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Abstract. We associate to the plane incompressible Euler equation with
periodic conditions the corresponding Hopf equation, as an equation for
measures on the space of solenoidal distributions. We define equilibrium states
as the solutions of the stationary Hopf equation. We find a class of equilibrium
states which corresponds to a class of infinitely divisible distributions, and
investigate the properties of gaussian and poissonian states. Equilibrium
dynamics for a class of poissonian states is constructed by means of the
Onsager vortex equations.

1. Introduction

The purpose of this paper is to exhibit a class of equilibrium states for a plane fluid
which moves according to the incompressible Euler equation, and to study their
main properties. Our treatment will be limited to the case of periodic boundary
conditions, which allows an explicit use of Fourier methods.

Equilibrium states for the plane incompressible Euler fluid have been studied
by physicists for a long time. Among the most significant contributions we may
mention a paper by Lee [1] in which a class of gaussian states were introduced as
macrocanonical equilibrium states corresponding to energy and enstrophy con-
servation, and a paper by Novikov [2] in which equilibrium states corresponding
to poissonian distribution of vortices are studied.

The mathematical definition of equilibrium state which we give is based on the
Hopf equation associated to the plane incompressible Euler equation, namely we
define equilibrium states as solutions of the stationary Hopf equation. We recall
that the Hopf equation describes the evolution of measures on phase space
associated to the point evolution, and is written in terms of the characteristic
functionals.
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The Hopf equation plays here a role similar to that of the B-B-K-G-Y
hierarchy equations in statistical mechanics (which is not surprising since the latter
is nothing else than the evolution equation for the generating functional). In fact,
although in mechanics there is an independent notion of equilibrium state (that of
Gibbs state), it turns out that the class of Gibbs states corresponds to the class of
stationary solutions of the B-B-K-G-Y hierarchy equations [3].

Our main result consists in exhibiting solutions of the stationary Hopf
equation which are associated to the law of vorticity conservation along the
trajectory of fluid particles, which is a characteristic feature of the plane Euler
fluid. The corresponding measures are weak limits of some natural lattice
measures with "Gibbs factor" associated to the constants of the motion of the
Euler flow, energy excluded. Such equilibrium states are in one to one cor-
respondence with a family of infinitely divisible distribution laws, and are
characterized by the fact that vorticity is distributed as a generalized random field
with independent values at each point. The vorticity distribution can be in-
terpreted as a superposition of a gaussian distribution and a finite or infinite
number of Poisson distributions.

We give an analysis of the main properties of the gaussian and poissonian
states: we establish in particular that square summable velocity fields have zero
measure in both cases. We also construct a further class of gaussian equilibrium
states, associated to energy and enstrophy conservation, which are just the
equilibrium states introduced by Lee [1]. They turn out to be absolutely
continuous with respect to the gaussian measures previously considered.

If an equilibrium state is physically significant, it should be possible to show
that it is the limit of the evolution of some class of physically reasonable states.
This problem is similar to that of founding the Gibbs postulate in statistical
mechanics (see for example [4]) and is probably of comparable mathematical
difficulty. There are physical grounds which suggest that such a problem is
reasonable at least for poissonian states (cf. [2]), and for gaussian states (see for
instance [5] where results of computer experiments are provided, and references
therein). In order to formulate the problem at a mathematical level one should first
construct "nonequilibrium dynamics", which in our case amounts to extending the
existence theorem for the Euler equation to a set of initial data which is large
enough to contain the support of the states the evolution of which is to be studied
(including equilibrium states). In statistical mechanics this problem has been
solved only for one-dimensional and two-dimensional system [6, 7]. In our case,
we believe that one should, for the moment, be content with the construction of
"equilibrium dynamics", that is, of time evolution for a set of full measure with
respect to a fixed equilibrium state (in statistical mechanics this problem has
already found a satisfactory solution, see [8] and references therein). We succeeded
in constructing equilibrium dynamics for a class of poissonian equilibrium states,
by showing that the solution of the Onsager vortex equations gives a (generalized)
solution of the Euler equation.

The plan of the paper is the following. In Sect. 2 we expose the main facts on
the plane Euler equation, with particular attention to the periodic case. In Sect. 3
we introduce the Hopf equation in a way which is convenient for measures on
generalized function spaces (usually it is defined for measures on spaces of square



States for an Incompressible Fluid 57

summable functions, which are too small for our purposed). In Sect. 4 we
introduce the main class of equilibrium states, and show than they are solutions of
the stationary Hopf equation. In Sect. 5 we study gaussian and poissonian
equilibrium states and construct gaussian equilibrium states associated to energy
and enstrophy conservation. In Sect. 6 we construct the equilibrium dynamics for
a class of poissonian states. Section 7 is devoted to a conclusive discussion.

