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Abstract. A characterization of state spaces of Jordan algebras by Alfsen and
Shultz is improved to a form with more physical appeal (proposed by
Wittstock) in the simplified case of a finite dimension.

1. Introduction

In recent years there have been a number of works on the characterization of state
spaces of W* and C* algebras [1-3]. We present here another version, which
seems to have a somewhat better physical appeal, though applicable only to a
special situation (finite type / cases in the sequel).

Our axioms are very close to those of Alfsen and Shultz ([4], Sect. 6) for type I
Jordan algebras except that we replace their P-projections by a weaker notion of
filtering projections, which has been suggested by Wittstock [5].

The state space is assumed to be a compact convex set K as usual, where the
convex combination of points in K represents a mixture of physical states,
extremal points of K corresponding to pure states. We make the simplifying
assumption that the dimension of K is finite.

The first axiom is in terms of filtering projections, which have a physical
interpretation of the measuring process of the first kind for questions (observables
with yes or no answers), as will be described in Definition 2.2. Axiom Θ in Sect. 3
requires the existence of sufficiently many filtering projections (i.e. one for each
face of K) satisfying a certain consistency condition with an obvious physical
interpretation.

The filtering projection Pφ associated with a pure state φ defines a number
<φ, ψ} for another pure state ψ through the relation

φ (1.1)

with an interpretation of the transition probability. Our second Axiom is
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Axiom ffl. For any pair of pure states φ and ψ,

(φ,ψ} = (ψ,φy. (1.2)

The importance of this symmetry property of the transition probability in the
axiomatization of quantum mechanics has been emphasized to the author by
Haag since 1960 [6]. It has been treated also by other authors (see [7-9]).

The Axioms Θ and 2tf combined are much stronger than each of them
separately, as can be seen from simple examples of Sect. 11. In particular, the
Axioms Θ and 2tf together imply that the filtering projection of the Axiom & is a
P-projection in the sense of Alfsen and Shultz [10]. The main mathematical
content of this sequel is the proof of this statement.

Axioms Θ and J f completely determine the case of rank 2 (i.e. when K has at
most two pure states which are mutually orthogonal in the sense defined later).
The set K in this case is a ball (of radius l/]/2), which is the state space of the so-
called spin factors [11,12].

We have not been able to decide whether the Axioms Θ and J f already lead to
our conclusion. Therefore we tentatively introduce an additional Axiom:

Axiom 0*. The filtering projections in Axiom Θ map pure states to multiples of
pure states.

We feel that this Axiom is stronger than we need and are using only a small
part of it to conclude that a finite dimensional K satisfies Axioms Θ, Jf, and 0> if
and only if it is a direct sum of state spaces of the full matrix algebras (quantum
mechanics) over real, complex and/or quaternion, the spin factors and/or the
exceptional Jordan algebra M\ [13]. This result follows from Axioms Θ, Jf, and &>
by [4] (especially Theorem 6.16) once we prove that the filtering projections of
Axiom Θ are P-pr ejections.

The case of complex field (the ordinary quantum mechanics) can be distin-
guished from other cases by its good behavior under composition of independent
systems, as is discussed in Sect. 12.

2. Filtering Measurement and Filtering Projections

The following is an idealization of the quantum mechanical measurement (of the
first kind) for questions (observables with yes and no answers alone):

Definition 2Λ. A filtering p is a mapping from the state space K into
(Xx(0, l ])u(θxθ), sending a state φeK to a pair of a state p φeKuO (a state
coming out of the measurement when the measured value is "y e s") and a number
p(φ)e [0,1] (the probability of obtaining the measured value "yes" on the state φ,
the special point 0 corresponding to the situation where the probability is 0 for the
measured value "yes" and hence nothing comes out almost surely), which satisfies
the following conditions:

(1) The repetition yields the same state with probability 1 unless p φ = 0:

p (β'φ) = p φ, p(p-φ) = l. (2.1)
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(2) The mixture φ — λφγ +(1 — λ)φ2 (OrgΛ^Ξl, φxeK, φ2eK) behaves under a
filtering p as if it is the state φγ with probability λ and the state φ2 with probability
1-λ:

1 2 (2.2)

p φ = 0 if p(φ) = 0 and

}P'φ2 (2.3)

if p(φ) Φ 0 where the term with p φ. should be omitted whenever p φ. = 0.
(3) If the state comes out of the filtering with probability 1 for "yes" answer,

then the state is not altered by the filtering:

p-φ = φ if p ( φ ) = l . (2.4)

(4) There exists another map p' from K into (K x (0, l])u(0 x 0) (corresponding
to the filtering measurement of the "no" answer) satisfying the same properties
(l)-(3), such that it is complementary to p (i.e. the total probability is 1) in the
following sense:

p(φ) + p'(φ) = l for any φeK. (2.5)

To linearize this definition, we imbed K in a vector space V of one dimension
higher such that the affine span of K in V does not contain the origin of V. Then

the cone V+ with the base K(V+ = (J λK\ defines an order {φ^φ2 iff φ2 — φ1eV+)

and a norm

\\φ\\=M{\a\ + \β\; φ = aφi+βφ2, φxeK9 φ2eK} (2.6)

in V.

Definition 2.2. A filtering projection p is a linear mapping of V into V with the
following properties :

(a) p is a projection: p2 — p.
(b) p is positive: pV+CV+.
(c) p is contractive: ||p|| ^ 1 . (Equivalently, φeK implies ||pφ|| ^1.)
(d) p is neutral: \\pφ\\ = \\φ\\ implies pφ = φ.
(e) p is complemented: there exists another positive, contractive, neutral

projection p' satisfying for every φeK

I . (2.7)

The two definitions are related by the following:

Proposition 2.3. If p is a filtering projection, then p defined for φeK by

p φ = 0 if pφ = 0, (2.8)

p-φ=\\pφ\\-ιpφ if pφ + 0, (2.9)

p(φ)=\\pφ\\ (2.10)

is a filtering. Conversely, if p is a filtering, there exists a unique filtering projection
p such that (2.8), (2.9), and (2.10) holds for the given p and any φeK.



4 H. Araki

Remark 2.4. [In Definition 2.2, the contractive property (c) for p and pf actually
follows from the properties (b) and (2.7).]

Remark 2.5. The dual of V can be identified with the set A(K) of all affine functions
on K (by restriction and linear extension) and the polar of V+ is given by

A+(K) = {xeA(K);x(φ)^O{φeK)}.

In particular the norms of φe V+ and xeA(K) can be expressed in terms of ee A(K)
satisfying e(ψ)=l for all ψeK by

\=e(φ), (2.11)

| | x | | = i n f μ ^ 0 ; -λe^x^λe). (2.12)

[The unit balls of V and A(K) are the convex hull of K and — K, and the double
cone with vertices e and — e.]

Proof of Remark 2.4. By (b) and (e), pK is in the convex hull of K and 0. Hence p
maps the unit ball of B into itself.

Proof of Proposition 2.3. If p is a filtering projection, then p defined by (2.8), (2.9),
and (2.10) maps K into (K x (0, l])u(0 x 0) due to (b) and (c) and clearly satisfies
(2.1) due to (a), (2.2) due to (2.10) and (2.11), (2.3) due to the definition (2.9) and
(2.10), (2.4) due to the neutrality (d) and the condition (4) due to (e).

