. Under Axioms O and A, e e A® and
rp=<ep e (7.2)

is a positive integer for each non-empty face f of K. (It is O for the empty set f ={.)
The number k of mutually orthogonal non-empty faces ¢, ..., @, of fis at most r .
k=r, can be achieved. Then each ¢, is necessarily extremal and

ry ry
f=V gue;=Y e, (73)
i= i=1

Definition 7.3. r, is called the rank of f.

Corollary 7.4. (i) If f,  f, then rank f, >rankf,.
K
@) If f=V f; and all f; are mutually orthogonal, then
i=1

rank f = i rank f;. (7.4)

Proof of Proposition 7.1. If ¢ and y are extremal points of K satisfying ¢’ 2y
(lattice-orthogonality), then  is in ker p,, due to Lemma 4.3(iii) (with f replaced by
¢') and hence (@, ) =0 (metric orthogonality). Since any face of K is a convex
hull of its extremal points, this result implies that two faces are metrically
orthogonal if they are lattice-orthogonal.
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If peK satisfies (¢, ) =0 for all ye f for some face f of K, and if p=1¢,
+(1— Mg, with 0<i<l1, ¢,eK and ¢,e K, then

0=L@,w> =4y, >+ (1 -y w). (7.5)

Due to Lemma 6.2, (¢, (j=1,2) are positive and hence must vanish. Therefore
the right hand side of (7.1) is a face of K. Let us call this face g. By the earlier
argument, we have g2 f".

Let peg A(f") =g A f. Since it is in g and f, {¢, ¢ ) =0 which is impossible due
to Lemma 6.2. Therefore g A f=0. The orthomodularity implies

g=gn(fNvS=0vf=f". (7.6)

This proves (7.1) and the statement that two faces are lattice-orthogonal if they are
metrically orthogonal.

The equivalence of orthogonality to <e,,e,,>=0 will be proved at the end of
this section.

Proof of Proposition 7.2. Let ¢, ..., ¢, be mutually orthogonal extremal points of f.
k
If f,= V ¢, is not f, then there exists an extremal point ¢ of f] A f (%0), which is
i=1
automatically an extremal point of f orthogonal to all ¢,, i=1, ..., k. By repeating

this process, which terminates with f= V ¢, we obtain a family of mutually
i=1

orthogonal extremal points of f which contains the original family and span f. By

Lemma 5.1, e,=) e, € A° and hence

r

Cepey =Y Ceopen) = 3 (eppesd=T, (.7

where we used {¢;, @;> =0 for i#jand =1 for i=j. This shows also k<r. If {f;} is
a family of mutually orthogonal subfaces of f (i=1, ..., k), then orthomodularity
implies

f=i§0fi, fo=ra (V£ (78)

Let ¢;; (=1, ...,rank f;) be a family of mutually orthogonal extremal points of f;
Lemma 5.1 implies

k
e;=) e =ye, . (7.9)
. &

i=0

Hence, due to mutual orthogonality of ¢,;,
k
rank f = <e/a ef> = Z <§0ijr qoij> = Z rank f;,
i,Jj i=0
which proves k <rankf (the case with non-empty f;) as well as (7.4) (the case with
fo=0, rank f, =0).

Proof of Corollary 7.4. (ii) is just proved. If f, 2 f,, then f,=f, v(fi Af;) with
rank (f; A f;)#+0 and hence (i) follows from (ii).
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Proof of Proposition 7.1 (continued). Let f; and f, be two faces and f;=V ¢,; with
j
mutually orthogonal ¢,;; for each i=1,2.1f f; and f, are orthogonal, then all ¢,; are

mutually orthogonal and hence e, ,¢,, >=0if (,j)*(k, ). Therefore e, = Z% y

for i=1 and 2 also satisfies {e,,e; >=0.
Conversely, assume (e, e, >=0. Since

<e¢1j’ e¢2k> = <(P1js (P2k> 20

by (6.5),e,,= Z e,,, implies the vanishing of the above quantity for all pair j, k. This
means that (p1 ; 1s lattice orthogonal to ¢, by earlier proof and hence f; =V ¢, ; is
J

lattice orthogonal to f, =V ¢,,.
!