2. The Plane Incompressible Euler Equation

a. Generalities

Let Ω denote an open set of the plane, and dΩ its boundary, which we suppose at
least of class C1. The plane incompressible Euler equation for the velocity field
u(χ, ί) = (w1(χ j t), u2(x, t)) and the pressure field p(x, ί), ((x, ί)eί2 x IR1), in absence of
external forces, is

— u + (u F)u= — Vp (2.1)

divu-0 (2.2)

V=\ , 1 is the gradient, and divu= Y —u . Equations (2.1) and (2.2) are
\dx1 dxj ^ ^ ffi dXi

accompanied by the initial condition

u(x,0) = u0(x) (2.3)

and the boundary condition

u n|ao = 0, (2.4)

n being the outer normal on dΩ. We recall that the solenoidality condition (2.2)
expresses incompressibility, and the boundary condition (2.4) means that the
liquid cannot flow out of Ω.

Equations (2.1) and (2.2) can be written in terms of the vorticity field ω(x, t)

ω(x, ί) = rotu(x, ί)= —
ox1 ox2

(ω is a scalar in dimension 2). Defining, following Kato [9], the rotation of a scalar
field φ(x) as the vector

(2.5,
x2 x

we have

τotrotφ=-Δφ. (2.6)

It is easily seen that a differentiable solenoidal vector field in Ω, v(x), satisfying
the boundary condition v n|5β = 0 can be uniquely reconstructed in terms of its
rotation:

v(x) = rotG(rotv) (2.7)
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G being the inverse of ( — A) with zero boundary conditions on dΩ [i.e. G(φ) is the
solution of the equation Aιp= — φ, t/;|aβ = 0].

In place of Eqs. (2.1) and (2.2) we can write

)ω = 0 (2.8)
ot

u = rotG(ω). (2.9)

Equation (2.8) expresses the law of "vorticity conservation for any fluid particle",
i.e. it says that the "total derivative" of the vorticity is zero.

b. Existence, Uniqueness and Constants of the Motion

Existence, uniqueness [with p(x, ί) determined up to an arbitrary function of time]
and regularity for solutions of the problem (2.1)-(2.4) have been proved in various
frameworks. For classical solutions (i.e. such that all the derivatives involved exist
and are continuous), it is assumed that dΩ is at least of class C2 + δ, (<5>0) and the
main tool of the proof is Schauder's fixed point theorem (see for example [9]). For
"weak solutions", [i.e. solutions which are not necessarily differentiable and satisfy
(2.1) and (2.2) in a "weak sense", that is, in some space of functional] an existence
and uniqueness result has been proved under the assumption that u0 is a square
summable function with square summable gradient, and that dΩ is of class C2 (cf.
[10]). The proof is based on compactness arguments, and the solution is a
continuous function of t with values in the space of square summable vector
functions (L2(Ω))2. All results for classical as well as for weak solutions hold for all
times.

We now recall some well-known properties of the Euler equations. (We limit
our considerations to classical solutions only.)

By "constant of the motion" we mean a functional of u, which is unchanged as
u evolves according to the Euler equation. We have:

Proposition 2.1. The energy

Ω

does not depend on t if u(x, t) is a classical solution of the problem (2.1)-(2.4) (by
"dx" we denote the Lebesgue measure on R2j.

Proof. From the existence and uniqueness theorem for classical solutions we have
that E(t) exists and is differentiable in t for any t. We have

-E(t)=- f u-(u-F)udx=- J(u F)||u|2ώc=-| J |u|2u nώc = 0.
dt Ω Q QQ

There are many other constants of the motion, as a consequence of the "law of
vorticity conservation" (2.8):

Proposition 2.2. For any continuous function /e C(IR) the functional

If=\f(ω(x,t)dx (2.10)
Ω

is a constant of the motion if u is a classical solution of problem (2.1)-(2.4).
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Proof. If /eC^IR), so that If is differentiable, we have

-If=$f'(ω(x,t))-ω(x,t)dx

- - j /'(ω)(u F)ωdx = - J (F/(ω) u)dx
Ω β

n)dx+ f /(

so that the result is true for feC1. For /eC it can be obtained by a density
argument.