Conversely, if p is a filtering, then define pφ = 0 if p φ = 0 and

pφ = p{φ)P'ψ (2.13)

if p φΦO for φeK and

pφ = ocpφ1+βpφ2 (2.14)

whenever φ = aφι +βφ2 with φίeK and φ2eK. Then p defined on K by (2.13) is
affine due to (2.3) and hence pφ given by (2.14) does not depend on the
decomposition φ = oίφ1 +βφ2, and p is a linear map of V into V. The property (a)
follows from (2.1), (b) from (2.13) and p(φ)^0, (d) from (2.4) and (2.13) which
implies ||p<p|| =p(φ) for φeK, (c) by Remark 2.4 and (e) from (4).

3. Faces of K

Definition 3.1. A face f of K is a convex subset of K such that

φ = λφ1+(l — λ)φ2 for φef9 φ±eK, φ2εK

and

0 < 2 < l imply φγef and φ2ef.

A face is a subset of K stable under mixing (φvφ2-^φ = λφ1+(l — λ)φ2) and
purification (φ-+φv φ2). A face consisting of one point is an extremal point (a pure
state).

We denote the set of all faces of K by F(K) and the set of all extremal points by
F0(K). Likewise, we denote the set of all non-empty faces of V+ and A+(K) by
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F'(V+) and F(A+\ respectively, and the set of all one-dimensional faces (extremal
rays) of V+ and A + {K) by Fί(V+) and Fx{A + \

Lemma 3.2. The following gives 1 — 1 relation between F(K) and F'(V+).

} \ J , f = frΛKeF(K), (3.1)

where F0(K) is in 1 — 1 relation with F^K) and / = 0 if / = 0.

The proof is immediate as V is a convex cone with a compact base K.

Lemma 3.3. If p is a filtering projection,

Im+

PEEPVnV+=pV+eF(V+), (3.2)

pVnK = pV+nK = pKnKeF(K). (3.3)

The two faces are related by the 1 — 1 correspondence of Lemma 3.2.

By this lemma, a face of K is associated to each filtering projection. It is the
totality of states coming out of the corresponding filtering measurement. In
general, a face can be associated to many different filtering projections (in contrast
to a P-projection of Alfsen and Shultz) as in an example of Sect. 11.

We are now ready to state one of our Axioms.

Axiom Θ. For each feF(K), there corresponds a filtering projection pf such that
(i) pfVnK = f (cf. Lemma 3.3),

(ii) if ΛS/2, then PfiPf2 = Pfί,
(iii) for each fe F(K), there is another feF(K) for which pf, is complementary

to pj. in the sense of (2.7).

Remark 3.4. The condition (ii) expresses a coherence of filtering to a bigger face and
a smaller face. The following relation, however, holds without an assumption:

PnPn=Pu i f / i£/ 2 > (3-4)

because of the following general property of a filtering projection:

Lemma 3.5. The image of a filtering projection p (denoted by lmp = pV is the linear
span of the associated face pKnK).

Because of (3.4), the condition (ii) can also be formulated as the compatibility
PfiPf2 = Pf2Pfi °f ^ e associated filtering measurements. The condition (i) simply
says pf - K = / u θ (or K if / = K).

Proposition 3.6. If K satisfies the Axiom Θ, any of its faces also satisfies the Axiom
Θ. The same holds for the Axiom Jf.

Main reasons for this are Lemma 3.5 and the following immediate consequence
of Definition 3.1:

Lemma 3.7. For two faces f, and f2 of K, F(/x) QF(f2) and F0(/i) Q F0(f2) if fx Q f2.

Proof of Lemma 3.3. Since FD V+ DK, we have
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while φepV satisfies pφ = φ due to p2 = p and hence φepVnK implies
φ = pφepKnK. Therefore equalities in (3.3) hold.

Next pVnK is convex, being an intersection of convex sets. To prove that it is a
face of K, let

φepVnK, φ = λφί+(l — λ)φ2, φ 1eK, φ2eK,

Since pφ = φ, we have λpφ1 + (1 — λ)pφ2 = φ and hence

λeipφj + (1 - λ)e(pφ2) = e(φ) = 1.

By (2.11) and (c), we have e(pφ^l (j=U2) and hence e(pφi) = e(pφ2)=l. By the
neutrality (d), we conclude that pφί = φ1, VΨ2 — Ψi an<3 hence φ1epKnK and
φ2epKnK. This shows that pVr>K is a face of K.

Since any subcone Vί of V+ is determined by V1nK and is a face if and only if
V^^nKeFiK) due to Lemma 3.2. Hence (3.3) implies the rest of the conclusion of
the lemma.

Proof of Lemma 3.5. Since V=V+ — V+,pV = pV+—pV+. Since pV+ is in the linear
span of pV+ ΓΛK (due to pV+ C V+), pV is in the linear span of pKr\K, by (3.3).

Proof of Proposition 3.6 will be given in the next section.

4. Lattice of Faces

Faces of a convex set form a lattice relative to the order by inclusion with the
whole set and empty set as the largest element and the smallest element,
respectively, due to the following Lemma.

Lemma 4.1. (i) An intersection of an arbitrary number of faces is a face.
(ii) There exists the smallest face fa(L) containing a given subset L of K.

(iii) fa(L) = {φ 3ΨjeL, φ'eK, λe(0,1],

λ^γjλ. = i,γjλjxpj = λφ^{l-λ)φ'}. (4.1)

Our aim of this section is to prove the following :

Theorem 4.2. Under Axiom Θ, F(K) is an orthocomplemented, orthomodular lattice.

Here the orthocomplementation is/-*/' given by Axiom Θ(m). If/X Qf2, then we
say that fγ and f2 are (lattice) orthogonal. The orthomodularity means that a
sublattice generated by such fx and f2 is modular, which is equivalent to the
validity of the following equality for all such / l 5 / 2 :

/ί = Λv(/ίΛ/i). (4.2)

(These properties have been treated, for example, in [14, 8].)
As a tool for the proof, we denote the transpose of pf acting on the dual A(K)

of V by p*f and

ef = p*e. (4.3)
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The Eq. (2.7) for pf and p{ff) is equivalent to

ef + e(n = e (4.4)

because K is total in V.

Lemma 4.3. Under Axiom Θ, the following holds for fe F(K).
(i) f={φeK;ef(φ) = l}.

(ii) f={φeK;ef,(φ) = 0}.
(iii) f = Kr\kerpf, fker denotes ''the kernel of).
(iv) /Λ/' = 0.

0/ Lemma 4.1. (i) follows from Definition 3.1 and (ii) from (i) (take the
intersection of all faces containing L). The right hand side of (4.1) is convex,
contains L (set ψj = φ, λ — l) and is contained in any face containing L. Hence it
must be equal to fa(L).

Proof of Lemma 4.3. (i) ||py<p|| = e(p fφ) = e f(φ) = 1 for φeK implies pfφ = φ by the
neutrality of pf and hence φef by Axiom Θ(\). Conversely, φef implies
ef(φ) = e(pfφ) = l.