8. Positive Definiteness
Axioms ¢ and # together imply the following nice consequence

Theorem 8.1. Under Axioms O and 3, the inner product (6.3) on V is positive
definite.
The first step is to prove that the inner product is non-degenerate:

Lemma 8.2. Under Axioms O and H#, V,=0, i.e. the inner product (6.3) on V'is non-
degenerate and the kernel of weV—e, is 0.

Once this lemma is established, é is a linear bijection of V onto A(K) (the
surjectivity due to dimensionality reason).

Proposition 8.3. Under Axioms O and H#,

eV, = A*(K), 8.1)
of =f*=()", (8.2)

where [ is given by (3.1), f* by (5.3), ' by Axiom O (iii) and f* by (5.2).

The last property (8.2) enables us to use the spectral theory of Sect. 5 and yields
a simple proof of Theorem 8.1. At the same time we obtain the following:

Theorem 8.4. Under Axioms O and #, p ; for every face fis an orthogonal projection
relative to the inner product (6.3) and is a P-projection.

Proof of Lemma 8.2. This is divided into a few steps.

(I) We investigate the quotient map g from V'to V/V;. The first observation is
that gK is a compact convex set as the image of a compact convex set under a
continuous linear map q.

(II) If v is on the relative boundary of K, then the face g of gK generated by
qy is not gK. The reason is as follows: the face f generated by v is not K due to
Lemma A.1 in the Appendix. Hence f* is not empty. Any ge f’ is (lattice and
hence) metrically orthogonal to y. Let

qp=Aqp, +(1—Aqp,, v, €K, peK, 0<i<l. (8.3)
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Due to the definition of V;, we have
0=K0, 9> =L@, 1) + (1= AP 5. 84)

By (6.5), we must have {¢,y,;)=<¢@,p,»=0. Therefore gf’ is metrically ortho-
gonal to g. By (6.6), any e K cannot be orthogonal to itself and hence gf’ has no
intersection with g. Hence g +gK.

(IIT) If y is in the relative interior of K, then the face of gK generated by qy is
gK itself. The reason: v, =(14+0)p—9¢ is in K for sufficiently small ¢ for any
given @eK, because a full (relative) neighborhood of y is in K. Hence w =4y,
+(1—A)e with 0<A=(1+¢)~ ! <1, which implies gy = Aqy, + (1 — A)g¢ and hence
q¢ is in the face of gK generated by qy.

(V) Final arguments: Since e=egeA° we have e(p,)=0 for any ¢,eV,,.
Therefore for any we K, 1+ V, is contained in the affine manifold {¢;e(p)=1} on
which K lies with interior points. Take p to be an interior point of K. If V%0, ¥,
is non-compact, being a linear set. Hence y + V,, intersects with the boundary of K
at least at some point p,. Then gy =gy, which contradicts (II) and (III). Hence
Vy=0.

Proof of Proposition 8.3. This is divided into a few steps.

(I) eV, CA™(K): this follows from the positivity e, (p,)=0 given by (6.5).

(IT) If w is on the boundary of V, ; the face of A *(K) generated by éyp does not
contain an interior point of A*(K). The reason: The face of V, generated by 1 is of
the form f (f =0 if =0) for some face f of K and f+K if yedK. Hence Y is
orthogonal to f’#0. The same argument as (II) of the proof of Lemma 8.2 implies
that éy generates a face of 47 (K) annihilating f/” and hence not containing éf".
Therefore it is a proper face of 4™ (K) and hence is on the boundary of 4" (K).

(IIT) Proof of (8.1). Let v, ¢V, and &y, be in A*(K). Let y, be an interior
point of V. Then there exists 4 satisfying 0<A<1 and p=Ap, +(1—y,cdV,.
Since éy=Aéy, +(1—2A)éy, and ép,eA*(K) by (I), éw, must be in the face
generated by &y, which is on the boundary of 4% (K) by (II). This is impossible
because éy, is in the interior of &V, CA™(K). Hence éy,¢A*(K) if p,¢V,.
Together with (I), this proves (8.1).

(IV) Proof of (8.2). By (7.3), and éV, C A*(K), any extremal points y of f
satisfies épe f* and hence &f C f*. On the other hand, (8.1) implies that &f is a face
of A*(K) because [ is a face of V,, and &f contains e - due to (7.3). Therefore f* =¢f
Proposition 7.1 shows that

of ={xeeV, :x(p)=0 for all pe(f)}=(f)". (8.5)
[ Alternatively, we obtain f*=(f")* from Proposition 5.4(i).]