A particularly important role in physics plays "enstrophy", that is

c. The Euler Equation on the Torus. Finite Dimensional Approximations

We are interested in the case in which the boundary condition (2.3) is replaced by
periodic conditions. More precisely, we consider (2.1) and (2.2) on a flat torus T2

which we identify with a square of side 2π, with opposite sides glued together :
T2 = [0, 2π] x [0, 2π] mod2π. u(x, t) may be determined only up to an arbitrary
constant, which we fix by imposing the following "zero average" condition

J u(x,ί)dx = 0. (2.4')
Γ2

It would not be hard to extend to this case the results on existence, uniqueness
and regularity described in Sect. 2a. However by an explicit use of Fourier
transform it is possible to give a constructive proof of existence and uniqueness,
which we shall presently outline.

Consider the Fourier expansion of u(x, ί)

u(x, *)=-- Σ expίfk x)^) (2.11)
2π kez2 /c

[here Z2 = Z2\(0,0), Z2 being the plane integer lattice, k1eZ2 is obtained by
k = (fe 1,fe 2)by setting k1 = (fe2, — fej, and fe = |k|]. The Fourier components of u are
proportional to k1 as a consequence of (2.2). Moreover, since u is real we have

By formal substitution we get the Euler equations in Fourier form

M')=-i Σ Γhmkύh(t)ύm(t) (keZ2) (2.12)

with Γhmk - (h1 - m) (h2 - m2)/hmk.

The initial condition (2.3) becomes

ik'X)dx = ύ(^. (2.13)
Γ2
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The Fourier components of p(x,ί) are given by

Λ(0=-ΐ Σ L(^ m)(li'm^/hmk-]ύhύm (keZ2) (2.14)

so that the problem reduces to solving the system of infinite coupled ordinary
differential equations (2.12) subject to the initial conditions (2.13). It is natural here
to apply the method of finite dimensional approximants ("Faedo-Galerkin"
method).

Definition 2.ί. For any set /C^2 such that

ii) for any ke / there is at least a pair h, me / such that k = h + m,
we define the corresponding finite dimensional approximant (hereafter f.d.a.) as
the system of ordinary differential equations

ώ<"(ί)=-ί £ rhmkuV(t)u£(l) (2.15)
h + m = k

h,me/

"ί/)(0) = fiΓ (2.16)

Since we have

it is easily seen that

£(/) = έ Σ W T (energy)
ke/

ke/

(enstrophy)

are constant in time. This in its turn implies an existence and uniqueness theorem
for the problem (2.15) and (2.16).

A constructive existence and uniqueness theorem for the problem (2.12) and
(2.13) can be obtained along the following lines (cf. [11]). Suppose that
^/c2 |wk

0) |2<oo, and consider the sequence {t/(Λ°(£)}^=1 of solutions of equations
(2.15) and (2.16) corresponding to the index sets IN = {keZ2||k| ̂  N}. The sequence
converges in /2, as JV-»oo, uniformly for t in any finite interval. It follows that the
corresponding sequence of Fourier antitrasforms converges in the space of square
summable solenoidal functions on T2 satisfying condition (2.4'), j§?2 (which is a
closed subspace of \_L2(T2}~\2}. The limit satisfies (in weak sense) the Euler
equation (2.1) and (2.2), which is equivalent to the Eqs. (2.12) and (2.14) and is
unique within the class of functions with square summable gradient. Moreover it is
possible to estimate the error which is done by taking the Λ/-th function of the
sequence instead of the true solution. (We believe that a similar constructive
theorem holds in the case of a domain with boundary as well, although it might be
difficult to carry out the proof because of the inconvenience of the explicit Fourier
representation.)
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It is not hard to see that for periodic boundary conditions equations (2.6)-(2.9)
hold unchanged, [if by G we understand the inverse of ( — A) with periodic
boundary conditions], as well as Propositions 2.1 and 2.2.

Notice that although f.d.a.'s for some particular index set / may possess other
constants of the motion independent of E(I} and S(I\ there is evidence that there are
no such additional invariants which are common to an infinite sequence of f.d.a.'s
corresponding to the index sets IN [12].

3. The Hopf Equation

Periodic conditions are convenient because it is easy to work in Fourier
representation. We begin by introducing it.