(ii) follows from (i) and (4.4) due to e(φ) = l for φeK.
(iii) follows from (ii) since (||py<p|| =)ef,(φ) = 0 is equivalent to pf,φ = 0.
(iv) follows from (i) for / ' and (ii) for / because ef,(φ)=l and ef,(φ) = 0 are

incompatible.

Proof of Theorem 4.2 is divided into several steps:
(I) /-•/' is involutive: By (4.4), we have ef = e{f,y and by Lemma 4.3 (i), we

have / = (/')'.
(II) fx Qf2 if and only if f[ 2/ί If/ί 2f^ Axiom Θ(ή) implies kerpfi Qkerpf>2.

This implies f1Qf2 due to Lemma 4.3(iii). The converse follows from this
conclusion due to the step (I).

(III) fvf' = K and / Λ / ' = 0: The latter due to Lemma 4.3(iv) and the former
due to the latter and the step I. Note that p 0 must be 0, pκ must be an identity, and
K' = 0.

The above three steps proves that F(K) is an orthocomplemented lattice. We
now derive a few identities leading to the proof of orthomodularity.

(IV) If/^ ^ / 2 , then p*2eiΆ) = p% ef2: By applying p*2 on (4.4) for fλ and using
Axiom Θ(n) in the form P*2P*1

 =P*ί>
 w e obtain [cf. (4.3)]

By adding e(fί) and using (4.4), we obtain

Likewise by applying pj,t on (4.4) for f2 and using Axiom C(ii) for /{~̂ f2 in the

form P*'1P*'2=P%, we obtain

P*nef2 + ef2 = e n ( 4 7 )

and hence

ef1 + Pf'1
ef2 + ef^e ( 4 8 )
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Comparing (4.6) and (4.8), we obtain the desired relation.
(V) I f Λ ^ / 2 , then V%ef2 = e{nhf2)\ Consider

p Λ ) . (4.9)

It is convex as an intersection of convex sets. If φef 0<λ< 1, φλeK, φ2eK and
φ = λφί+(l —λ)φ2, then

λPf2Pf\(Pi + ( * ~ λ)Pf2Pf\(P2 = 0' (4.10)

Hence pf2pf,iφ1 and VfJPf\Ψi being both in F + due to definition (2.2) (b), must be
0. [0 = eλnV+ is in F0(V+).~] This implies that both φ1 and φ 2 are in / Hence
feF(K).

By (4.9), f2KnkeτpΓι = f1 [Lemma 4.3(iii)]. By the step(IV) and the same
argument, we also have f^f2. Hence

f*fivf2. (4-11)

Since the image of p(fi v fi) is the linear span oϊfγ v f2 by Lemma 3.5, (4.11) and the
definition (4.9) imply

Pf2PrΛf1vf>2) = ° ( 4 1 2 )

and hence

By multiplying p*flvf2) on (4.8) and using Axiom^(ii) for f1yf'2^f1 and
/i v/2^/2, we obtain

*/i + *Λ = e σiv/y (4 1 4 )

Using (4.4) for C/i v/2) and (4.8), we obtain from (4.14)

e-efi-e(f2) = P*nef2 (4 1 5 )

In view of the relation (/t wf'1)
t = f[ Λ / 2 , this is the desired relation.

(VI) If/, ^ / 2 , then/ ? = Λ v (/; Λ / 2 ) : since/; ^ ( / Λ / 2 ) , the equality (4.14) for
the pair (f[ A f2) and f[ instead of fx and f2 implies

β/1v(/'1Λ/2) = V1Λ/2) + ̂ 1 = ̂ 2 ? (4.16)

where the last equality is due to (4.5) and the steps (IV), (V). By Lemma 4.3(i), this
implies the desired equality and hence the orthomodularity. [Replace f2 by f2 to
get (4.2).]

Proof of Proposition 3.6. Given geF(K). For each feF(g\ we associate the
restriction p9

f of pf to the linear span Vg of g. By Lemma 3.7, / is a face of K and
hence pf is provided by Axiom G for K. Since the image of pf is the linear span of
/(£#), P/ i s a linear map of Vg into J^ and is a projection. By Axiom Θ(i) for i£, and
(3.2), V+nVg=Vl is the cone with base g. Hence p9

f is positive and neutral. We use
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to be the complementation in Axiom $(iii) for g. Due to (4.2), we have g = fvf(g)

[in F(KJ] and hence

due to (4.14) for the pair/and (f{9))f = fvg'^ /instead offγ and f2. Since eg(φ) = 1
for all φeg, we have

for φeg. Hence AxiomΘ(nϊ) is satisfied with the complementation /—>/(ί?). The
contractivity of pf then follows due to Remark 2.4. Thus Axiom Θ is satisfied for g.

Since Fo(#) C F0(.K) (Lemma 3.7), Axiom ^ holds automatically for g for this
choice of pf if it is true for K.

5. Spectral Theory

As a technical tool, we derive decomposition of an element in A(K). The role of
spectral projections is played by ef. with mutually lattice-orthogonal /..

n

Lemma 5.1. Iff (ί= 1,..., ή) are mutually lattice-orthogonal faces ofK andf= V ft,
i= 1

then Axiom Θ implies

ef=Σefr (5.1)

This has already been obtained in (4.14) for n = 2 and the general case follows
by repetition.

For each face / of K, we can associate the following faces of A(K):

Definition 5.2. For feF(K), we denote

fλ = {aeA+(K); a(φ) = 0 for all φef}, (5.2)

/ * = the face of A + {K) generated by ef. (5.3)

A similar notation F1 is used for FeF(A + ), where FλCK.
It is straightforward to prove that f1 is a face of A + (K) and Fx is a face of K.

[This is true for any subsets f of K and F of AJr(K).~\

Proposition 5.3. Under Axiom Θ, the following holds:

(i) f-*(f')L is an order isomorphism of F(K) into Ff(A+).

(ϋ) if*)1 = f\f
In general, the map of Proposition 5.3(i) is neither surjective nor a lattice

isomorphism. If it is surjective, then the spectral analysis can be performed as
follows:

Proposition 5.4. If (f)1 with feF(K) exhausts non-empty faces of A + (K), the
following holds under Axiom Θ :

(i) For any face f of K and any non-empty face F of A + (K),

/ * = ( / r , {F±)L = F. (5.4)
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(ii) Any xeΛ(K) has the following unique decomposition:

n

( 5 5 )

where μ's are a strictly increasing sequence of non-zero reals, and fs are mutually
lattice-orthogonal non-empty faces of K.

Proof of Proposition 53. (i) For any feF(K), the definition (5.2) implies (f1)1!/
and therefore

(fΎ = f (5.6)

because Lemma4.3(ii) implies ef,efL and {f±)1C(ef,)
1 = f. Therefore fι=f2

implies fγ = f2. Since fί2f2 implies f^Qf2

L, f-*{f')L *s a n order isomorphism.
(ii) By usual argument, (x = λxί +(1 — λ)x2 and x(φ) = 0 implies χ.(φ) = 0 if

^i(φ)^0 and 0</ l<l ) , (5.3) implies {f*)L = {ef)
L which coincides with / ' due to

Lemma 4.3(ii). This implies

^ = (/y. (5.7)
Proof of Proposition 5.4 (ί). (F1)1 = F follows from (5.6) for example (or from a
general argument). Then f*=(f')1 follows from Proposition 5.3(ii). Proof of
Proposition 5.4(ii) is in Appendix.