Proof of Theorem 8.1. By (8.1), the hypothesis of Proposition 5.4 is satisfied and
hence any non-zero xe A has a decomposition (5.5) with p,%0 and f;#0. By
Proposition 7.1 and (7.3), e,, are mutually orthogonal and hence

{x,x>= i (1;)* rank f;>0. (8.6)

Proof of Theorem 8.4. The proof of pf¥=p, is divided into several steps.
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(I) For e Fy(K), pi=p, follows from the following computation for y, and
P, in the total set F(K) of V:
Y1, PpW20 =<YW@ 00
=1, @<P, 1) =Py, Y2 - (8.7)

(I) By Axiom (/(ii), ker p,, for any @& Fy(f) contains ker p, for fe F(K) and
hence

kerp,Cnikerp,;peFy(f)}. (8.8)
(IIT) Since f is the convex span of F(f), Lemma 3.5 implies
Imp,= v {Imp,;peFy(f)}=(nikerp,; pe Fo(f)})", (8.9)

where the lattice notation is used for the lattice of subspaces and the second
equality follows from (I).

(IV) (8.8) and (8.9) implies the orthogonality of ker p, and Im p, and hence p,
is an orthogonal projection.

To show that p . is a P-projection, we note that p and p . are quasicomplemen-
tary in the sense of [10]. Due to selfadjointness of p, just proved, dual maps of p,
and p,, are the same as p, and p. (due to the selfduality given by Proposition 8.3)
and hence are quasicomplementary. Therefore they are P-projections.

Remark 8.5. The above proof also shows

kerp,=n{kerp,;peFy(f)}. (8.10)

9. Geometrical Characterization

Theorem 9.1. A convex cone C of a finite dimensional vector space V is the V.,
associated with a finite dimensional compact convex set K satisfying Axioms O and
A if and only if C has the following properties relative to a positive definite inner
product.

o) Every non-empty face F of C (including C itself) is self~polar in its linear span
Lin F in the following sense:

F={peLin F;{¢,p)> =0 for all pyeF}. 9.1)
(B) Every non-empty face F of C satisfies (F°)° =F, where
F°={peC;<q,p) =0 for all peF}. 9.2)

(y) There exists a vector e e C which has an orthogonal projection of length 1 on
every extremal rays of C.
(8) For any face F of C, e, is in the convex span of F and F°.

Proof. First assume Axioms ¢ and s#. Set C=V_.

() From the definition of A" (K) and (8.1), the self-polar property of V,
follows.

By Proposition 3.6, each face f of K satisfies Axioms ¢ and # with the linear
span of f replacing ¥ and f replacing V,. By Lemma 3.2, a non-empty face F of V,
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is of the form f for some face f of K and hence the self-polar property of F=f
follows from the previous argument.

(B) From (8.2) &f'= f* follows. Due to &(f°)= f*, we have (f)°=f" and hence
(F°)°=F for F=/.

(y) Take e, to be such that ée,=e. Then <{ey, p)=e(yp)=1 and {y,p) =1 for
any e Fy(K) implies (y) in view of Lemma 3.2.

(8) This follows from e=e,+e,, with efeéf, ef,eéf’ and f'=/° in view of
Lemma 3.2.

Now assume properties (o), (B), (), and (3). The set K is defined as the set of all
@e C satisfying {e,, @) =1.

Due to (9.1) for C, C does not contain non-trivial linear subsets and hence is
the convex span of its extremal rays. Every extremal ray of C has one point on K
by (y). Therefore K is a basis of C and is a compact convex set.

For every face f of K, let p, be the orthogonal projection operator with its
range =the linear span of f. Since any e C satisfies <@, p) =0 with ye f due to
(9.1) for C and since {p,¢,y) =<, y) =0 for all ye f implies p,(pef due to (9.1)
for the face f of C, we have the positivity of p I

We define ' by f'= f°. Then ranges of p s and p ., are orthogonal by definition.
Due to (6), e, =pe,+p, e, and hence the complementarity (2.7) is satisfied where
[wl =<eq ) for any weC due to (2.11) (and should not be confused with the
Hilbert metric):

Ips@ll+1proll=<eqp@)+<eppr @)
={Pseg, @) +<ppeo @) =<eg @y =1 (9.3)

for all pe K.