Let ^(T2) be the linear space of infinitely differentiable real functions with
zero mean [i.e. such that J φ(x)dx = Q,\/φe<?(T2)~] ("test functions"), endowed

T2

with the usual Schwartz topology generated by the seminorms INI*! &2

= max
2 keT2

Consider the subspace of £f (T2) x <? (T2) consisting of all solenoidal vector
functions, which is closed in the product topology, and which we shall denote by
^(T2). &(T2) is of course a locally convex space, and we may take on it the family
of seminorms || ||n(n = 0, 1, ...):

(v) being the usual scalar product in L2(Γ2).
To any θe&(T2) its Fourier expansion [cf. (2.11)] associates a scalar sequence

θ = {θk}k^2 such that

S-k=-3k (3-1)

(reality condition), and that for any positive integer m

sup/cm |0k |<oo (3.2)
keZ2

(condition of rapid decrease).
By setting

Λ=f Σ fc2Ί3
\keZ2

we have ||Θ||M = ||Θ||Π. We denote by s the linear space of the sequences satisfying
conditions (3.1) and (3.2). Definition (3.3) gives us a family of seminorms on s and it
is easily seen that the following proposition holds :

Proposition 3.1. The map θ->θ (Fourier transform) of &(T2) ons.endowed with the
topology generated by the semmorms (3.3), is a topologίcal isomorphism.
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Consider the space &'(T2\ dual to &(T2\ We shall denote by <u,θ> the
action of ue^'(T2) on θe&(T2). The Fourier transform on &'(T2) is the map
u-»tίΞΞ{/2k}ke^2 defined by setting

Since UE^'(T2), the sequence {uk}ke^2 satisfies the reality condition

u_k=-u_k (3.1')

and is low increase, i.e. there exist positive constants c and N depending on u such
that

\ύk\<ckN. (3.2')

We denote by s' the space of sequences satisfying conditions (3.Γ) and (3.2'). s'
is the dual of s according to the duality

< f i , > = £ 5kθk (ύes\θes). (3.4)
keZ2

The following proposition is easily seen to be true :

Proposition 3.2. The map u-»w (Fourier transform) of &'(T2) on s', endowed with
the weak topology corresponding to the duality (3.4\ is a topologίcal isomorphism.

s' is a nice space to place measures because it is the dual of a nuclear space, and
therefore any continuous cylindric Borel measure on it is σ-continuous (cf. [13],
Chap. 4). Moreover any such measure corresponds to a generalized random field
(hereafter g.r.f.) (cf. [13], Chap. 3) on T2, so that we can make use of the general
results of the theory of g.r.f.'s.

Before coming to the evolution of measures on s' corresponding to the full
Euler equation, we define the evolution associated to f.d.a.'s (Definition 2.1).

Definition 3.1. Consider the index sets /N={kG^2| |k| gjΛΓ}, (N = 1, 2, . . .). For any N
we define an evolution group in s', Ί*N\ by setting :

u (

k

} ( t ) being the solution of the f.d.a. corresponding to the index set IN (Definition
2.1) with initial data ι4N)(0) = "k,ke/ ίV.

Suppose μ0 is a cylindric Borel measure on s'. For any measurable set A C s'
define

We get a family of measures {μ^JfeR1 f°r

Let {Φ^ίOlίeRij be the corresponding family of characteristic functionals
defined on 5;
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Proposition 3.3. // J |ί/k|
2dμ0<oo,VkeZ2, Φ|N) is differ entiable with respect to t for

s'
any N and satisfies the equation

|- ΦW(Θ) = i ί <5^(ώ), Θy exp(ί<fi, 0» d/Γ(Λ),
CT §/

where B(JV)(M)ES' is ffte vector with components

BH«) = -ί Σ ^mk«h«m (ke/N)
h + m = k
h,me/ιv

(3.5)

Proo/ The proof consists in a change of variables and an application of the
Lebesgue dominated convergence theorem to ensure derivability under the
integral sign.

We could now introduce the Hopf equation by passing (formally) to the limit
JV-KX). However the limit of B(N}(ύ) is unfortunately not defined everywhere in s',
so that we must formulate some additional assumptions on the measures. We first
derive the following simple:

Proposition 3.4. Suppose we have a sequence of functions F(]V):s'— »s' and a σ-
additive measure μ on s', such that (F(N}(ύ\ θy is a converging sequence in L1 (dμ) for
any θes. Then there exist a function F:s'—>s', and a subsequence F(]Vί) such that
F(Ni\u) - >F(ύ) in sf almost everywhere with respect to μ (hereafter μ-a.e.), and

N-* oo

Lί(dμ}

Proof. In fact, since the sequence J |<F(]V)(w), θy\dμ(ύ) converges, it is limited for
s'

any θes. Therefore (cf. [14], Theorem V.7) there exist two constants m and c such
that:

for all N. Since (F(N}(u),θy converges in ^(dμ) for any fixed θes, the Fourier
components F^ converge in Ll(άμ) for_ any fixed k. Denoting by Fk(ύ) the
corresponding limits we have for