6. The Inner Product

We investigate the consequence of Axiom J f alone. By this we mean that the
existence of a filtering projection pf is assumed for each pure states but not for any
other face /, in addition to (1.2).

Proposition 6.1. Under Axiom #?,

^ Ξ ^ Λ j e i (X) (6.1)

for

Ψ = ΣλjΨj VjcFoiK) (6.2)

is independent of the decomposition (6.2) of ψeV and linearly depends on ψeV.

<ΨvΨ2> = eψι(ψ2) ( 6 3 )

defines a symmetric bilinear form on V and induces a non-degenerate symmetric
bilinear form

, eφ} = <φ, φ} (6.4)

on the image Ae = eV of the map e. The kernel Vo of this map is the intersection of
kerpφfor all φeF0(K) and the annihilator ofV0 in A(K) is Ae.

The target of the next two sections is the proof of Vo=0 and a stronger
property that the inner product on V is positive definite. The following technical
lemma, which shows some positive definiteness, can be proved under Axiom Jf
alone.
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Lemma 6.2. For ψ1eK and xp2eK,

l^(ψvxp2}^0. (6.5)

The equality (ψvψ2} = l holds if and only ifψί=ψ2

 and it is extremal For any
ψeK,

(6.6)

Ifψ1 and xp2 are distinct extremal points of K,

(ψ1-ψ2,ψi-ψ2>>0. ( 6 7 )

Proof of Proposition 6.1. For any φeF0(K),

Σ V * > ) = Σ W<pj>=eM> (6 8)
which depends only on xp and is independent of the decomposition (6.2). Since K is
the convex hull of φ in F0(K) and is total in V, we obtain the independence of (6.1)
on the decomposition (6.2). Likewise, the linear dependence of exp on xp follows
from the linear dependence of (6.8) on xp. By (6.8),

exp(φ) = eφ(xp) (6.9)

holds for xpe Fand φeF0(K) and hence for any φe Fdue to the linear dependence
of both sides of the equation on φ. Therefore (6.3) defines a symmetric bilinear
form on V.

The kernel Fo of the map e is the set of all φe V which is orthogonal to every xp
in V relative to <φ,t/;>. Hence (6.4) depends only on eψ and eφ (and not ψ and φ
directly) and is non-degenerate.

By the symmetry of (6.3), Vo is also the set of all xpe V which are annihilated by
all exp, xpe Fand hence is the annihilator of Λe in F By bipolar theorem, Λe is the
annihilator of Fo in A(K).

By (1.1), which is consistent with our definition (6.3) for a pure state xp and
hence for any xpeV ϊor any fixed φeF0(K), ψeV0 is in kerpφ for all φeFQ(K).
Conversely, if pφxp = O for all φeFQ(K\ then eφ(xp) = 0 for all φeFQ(K) and hence
for all φe V. Hence xpe Fo.

Proof of Lemma 6.2. lϊψ1 and xp2 are extremal points of K, then the positivity and
the contractivity of the filtering projection pφ implies (6.5). In addition,
(xpvxp2} = l impliesp ip ίψ2=ψ1 eK and hencepψ lψ 2=ψ 2 due to neutrality. On the
other hand, (xp,xp} = l for a pure state ψ due to pψxp = xp. Thus <^l5t/;2> = l for
pure ψ1 and xp2 holds if and only if χp1=χp2.

K is the convex hull of its extremal points. Let ψi = YJλikψik, λik^0,
k

ψikeF0{K){i=l,2). Then ψ.eK implies Σλik=1 W e h a v e

k

<Ψi, Ψj> = Σ λίkλjl<Ψik> Ψjl> ( 6 1 0 )
k,l

Therefore {ψ1pψ2k)^0, which has been already established, implies <φ.,

and, since (ψik,ψiky = l, we also have {ψi,ψiy^Yj(λij)
2>0, i.e. (6.6).

j
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If we use (\piki ψβ} ̂  1, which has been already established, in (6.10), we obtain

The equality holds if and only if <φ i k, φjZ> = 1, i.e. if and only if ψik = ψβ for all k
and /, which is equivalent to Wi = xPik = xPji = xPj- Thus (\pv\p2y = l for ψvψ2eK if
and only iϊψ1=ψ2 and it is extremal.

(6.7) follows from (ψv ψ1) = {ψ2, ψ2) = 1 and (ψv ψ2) < 1 for distinct extremal ψ1

and ψ2.

7. Lattice and Metric Orthogonalities

This section treats easy consequences of Axioms Θ and Jf together. Axiom 0
brings in the notion of lattice-orthogonality of faces and Axiom Jf brings in the
metric orthogonality relative to the inner product (6.3). The two coincides due to
the following:

Proposition 7.1. Under Axioms Θ and Jf,

f' = {φeK;(φ,Ψy=Oforallψef}. (7.1)

Two faces fx and f2 of K are lattice-orthogonal if and only if they are metrically
orthogonal, which is also equivalent to (efi,ef2}=0.

The notion of the rank of a face can be introduced in terms of mutually
orthogonal extremal points of the face.

Proposition 7.2. Under Axioms Θ and Jf7, efeAe and

rf = <ef,e/> (7.2)

is a positive integer for each non-empty face f of K. (It is Ofor the empty setf = 0.)
The number k of mutually orthogonal non-empty faces φv ...,φk of f is at most rf.
k = rf can be achieved. Then each φ. is necessarily extremal and

/=v^/=Σv ( 7 3 )
i = l i = l

Definition 73. rf is called the rank of/

Corollary 7.4. (i) Iffx ^ / 2 , then rank/x >rank/ 2 .
k

(ii) If f — V /• and all ft are mutually orthogonal, then

k

rank/= Σ rank/.. (7.4)
i= 1

Proof of Proposition 7.1. If φ and ψ are extremal points of K satisfying φ'2\p
(lattice-orthogonality), then ψ is in ker pφ due to Lemma 4.3(iii) (with / replaced by
φ') and hence <φ, φ > = 0 (metric orthogonality). Since any face of K is a convex
hull of its extremal points, this result implies that two faces are metrically
orthogonal if they are lattice-orthogonal.
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If φeK satisfies <φ?φ> = 0 for all ψef for some face / of K, and if φ = λφί

+ (l — λ)φ2 with O<1<1, φγeK and φ2eK, then

O = (φ,ψ)=λ(φvιp) + (l-λKφ2,ψ). (7.5)

Due to Lemma 6.2, (φ.,ψ} (j= 1,2) are positive and hence must vanish. Therefore
the right hand side of (7.1) is a face of K. Let us call this face g. By the earlier
argument, we have g ̂  /'.

Let φeg A (/')' = g Λ / Since it is in # and / <φ, <p> = 0 which is impossible due
to Lemma 6.2. Therefore g A/ = 0. The orthomodularity implies

<7 = ( # Λ ( / ' ) ' ) V / ' = 0 V / ' = / ' . (7.6)

This proves (7.1) and the statement that two faces are lattice-orthogonal if they are
metrically orthogonal.