If pep,KNK, then ey, p,¢) =1 and hence {ey, p, @) =0by (9.3). Because K is
a base of C and {e,, ) =1 for peK, this implies p, =0 due to the positivity
p,¢eC (which is already proved). Since p,. is an orthogonal projection on the
linear span of f”, p . =0 implies that g€ K is orthogonal to f" and hence pe(f’)°
=(f°)°=f due to (). Therefore p, ¢ =¢ and p, is neutral.

The contractive property of p, follows from what we have proved due to
Remark 2.4. Thus (i) and (iii) of Axiom ¢ is now proved. (ii) is immediate because
py, (j=1,2) are orthogonal projections and Imp, CImp,, if f, < f,.

Because of (y) and definition of K, the extremal point ¢ of K satisfies

{Py0s P07 =1 [due to (y)], 9.4)
{Pyeo: ) =<ep =1, 9.5)

and p e, is a multiple of ¢ (because it belongs to ¢). Hence
{p,p>=1. 9.6)

Therefore for any ypeV,
P W =L@, p)®. ©.7)

Axiom 3 follows from (9.7) and the symmetry of the inner product.
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10. Decompeosition into Irreducible Parts
The following are known notions and consequences.

Definition 10.1. A face f, of a compact convex set K is called a split face if there is
another face f, called complement of f, such that any peK has the following
unique decomposition:

p=1p,+(1—Ao, (10.1)
with 0SA<1, ¢,€f; and @, f,. (4 is unique and if 0<A<1, ¢, and ¢, are
unique.) We also say that f; and f, split K.

Proposition 10.2. Iff, and f, split K, then f, A fand f, A fsplit a face fof K and Vis a
direct sum of Linf, and Linf,.

Definition 10.3. A compact convex set K is said to be irreducible if it does not have
a split face other than K and empty set.

Proposition 10.4. A finite dimensional compact convex set K is a direct convex sum
of its minimal and hence irreducible split faces f, in the sense that any @€ K has the
following unique decomposition :

=Y 4o (102)
with 2,20, )" 2,=1, @, f,. Any face f of K is a direct convex sum of f A f; and Vis a
direct sum of Linf; (the linear hull of f; in V).

Special situations under Axioms ¢ and # are given by the following:
Theorem 10.5. Under Axiom O, f,=(f,) if f; and f, split K. If the f; are as in
Proposition 10.4, then they are mutually lattice orthogonal and the lattice F(K) is a

direct sum of lattices F(f;), each of which is lattice irreducible (i.e. non-trivial further
lattice direct sum decomposition).

Theorem 10.6. Under Axioms O and H#, the decompositions of K, fe F(K) and Vin
Proposition 10.4 is an orthogonal decomposition.

Proof of Proposition 10.2. If ge f for fe F(K), then ¢, and ¢, of (10.1) must be in f
when 0< /1 <1. Therefore f A f, and f A f, split f. If Lin f; and Lin f, have the
following common element:

P=Y 0101 — Y 01;01;= Y0P~ 2. 0292 (10.3)
i J k 1
with ¢{;>0, 07;>0, 05,>0, 05,>0, ¢i€ 1, @1, f1, P€ [, and @€ [, then
elpf)=elp)=elp3)=elpy)=1

implies
0=) 05+ ). 00=).01;+ ). 0%
and
0 ' et Y 0n0) =0 (X o0+ Y 05K, (10.4)

The uniqueness of the decomposition then implies ¢ =0. Therefore V is the direct
sum of Linf; and Linf,.
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Proof of Proposition 104. If f; and f, split K and f; and f, split f, then any pe K
has a unique decomposition

4
o="7 Ao, (10.5)
j=2

with @€ f;, ;=0 and ) 1;=1. This immediately implies that the convex sum f; of
f, and f, is a face of K and f; and f; split K. Therefore a split face of a split face of
K is a split face of K.

If f and g are split faces of K, then f A g is a split face of g by Proposition 10.2
and hence is a split face of K by the previous argument.