The equivalence of orthogonality to (ef., ef2} = 0 will be proved at the end of
this section.

Proof of Proposition 7.2. Let φv ...,φk be mutually orthogonal extremal points of/
k

If/i = V φt is n o t / then there exists an extremal point φ of/ί Λ / ( Φ 0 ) , which is

automatically an extremal point of/orthogonal to all φi9 / = 1,...,fe. By repeating

this process, which terminates with / = V <p , we obtain a family of mutually

orthogonal extremal points of/which contains the original family and span/ By
Lemma 5.1, ef = Yjeφ.eΛe and hence

r

<βp βf> = Σ <β

φi>
 βφ) = Σ <e

φi>
 e

φί> = V > ( 7 7 )
ij i Ί

where we used <φ , φ7 > =0 for iΦj and = 1 for i=j. This shows also fe^r. If {/.} is
a family of mutually orthogonal subfaces o f / ( / = l , ...,/c), then orthomodularity
implies

k / k V

(7.8)

Let φt 0 = 1? ...,rank/ ) be a family of mutually orthogonal extremal points of/ ,
Lemma 5.1 implies

Hence, due to mutual orthogonality of φip

i,j ί=0

which proves k^rank/(the case with non-empty/) as well as (7.4) (the case with

Proof of Corollary 7.4. (ii) is just proved. If f1Ίtf2, then fί=f2v(fίAf2) with
rank (fx A f2) φ 0 and hence (i) follows from (ii).
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Proof of Proposition 7.1 (continued). Let/X and/ 2 be two faces a n d / = V φtj with
j

mutually orthogonal φ^ for each i = 1,2. \ίf1 and/ 2 are orthogonal, then all φVj are

mutually orthogonal and hence (Qφi.,Gφki}=0 if (ij) φ (fc,/)• Therefore ^ . = 5 ] ^

for i = l and 2 also satisfies <e / i ? e / 2 > = 0.
Conversely, assume (efi,efy=0. Since

by (6.5), e/ f = Σ e implies the vanishing of the above quantity for all pair j , k. This
j

means that φlj is lattice orthogonal to φ2k by earlier proof and hence fγ = V φXj is
j

lattice orthogonal to f2 = V φ2k.
k

8. Positive Definiteness

Axioms & and Jf together imply the following nice consequence:

Theorem8.1. Under Axioms Θ and Jf, the inner product (6.3) on Vis positive
definite.

The first step is to prove that the inner product is non-degenerate:

Lemma 8.2. Under Axioms Θ and #P, Vo =0, i.e. the inner product (6.3) on Vis non-
degenerate and the kernel ofψeV-^eψ is 0.

Once this lemma is established, e is a linear bijection of V onto A(K) (the
surjectivity due to dimensionality reason).

Proposition 8.3. Under Axioms Θ and 2tf,

eV+=A+(K), (8.1)

$ = f* = (D\ (8.2)

where f is given by (3.1),/* by (5.3),/ by Axiom 0 (iii) a n d / 1 by (5.2).

The last property (8.2) enables us to use the spectral theory of Sect. 5 and yields
a simple proof of Theorem 8.1. At the same time we obtain the following:

Theorem 8.4. Under Axioms Θ and Jf, pffor every face f is an orthogonal projection
relative to the inner product (6.3) and is a P-projection.

Proof of Lemma 8.2. This is divided into a few steps.
(I) We investigate the quotient map q from Fto V/Vo. The first observation is

that qK is a compact convex set as the image of a compact convex set under a
continuous linear map q.

(II) If ψ is on the relative boundary of X, then the face g of qK generated by
qψ is not qK. The reason is as follows: the face / generated by ψ is not K due to
Lemma A.I in the Appendix. Hence / ' is not empty. Any φef is (lattice and
hence) metrically orthogonal to ψ. Let

ψλeK9 ψ2εK, 0</l<l. (8.3)
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Due to the definition of Fo, we have

0 = (φ,Ψy = λ(φ,xp1) + (l-λKφ,ιp2). (8.4)

By (6.5), we must have {φ^ψ^ = {φ,ψ2} = 0. Therefore gf is metrically ortho-
gonal to g. By (6.6), any φeK cannot be orthogonal to itself and hence qf' has no
intersection with g. Hence gή=qK.

(III) If ψ is in the relative interior of K, then the face of qK generated by qψ is
qK itself. The reason: ψ1=(l-\-ρ)ψ — ρφ is in K for sufficiently small ρ for any
given φeK, because a full (relative) neighborhood of ψ is in K. Hence ψ = λψ1

+ (1 — λ)φ with 0 < A = (1 + ρ)~ * < 1, which implies qψ = λq\p1 + (1 — λ)qφ and hence
qφ is in the face of qK generated by qψ.

(IV) Final arguments: Since e = eκeAe we have e(φo) = 0 for any φoeVo.
Therefore for any ψeK, ψ + Vo is contained in the affine manifold {φ;e(φ) = l} on
which K lies with interior points. Take ψ to be an interior point of K. If Vo φθ, Vo

is non-compact, being a linear set. Hence ψ + Fo intersects with the boundary of K
at least at some point ψ1. Then qψ = qψ1 which contradicts (II) and (III). Hence
Fo = 0.

Proof of Proposition 8.3. This is divided into a few steps.
(I) eV+ CΛ+(K): this follows from the positivity eψί(ψ2)^0 given by (6.5).

(II) If ψ is on the boundary of V+ the face of Λ + (K) generated by eψ does not
contain an interior point of Λ + (K). The reason: The face of V+ generated by ψ is of
the form f (f = 0 if ιp = 0) for some face / of K and f + K if ψedK. Hence ψ is
orthogonal to / ' φ 0. The same argument as (II) of the proof of Lemma 8.2 implies
that eψ generates a face of A + (K) annihilating / ' and hence not containing ef.
Therefore it is a proper face of A+(K) and hence is on the boundary of A+(K).

(III) Proof of (8.1). Let ψίφV+ and eψί be in A+(K). Let ψ2 be an interior
point of V+. Then there exists λ satisfying 0 < / ! < l and ψ = λψ1 +(1 — λ)ψ2edV+.
Since eψ = λeψ1 +(l — λ)eψ2 and eψ2eA + (K) by (I), eψ2 must be in the face
generated by eψ, which is on the boundary of A + (K) by (II). This is impossible
because eψ2 is in the interior of eV+cA + (K). Hence eψ1φA + (K) if ψiφV+.
Together with (I), this proves (8.1).

(IV) Proof of (8.2). By (7.3), and eV+cA+(K\ any extremal points ψ of /
satisfies eψef* and hence e/c/*. On the other hand, (8.1) implies that efis a face
of A + (K) because/is a face of V+, and ef contains ef due to (7.3). Therefore / * = ef.
Proposition 7.1 shows that

[Alternatively, we obtain Z * ^ / ' ) 1 from Proposition 5.4(i).]

Proof of Theorem 8.1. By (8.1), the hypothesis of Proposition 5.4 is satisfied and
hence any non-zero xeA has a decomposition (5.5) with μ^φO and /f + 0. By
Proposition 7.1 and (7.3), ef. are mutually orthogonal and hence

n

<x,x>=Σ(μ.)2rank/;>0. (8.6)
ί = 1

Proof of Theorem 8.4. The proof of p*=pf is divided into several steps.
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(I) For φeF0(K\ p*=pφ follows from the following computation for ψ1 and
ψ2 in the total set F0{K) of V:

φ (8 7 )

(II) By Axiom $(ii), kerpφ for any φeF0(f) contains kerpy for feF(K) and
hence

kerp / Cn{kerp < p ;φeF 0 (/)} . (8.8)

(III) Since / is the convex span of F0(f), Lemma 3.5 implies

\ (8.9)

where the lattice notation is used for the lattice of subspaces and the second
equality follows from (I).

(IV) (8.8) and (8.9) implies the orthogonality of ker pf and lmpf and hence pf

is an orthogonal projection.
To show that pf is a P-projection, we note that pf and pf, are quasicomplemen-

tary in the sense of [10]. Due to selfadjointness of pf just proved, dual maps of pf

and pΓ are the same as pf and pf, (due to the selfduality given by Proposition 8.3)
and hence are quasicomplementary. Therefore they are P-projections.

Remark 8.5. The above proof also shows

kerpf = n{kerpφ;φeF0(f)}. (8.10)

9. Geometrical Characterization

Theorem9.1. A convex cone C of a finite dimensional vector space Vis the V+

associated with a finite dimensional compact convex set K satisfying Axioms Θ and
ffl if and only if C has the following properties relative to a positive definite inner
product.

α) Every non-empty face F of C (including C itself) is self-polar in its linear span
Lin F in the following sense:

F = {φeLinF;(φ,ψ}^0 for all xpeF} . (9.1)

(β) Every non-empty face F of C satisfies (F°)° = F, where

φ,ψy=0for allψeF}. (9.2)

(γ) There exists a vector eoeC which has an orthogonal projection of length 1 on
every extremal rays of C.

(5) For any face F of C, e0 is in the convex span of F and F°.

Proof. First assume Axioms & and Jtf. Set C=V+.
(α) From the definition of A + (K) and (8.1), the self-polar property of V+

follows.
By Proposition 3.6, each face / of K satisfies Axioms Θ and Jf with the linear

span of/replacing V and /replacing V+. By Lemma 3.2, a non-empty face F of V+
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is of the form / for some face f oί K and hence the self-polar property of F = f
follows from the previous argument.

(β) From (8.2) ef = fλ follows. Due to e(f°) = f1, we have (f)°=f and hence
(F°)° = FϊoτF = f.

(γ) Take e0 to be such that eeo = e. Then ζeo,ψ} = e(ψ)=l and (ψ,ψ} = l for
any ψeF0(K) implies (γ) in view of Lemma 3.2.

(δ) This follows from e = ef + ep with efee% ef,eef' and f' = f° in view of
Lemma 3.2.

Now assume properties (α), (β), (γ), and (δ). The set K is defined as the set of all
φe C satisfying <e0, φ} = 1.

Due to (9.1) for C, C does not contain non-trivial linear subsets and hence is
the convex span of its extremal rays. Every extremal ray of C has one point on K
by (γ). Therefore K is a basis of C and is a compact convex set.

For every face / of K, let pf be the orthogonal projection operator with its
range = the linear span of/ Since any φeC satisfies <φ,φ>^0 with φ e / d u e to
(9.1) for C and since <(pjφ,φ) = <(φ, tp)^O for all ψef implies pfφef due to (9.1)
for the face / of C, we have the positivity of pf.

We define/' by/' = /°. Then ranges of pf and pf, are orthogonal by definition.
Due to (δ), eo=pfeo+pf,eo and hence the complementarity (2.7) is satisfied where
\\ψ\\=(eo,ψy for any ψeC due to (2.11) (and should not be confused with the
Hubert metric):

\\Pfψ\\ + \\Pfψ\\ =<ef

= <P/eo> Φ > + <Pfeo> Φ > = <eo> Ψ> = ! (9 3)

for all φeK.
If φepfKnK, then (eo,pfφ} = l and hence (eo,pf,q>y = 0by (9.3). Because X is

a base of C and <eo,t/;) = l for ψeK, this implies pf,φ = 0 due to the positivity
pf,φeC (which is already proved). Since pf, is an orthogonal projection on the
linear span of/7, pf,φ = 0 implies that φeK is orthogonal to f and hence φe(f')°
= (/°)° = / due to (β). Therefore pfφ = φ and pf is neutral.

The contractive property of pf follows from what we have proved due to
Remark 2.4. Thus (i) and (iii) of Axiom Θ is now proved, (ii) is immediate because
pf (j= 1,2) are orthogonal projections and Imp / i QImpf2 if f1 Qf2.

Because of (γ) and definition of K, the extremal point φ oί K satisfies

<Pφe0,Pφe0> = l [due to (γ)], (9.4)

<pφeo,(p> = <eo,<p> = l , (9.5)

and pφe0 is a multiple of φ (because it belongs to φ). Hence

<φ, φ> = ί (9-6)

Therefore for any ψeV,

pφψ = (φ,xpyφ. (9.7)

Axiom Jf follows from (9.7) and the symmetry of the inner product.
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10. Decomposition into Irreducible Parts

The following are known notions and consequences.

Definition ίO.ί. A face^ of a compact convex set K is called a split face if there is
another face f2 called complement of fλ such that any φeK has the following
unique decomposition:

φ = λφi+(l~λ)φ2 (10.1)

with 0^/1^1, φ1ef1 and φ2ef2. {λ is unique and if 0 < / l < l , φx and φ2 are
unique.) We also say that fγ and f2 split K.

Proposition 10.2. lffγ andf2 split K, thenf1 /\fandf2 Λ /split afacefofK and Vis a
direct sum of Linft and Lin/2.

Definition 10.3. A compact convex set K is said to be irreducible if it does not have
a split face other than K and empty set.

Proposition 10.4. A finite dimensional compact convex set K is a direct convex sum
of its minimal and hence irreducible split faces f. in the sense that any φeK has the
following unique decomposition:

i (10.2)

with ^ ^ 0 , ^ ^ = 1, φ^ef. Any face f of K is a direct convex sum off/\f{ and Vis a
direct sum of Lin f (the linear hull off in V).

Special situations under Axioms 0 and Jf are given by the following:

Theorem 10.5. Under Axiom Θ, f2 = (fiϊ if Λ and f2 split K. If the /• are as in
Proposition 10.4, then they are mutually lattice orthogonal and the lattice F(K) is a
direct sum of lattices F(f^ each of which is lattice irreducible (i.e. non-trivial further
lattice direct sum decomposition).

Theorem 10.6. Under Axioms Θ and jtf, the decompositions of K, fe F(K) and Vin
Proposition 10.4 is an orthogonal decomposition.