By repeated use of the first argument and the finite dimensionality, any face
contains a minimal split face. Repeated use of splitting into a minimal face and its
complement then yields a decomposition of K into a direct convex sum of a finite
number of minimal split faces. Such a decomposition splits any face f of K into a
direct convex sum of A f; by the repeated application of Proposition 10.2. In
particular, any minimal split face of K must coincides with one of the component
of this decomposition and hence the decomposition uses all minimal split faces.
Repeated use of Proposition 10.2 also shows that Vis a direct sum of linear hulls of

minimal split faces.

Proof of Theorem 10.5. If f, and f, split K, then f] must be a direct convex sum of
finfy and f A f, by Proposition 10.2. By Lemma 4.3(iv), f] A f; is empty. Hence
fiCfy. Then f,=f]v(fi rnfy)=f] due to the orthomodularity and f; A f,=0
[which follows from the uniqueness of the decomposition (10.1)]. In
Proposition 104, f; is in the complement of f; for j=i and hence they are lattice
orthogonal.

By Proposition 10.4, any face f of K is a direct convex sum of faces f A f; and
hence is their lattice sum. Conversely, if g;e F(f;), then the (direct) convex sum g of
g; 1s a face of K because if

e=Y Ao, 420, YA=1, o@eg, (10.6)
has a decomposition

p=rp+ 1=y, (10.7)
with 0<A<1, p,eK and yp,eK, then

W=ty (k=1,2) (10.8)

with 11, >0, > u,=1, wyef; and hence the uniqueness of decomposition of ¢
implies
APy = A Wiy + Ao i (10.9)

which shows either p;; = p,;, =0 (for 4,=0) or v;; €g;, ¥;,€9;. Therefore v g, is the
direct convex sum of g, for any face g; of f; and the lattice F(K) is a direct sum of
lattices F(f)).

Finally suppose that F(K) is a direct sum of two sublattices L, and L,. This
means that any g, F(K) has a unique decomposition g, =g, Vv gy, With g,,eL;
satisfying Ag,=(Ag)V(AG,) Let K=f, v f, with fieL, and f,eL,. Then
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@)1 V(9)1=11,@),V(g),=1,duetogvg =K and hence g=(g9 A f1) v (g A f,), for
any ge F(K). In particular, F(K)=F,(f;)UF,(f,) and hence K is a direct convex
sum of f; and f,. By the preceding argument, f, = f; and hence f; and f, are affine
independent. Therefore F(K) has a non-trivial split face. This shows that F(K) is
lattice irreducible if and only if K is irreducible.

Proof of Theorem 10.6 follows from Theorem 10.5 and the equivalence of lattice
and metric orthogonality (Proposition 7.1).

11. Cases of rank 2

If rank K=2, all possible K satisfying Axioms ¢ and s# are determined and
correspond to spin factors.

Theorem 11.1. A4 finite dimensional compact convex K satisfies Axioms O and H#

and is of rank 2 if and only if it is affine isomorphic to a ball of radius l/ﬂ (given as
an intersection of the unit ball in V with the affine manifold of codimension 1 at a

distance 1/ 1/5 from the origin), where K is irreducible except for the case of
dimK=1 (dimV =2). (The filtering projection p, for @e Fy(K) is the orthogonal
projection with its range = the line passing through 0 and ¢.)

Proof. By {w,p> =1 for pe F,(K) and {e,e) =rank K =2, F(K) is a subset of the
intersection of the unit sphere of ¥ with the affine manifold {peV;e(p)=1} at a
distance of 1/ ]ﬁ from the origin. Hence K is a subset of the intersection of the unit
ball of ¥ with the same affine manifold.

Since all faces of K other than K and @ are of rank 1, i.e. extremal points of K,
0K =F(K) (due to Lemma Al, for example). Therefore 6K must be the whole
intersection of the unit sphere of V with the above affine manifold.

The proof of the converse is straightforward. Q.E.D.

The following examples show independence of Axioms ¢ and J#, as well as the
difference of a filtering projection and a P-projection.

Example 11.2. Consider an arbitrary strictly convex compact body K with a
smooth surface 0K in a finite dimensional space.

There are exactly two points of K with their tangent parallel to any given
hyperplane in Lin K. These two points are taken to be ¢ and ¢’, both belonging to
Fo(K). The p,, is defined by specifying its image to be the line joining the origin 0 of
V and ¢, and its kernel to be the hyperplane (linear subset of V' with codimen-
sion 1) tangent to K at ¢'. It is easy to check that Axiom 0 is satisfied. For any
such K which is not an ellipsoid, Axiom 5# is violated (due to Theorem 11.1). In
this example p,, is a P-projection.