Proof of Proposition 10.2. If φefίorfeF(K), then φ1 and φ2 of (10.1) must be i n /
when 0<λ< 1. Therefore / Λ /i and / Λ f2 split / If L i n ^ and Lin/ 2 have the
following common element:

φ= ΣQU(PU~ΣQΪJ(PΪJ= ΣeϊkΨΪk- ΣeϊiΨΐi ( 1 0 3 )
i j k I

with ρ j ^ O , ρϊj>09 ρ 2 f c>0, ρ2l>0, φ^ef^ φ^efv φ\kef2, and φ2lef2, then

e(φϊj) = e(φ~j) = e(φ+k) = e(φ2l) = 1

implies

and

Q "• ' ( Σ <?i>ίί + Σ QiiΨϊd = Q~1(Σβ TjΨΰ + Σ QίtΨΪύeK • (10.4)

The uniqueness of the decomposition then implies φ = 0. Therefore V is the direct
sum of Lin^ and Lin/2.
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Proof of Proposition 10 A. lifx and/ 2 split K and/ 3 and/ 4 split fv then any φeK
has a unique decomposition

φ=Σλjφj (10.5)
j=2

with ψjEfp λj^O and YJλj = l. This immediately implies that the convex sum/ 5 of
f2 and / 4 is a face of K and / 3 and f5 split K. Therefore a split face of a split face of
K is a split face of K.

Iff and g are split faces of K, then / Λ gr is a split face of g by Proposition 10.2
and hence is a split face of K by the previous argument.

By repeated use of the first argument and the finite dimensionality, any face
contains a minimal split face. Repeated use of splitting into a minimal face and its
complement then yields a decomposition of K into a direct convex sum of a finite
number of minimal split faces. Such a decomposition splits any face / of K into a
direct convex sum of f /\fi by the repeated application of Proposition 10.2. In
particular, any minimal split face of K must coincides with one of the component
of this decomposition and hence the decomposition uses all minimal split faces.
Repeated use of Proposition 10.2 also shows that Fis a direct sum of linear hulls of
minimal split faces.

Proof of Theorem 10.5. li fx and/ 2 split K, then/ί must be a direct convex sum of
f[ Λ/X and f Λ / 2 by Proposition 10.2. By Lemma 4.3(iv), f[ Λ/ X is empty. Hence
f[Cf2. Then f2=f[ v(/i Λ/2) = /ί due to the orthomodularity and f1Λf2 = 0
[which follows from the uniqueness of the decomposition (10.1)]. In
Proposition 10.4, /. is in the complement of f for j + i and hence they are lattice
orthogonal.

By Proposition 10.4, any face / of K is a direct convex sum of faces f /\f{ and
hence is their lattice sum. Conversely, if gieF(fi), then the (direct) convex sum g of
g{ is a face of K because if

λi^°> Σλi=1> <Pi*9t ( 1 0 6 )

has a decomposition

φ = λψ1+(l-λ)ψ2 (10.7)

with 0 < A < l , ψ1eK and ψ2eK, then

Ψk = ΣβikΨik ( * = U ) (10.8)

with μik^0, Σμjfc = l, Ψίkefί a n < ^ hence the uniqueness of decomposition of φ
i

implies

hΨx = λμnΨn + MiΨn > ( 1 0 9 )

which shows either μn=μi2 = 0 (for ̂  = 0) or ψneg^ ψ^eg^ Therefore vg. is the
direct convex sum of g. for any face g. of/f and the lattice F(K) is a direct sum of
lattices F(/ ).

Finally suppose that F(K) is a direct sum of two sublattices L1 and L2. This
means that any gkeF(K) has a unique decomposition gk = gkl v gk2 with gkiELi

satisfying Λgk = (Λgkl)v(Λgk2). Let K = fίwf2 w i t h / 1 e L 1 and f2eL2. Then
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(d)ι vfeOi =fv (9)2 v (9%=f2 d u e t o 9 v ^ ' = -K and hence # = (# A / X ) V(# Λ / 2 ) , for
any geF{K). In particular, F0(X) = F 0 (/ 1 )uF 0 (/ 2 ) and hence iC is a direct convex
sum of/x and /2. By the preceding argument, f2

=f[ and hence / x and f2 are affine
independent. Therefore F(K) has a non-trivial split face. This shows that F(K) is
lattice irreducible if and only if K is irreducible.

Proof of Theorem 10.6 follows from Theorem 10.5 and the equivalence of lattice
and metric orthogonality (Proposition 7.1).

11. Cases of rank 2

If rank K = 2, all possible K satisfying Axioms Θ and 2tf are determined and
correspond to spin factors.

Theorem 11.1. A finite dimensional compact convex K satisfies Axioms Θ and ffl

and is o/rank 2 if and only if it is affine isomorphic to a ball of radius l/]/2 (given as

an intersection of the unit ball in V with the affine manifold of codimension 1 at a

distance l/]/2 from the origin), where K is irreducible except for the case of

dimiC=l (dimF = 2). (The filtering projection pφ for φeF0(K) is the orthogonal

projection with its range = the line passing through 0 and φ.)

Proof By (ψ,ψ} = l for ψeF0(K) and <e,e>=rankX = 2, F0(K) is a subset of the
intersection of the unit sphere of Fwith the affine manifold {φeV;e(φ) = l} at a
distance of 1/j/2 from the origin. Hence K is a subset of the intersection of the unit
ball of V with the same affine manifold.

Since all faces of K other than K and 0 are of rank 1, i.e. extremal points of K,
dK = F0(K) (due to Lemma Al, for example). Therefore dK must be the whole
intersection of the unit sphere of V with the above affine manifold.

The proof of the converse is straightforward. Q.E.D.
The following examples show independence of Axioms Θ and Jf, as well as the

difference of a filtering projection and a P-projection.

Example 112. Consider an arbitrary strictly convex compact body K with a
smooth surface dK in a finite dimensional space.

There are exactly two points of K with their tangent parallel to any given
hyperplane in Lin K. These two points are taken to be φ and φ', both belonging to
F0(K). The pφ is defined by specifying its image to be the line joining the origin 0 of
V and φ, and its kernel to be the hyperplane (linear subset of V with codimen-
sion 1) tangent to K at ψ'. It is easy to check that Axiom G is satisfied. For any
such K which is not an ellipsoid, Axiom Jf is violated (due to Theorem 11.1). In
this example pφ is a P-projection.

Example 11.3. In Example 11.2, we allow non-smooth surface in such a way that
there are exactly two points of K with their tangent parallel to a given hyperplane.
For example any strictly convex body symmetric relative to a point has such a
property. We define φ' and pφ as in the preceding example, except that we may
have a choice of the tangent plane at a non-smooth point. If that happens at φ, pφ

is not a P-projection.
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Example 11.4. Consider the intersection S of the unit ball of a J-dimensional Fand
the affine manifold H = {φeV;(eo,φ} = l} with eoeV, <eo,eo> = 2.

Cut off some part of S by two parallel (d — 2)-dimensional affine submanifold of

H at an equal non-zero distance of strictly less than l/j/2 from eo/2eH, and call

the resulting compact convex set K.
If we take pφ for φeF0(K) to be the orthogonal projection with its image = the

line joining the origin 0 of V and φ, then Axiom Jf7 is satisfied.
The fact that it can not satisfy Axiom Θ for any choice of complementation is

seen as follows: K has two faces, say fx and f2 which are not K nor extremal. Let
φeF0(f1). Then in order Axiom Θ be satisfied, fx = φ v (φr Λ/ X ) due to orthomodu-
larity and hence φ' contains an extremal point φx of φ' /\fxQfv (Otherwise
φ' Λ fγ =φ and hence fx~φ.) If φ' contains any other point, then φ' is either fx or
K, both of which is impossible due to φ A φ' = 0. Therefore φ' = ψ1Qf1. However
this implies φ v φ' = fγ contradicting with φ v φ' = H.

12. Conclusion

We have described the consequences of Axioms Θ and J f in detail. We are not sure
how far the consequence of Axioms Θ and #C is from the following final
consequence, which we obtain by addition of Axiom 0* in Sect. 1 or Property 0ί
below, due to lack of suitable examples. It is enough to describe K when it is
irreducible in view of results in Sect. 10.

Theorem 12.1. An irreducible K satisfies Axioms Θ, Jf7, and £P if and only if it is a
state space of a finite dimensional Jordan algebra factor.

A finite dimensional Jordan algebra factor [13] is either nxn hermitian
matrices over the real, complex or quaternion field or the exceptional Jordan
algebra Ml of 3 x 3 hermitian matrices over the Cayley numbers, which arises for
the case of rank 3, or spin factors, which arise for the case of rank 2 and have
already been treated in Sect. 11.

Remark 12.2. The conclusion of Theorem 12.1 holds if Axiom & is replaced by the
following:

Property 0t. The face generated by any two pure states has rank 2.

Remark 12.3. For ranki£>3, we have Jordan algebras of all self-adjoint operators
on Hubert spaces over real, complex or quaternion field. These three fields may be
distinguished by the behavior of state spaces when we try to consider a combined
system of two independent systems. The "independence" is expressed in the case of
complex field by the tensor product of the underlying Hubert spaces. This leads to
the relation

dim F=(dim FJίdim V2) (12.1)

for the linear span of state spaces for the combined and individual systems.
[Similarly the Jordan algebra A(K) is the tensor product of A(K^) and A(K2) as a
linear space, but not as an algebra.] If we make a corresponding construction of
the combined system for the case of the real field, then we obtain a strict inequality
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> in (12.1) except for trivial cases essentially because the tensor product of two
skew hermitian operators is hermitian.

In the case of the quaternion field, it is known that there is a difficulty in
constructing something reasonable for the combined system due to the non-
commutativity of the quaternion field. [15] However, even if we consider a Hubert
space H with d i m # = (dimjF/J(dimi/2) from the analogy with the real and
complex cases, the corresponding state space for the quaternion case will satisfy a
strict inequality < in (12.1).

Thus the complex field has the most pleasant feature that the linear span of
state space of the combined syste (i.e. F*s) is a tensor product of individual ones.

Proof of Theorem 12.1 and Remark 12.2. This can be obtained from Theorem 6.16
of [4], where the condition (i) is the irreducibility, (ii) follows from our
Theorem 8.4, the pure state properties of (iii) is the combination of our Axiom #?
and 0>. The Hubert ball property (iii)' of [10] follows from Proposition 3.6,
Property 0ί and Theorem 11.1.

Conversely, let Fbe a finite dimensional irreducible real Jordan algebra, V+ be
its positive cone (consisting of all squares), <α,b> = φ(α°b) be the real inner
product in V given by a trace state φ, ee V be the identity of the Jordan algebra
giving φ(a) = ζe,a} and K = {aeV+ ;(e,a} = l}. Then V+ is self-polar ([3],
Lemma 6.2) and hence K is the state space.

Any face F of V+ is closed by the finite dimensionality and F = {F°)° ([3],
Lemma 2.2(iii) which implies F = (F1)1 in their notation due to finite dimension-
ality). Hence F are in one-to-one correspondence with idempotents eF of V in
such a way that F = {aeV+ ;{e — eF,a} = 0}. The orthogonal projection pF with its
image = F — F satisfies pFV+=F ([3], Lemma 2.2(iii)) and hence the self-polar
property of V+ implies that of F in Lin F = F — F. Furthermore eF + e^F0) = e with
eF=PFe> e(F°)=P(F°)e ([3]? Theorem 6.3 and the definition of U, for example) and
the projection of e to extremal rays has the same length 1 due to φ(e2) = φ(e) = 1
for the minimal idempotent of V. Therefore Axioms Θ and J f are satisfied due to
Theorem 9.1. Since pF is uniquely defined by the face F as a P-projection
[Theorem 6.16(iii)], we have Axiom 0> by [2], Theorem 6.16(iii).

[Explicit form of pF is given in terms of the Jordan product on V by
= 2eFo(a°eF)- eFoa.~\
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Appendix: Proof of Proposition 5.4(ii)

We use the following general lemma:

Lemma Al. The face generated by a point P on the boundary of a closed convex set
C is a proper subset of C if C has a non-empty interior.
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In fact, there exists a supporting hyperplane H of C passing P due to the
separation theorem and HnC is a face of C containing P but not containing the
interior of C.

We apply this Lemma for C with relative interior and P on the relative
boundary within the affine span of C.

We first establish the existence and uniqueness of the decomposition (5.5) for
the special case xeA+(K).

Let h1eF(K) be such that h\ is the face generated by x. (If x is in the interior of
A + (K\ then hf = K.) Then x is in the relative interior of hx due to Lemma Al. By
(4.1) with L={ef} and (5.3),/* is the set of all xeA + (K) such that x^λef for some
λ>0. Hence x — λehι is in —A + (K) for some λ>0, which means that it is in — h\
for this λ due to λeh ^ λeh — x ^ 0 and consequently in the relative interior of — h*,
for sufficiently large λ. Therefore

ι i (A.I)

for some λi > 0 by the convexity of h*. Then

x 1 = x - 2 1 e Λ l (A.2)

is on the relative boundary of hf. Let h\ be the face generated by xv

We can continue this process obtaining a strictly decreasing sequence of faces
hί>h2> ... of K, strictly positive numbers λt and points xt on the relative
boundary of hf (i = 1,2,...) such that x generates hf+ λ (and hence is in the relative
interior of hf+ί) and

xi = Xi-i-^ht ( A 3 )

(i= 1,2,...;xo = x) until /z*+1 does not have a relative interior for some n, i.e.
/ Ϊ * + 1 =0, hn+1 = empty set, and ̂  = 0. By setting

fj = fty Λhf

j+1 (a non-empty face of X), (A.4)

μj= t k (A.5)
ί = l

for j=l9...,n, we obtain a family of mutually orthogonal f. and a strictly
increasing sequence of strictly positive numbers μp which satisfy (5.5) due to

n

Lemma 5.1 and the equality hj= V f. following from (A.4) by orthomodularity.
i = j

Conversely, if we apply the above procedure for a given decomposition (5.5)
where μ- are strictly increasing, we find successively

n

hj = V /•, λj = μj -μj_1 (μ0 = 0), (A.6)
i = j

whose unique solution is given by (A.4) and (A.5). Therefore the decomposition
(5.5) exists and is unique for xeA + (K).

For a general xeA, we have \\x\\e + xeA+(K) and the unique decomposition

(A.7)
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implies the unique decomposition

n

x = Σ i α / / J ' ( A 8)
7 = 0

n

where μ. = μ!.— \\x\\ fo r j=l ... n, μo = — ||x||,/0 = Λ fj, the term with μ. = 0 is to be

omitted if it exists and the 7 = 0 term is to be omitted if/o = 0.
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