Example 11.3. In Example 11.2, we allow non-smooth surface in such a way that
there are exactly two points of K with their tangent parallel to a given hyperplane.
For example any strictly convex body symmetric relative to a point has such a
property. We define ¢’ and p, as in the preceding example, except that we may
have a choice of the tangent plane at a non-smooth point. If that happens at ¢, p,
is not a P-projection.
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Example 11.4. Consider the intersection S of the unit ball of a d-dimensional ¥ and
the affine manifold H={peV;<{ey, ¢> =1} with ejeV, {ey, e,>=2.

Cut off some part of § by two parallel (d — 2)-dimensional affine submanifold of
H at an equal non-zero distance of strictly less than 1/ ]/5 from e,/2e H, and call
the resulting compact convex set K.

If we take p,, for pe F ((K) to be the orthogonal projection with its image = the
line joining the origin O of V and ¢, then Axiom 5 is satisfied.

The fact that it can not satisfy Axiom O for any choice of complementation is
seen as follows: K has two faces, say f; and f, which are not K nor extremal. Let
@e Fy(f,). Then in order Axiom ¢ be satisfied, f; = ¢ v (¢ A f;) due to orthomodu-
larity and hence ¢’ contains an extremal point ¢, of ¢’ A f, S f,. (Otherwise
@' A fi=0and hence f; =¢.) If ¢’ contains any other point, then ¢ is either f; or
K, both of which is impossible due to ¢ A ¢'=0. Therefore ¢’'=1, C f,. However
this implies ¢ v ¢’ = f; contradicting with ¢ v ¢'=H.

12. Conclusion

We have described the consequences of Axioms ¢ and S in detail. We are not sure
how far the consequence of Axioms @ and # is from the following final
consequence, which we obtain by addition of Axiom £ in Sect. 1 or Property %
below, due to lack of suitable examples. It is enough to describe K when it is
irreducible in view of results in Sect. 10.

Theorem 12.1. An irreducible K satisfies Axioms O, S, and 2 if and only if it is a
state space of a finite dimensional Jordan algebra factor.

A finite dimensional Jordan algebra factor [13] is either nxn hermitian
matrices over the real, complex or quaternion field or the exceptional Jordan
algebra M8 of 3 x 3 hermitian matrices over the Cayley numbers, which arises for
the case of rank 3, or spin factors, which arise for the case of rank 2 and have
already been treated in Sect. 11.

Remark 12.2. The conclusion of Theorem 12.1 holds if Axiom £ is replaced by the
following:

Property #. The face generated by any two pure states has rank 2.

Remark 12.3. For rank K >3, we have Jordan algebras of all self-adjoint operators
on Hilbert spaces over real, complex or quaternion field. These three fields may be
distinguished by the behavior of state spaces when we try to consider a combined
system of two independent systems. The “independence” is expressed in the case of
complex field by the tensor product of the underlying Hilbert spaces. This leads to
the relation

dim V =(dim ;) (dim V) (12.1)

for the linear span of state spaces for the combined and individual systems.
[Similarly the Jordan algebra A(K) is the tensor product of A(K,) and A(K,)asa
linear space, but not as an algebra.] If we make a corresponding construction of
the combined system for the case of the real field, then we obtain a strict inequality
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> in (12.1) except for trivial cases essentially because the tensor product of two
skew hermitian operators is hermitian.

In the case of the quaternion field, it is known that there is a difficulty in
constructing something reasonable for the combined system due to the non-
commutativity of the quaternion field. [15] However, even if we consider a Hilbert
space H with dim H=(dim H,)(dim H,) from the analogy with the real and
complex cases, the corresponding state space for the quaternion case will satisfy a
strict inequality < in (12.1).

Thus the complex field has the most pleasant feature that the linear span of
state space of the combined syste (i.e. V7s) is a tensor product of individual ones.

Proof of Theorem 12.1 and Remark 12.2. This can be obtained from Theorem 6.16
of [4], where the condition (i) is the irreducibility, (ii) follows from our
Theorem 8.4, the pure state properties of (iii) is the combination of our Axiom #
and 2. The Hilbert ball property (iii) of [10] follows from Proposition 3.6,
Property £ and Theorem 11.1.

Conversely, let ¥ be a finite dimensional irreducible real Jordan algebra, V, be
its positive cone (consisting of all squares), {a,b>=¢(a-b) be the real inner
product in V given by a trace state ¢, ee V be the identity of the Jordan algebra
giving ¢@(a)={e,ay and K={aeV,;{e,ay=1}. Then V, is self-polar ([3],
Lemma 6.2) and hence K is the state space.

Any face F of V, is closed by the finite dimensionality and F=(F°)° ([3],
Lemma 2.2(iii) which implies F=(F*)! in their notation due to finite dimension-
ality). Hence F are in one-to-one correspondence with idempotents e, of V in
such a way that F={aeV, ; (e—e,a)y=0}. The orthogonal projection p, with its
image=F —F satisfies ppV, =F ([3], Lemma 2.2(iii)) and hence the self-polar
property of V. implies that of F in Lin F =F — F. Furthermore ey + ¢, =¢ with
€p =D, €xoy=DPoye ([3], Theorem 6.3 and the definition of U, for example) and
the projection of e to extremal rays has the same length 1 due to ¢(e*)=¢(e)=1
for the minimal idempotent of V. Therefore Axioms ¢ and # are satisfied due to
Theorem 9.1. Since pp is uniquely defined by the face F as a P-projection
[Theorem 6.16(iii)], we have Axiom £ by [2], Theorem 6.16(iii).

[Explicit form of p, is given in terms of the Jordan product on V by
pra=2ego(acey)—egca.]
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Appendix: Proof of Proposition 5.4(ii)
We use the following general lemma:

Lemma A1l. The face generated by a point P on the boundary of a closed convex set
C is a proper subset of C if C has a non-empty interior.
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In fact, there exists a supporting hyperplane H of C passing P due to the
separation theorem and HnC is a face of C containing P but not containing the
interior of C.

We apply this Lemma for C with relative interior and P on the relative
boundary within the affine span of C.

We first establish the existence and uniqueness of the decomposition (5.5) for
the special case xe 4™ (K).

Let h, e F(K) be such that h¥ is the face generated by x. (If x is in the interior of
A*(K), then h¥=K.) Then x is in the relative interior of h, due to Lemma Al. By
(4.1) with L={e,} and (5.3), /* is the set of all xe A™(K) such that x < de, for some
A>0. Hence x— e, is in —A™(K) for some A>0, which means that it is in —h¥
for this A due to le, =1e, —x=0and consequently in the relative interior of — A,
for sufficiently large A. Therefore :

{x—1e, ;A20}nht={x~1le, ; 1, 2120} (A1)
for some 1, >0 by the convexity of h¥. Then
X;=X—Aey, (A2)

is on the relative boundary of h¥. Let h% be the face generated by x,.

We can continue this process obtaining a strictly decreasing sequence of faces
hy>h,>... of K, strictly positive numbers A, and points x; on the relative
boundary of h¥ (i=1,2, ...) such that x; generates A}, ; (and hence is in the relative
interior of h¥, ;) and

X=X — ey, (A.3)
(i=1,2,...;x,=x) until h* ; does not have a relative interior for some n, ie.
h¥, =0, h,,, =empty set, and x,=0. By setting

fi=h;nl;,, (a non-empty face of K), (A.4)

J

w=Yk (A5)

for j=1,...,n, we obtain a family of mutually orthogonal f; and a strictly
increasing sequence of strictly positive numbers u;, which satisfy (5.5) due to

Lemma 5.1 and the equality h;= V f; following from (A.4) by orthomodularity.
i=j
Conversely, if we apply the above procedure for a given decomposition (5.5)
where y; are strictly increasing, we find successively

hj=‘\/jf,~, A==y (1o=0), (A.6)

i=

whose unique solution is given by (A.4) and (A.5). Therefore the decomposition
(5.5) exists and is unique for xe 4 ¥ (K).
For a general xe 4, we have || x|e+xe A" (K) and the unique decomposition

[x]le+x= 21 e, (A.7)
=



24

H. Araki

implies the unique decomposition

X= ) Wes, (A.8)
j=o

where p;=u;— |[x|| forj=1...n, po=—|xll, fo= A f}, the term with u;=0is to be
j=1

omitted if it exists and the j=0 term is to be omitted if f, =0.
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