Because of L1 convergence Fk(ff) is μ-a.e. the limit of a subsequence F^l)(ύ). By a
diagonal procedure it is possible to find a subsequence F^j) μ-a.e. converging to
Fk, for all keZ2. It is easily seen that the sequence Fk(ύ)/km+n converges to Oμ-a.e.
as |k|->oo for π>2, so that μ-a.e. there exist a fixed integer m', and a constant
depending on ύ such that

i.e. F(u) = {Fk(u)}kef2es'. The rest is immediate.
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Definition 3.2. We shall say that the family of cylindric Borel measures on s'
{μjίe[0 Γ] is a solution of the Hopf equation associated to the incompressible Euler
equation on T2 with the initial condition μ(0), whenever the characteristic

functional Φt(θ) = J exp(i<w, θy)dμt(ύ) is derivable almost everywhere with respect
s'

to ί, Φ0(θ) = φ(0}(θ)= J exp(i<w, φy)dμ(0}(ύ\ and the following equality takes place
s'

almost everywhere with respect to the Lebesgue measure on [0, T]

Φt(θ) = i j <β(ώ), θy exp(ΐ<ώ, 0»dft(ώ) . (3.6)
<7Γ s/

5(ώ) being the Ll(dμt) - limit of £(JV)(w), defined by Eq. (3.5).
In the following we shall be interested only in the stationary equation

J <£?(«), θ> exp(i<«, θy)dμ(ΰ) = Q. (3.7)
s'

Definition 3.3. We shall call "equilibrium state" any cylindric Borel measure on s'
satisfying Eq. (3.7).

4. Equilibrium States Associated to the Vortex Conservation Law

As we said in Sect. 2 a characteristic feature of the two-dimensional Euler fluid is
the conservation law of vorticity for fluid particles (2.8).

Since the "density of fluid particles" (i.e. volumes) is preserved, because of the
solenoidality condition (2.2), we are led to the conclusion that vorticity distri-
butions which are independent at each point should correspond to equilibrium
states.

According to a well known result (cf. [13], Chap. Ill) a general class of real
generalized random fields with independent values at each point is identified by
the class of characteristic functionals

χv(0) = exp J ιp(φ(x))dx (ψe^,φe^(T2)). (4.1)
T2

(J> is the class of complex functions which are logarithms of the characteristic
functions of an infinitely divisible distribution law.)

We shall presently show that the measures associated to the characteristic
functionals (4.1) are limits of natural "statistical mechanical" lattice measures with
"Gibbs factor" associated to the constants of the motion If defined by (2.10).

A statistical mechanical measure with "Gibbs factor" associated to If may be
written formally as

dμf(u) = M~1 exp/ J /(rot u(\))dx\" Π <*(rot u(x))" (4.2)
\T2 / xeΓ2

(where M is some normalization constant).
Consider the lattice ZNC%2

ZΛr = {keZ2 |k/Λ/ re[0,2π)x[0,2π)} ΛΓ = 1,2,...
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set nN = carά {ZN}, denote ξ^} the vorticity of the point k/ΛΓ, and by ξ(N) the nN-
dimensional vector { ζ - The measure

with dξ^ the Lebesgue measure on R1, ρ^ a nonnegative function such that

J ρN(x)dx = 1 is a natural lattice approximation of the meanigless expression (4.2).
00 J

For any φe^(T2) consider the random variable

ξm(Φ)= Σ ΦWWIW , (4.3)

the collection of all such random variables for all φe^(T2) gives us a random
linear functional, that is a g.r.f. on T2 which we shall denote by

Definition 4.1. We shall say that g.r.f.'s ξ(N)(-) converge weakly as N-+ oo to the g.r.f.
ξ( ) whenever the joint distribution functions of the random variables
ξ(N)(φί)...ξ(N)(φn) converge weakly to the joint distribution functions of
ξ(φ1)...ξ(φn)9 for any choice of φl9 ..., φne^(T2) and of the positive integer n.

The classical theorems on the convergence of sums of independent random
variables allow us to find out the class of all possible weak limits of the g.r.f.'s ξ(N\-),
under the usual natural restriction that the contribution at each single term in
the sum (4.3) is, for large N, infinitesimally small. It is easily seen that this is
ensured by the following "infinitesimality condition": for all e>0 we should have

lim J ρN(x)dx = Q. (4.4)
N-+CQ \χ\>ε

Theorem 4.1. Let a^} = j xρN(x)dx (τ >0). A necessary and sufficient condition in
\x\<τ

order that the sequence of g.r.f.'s ξ(N) subject to conditions (4.4), converge weakly to a
limit, is that the functions

ψN(t) = N2 ] (exp(Jίx)-l)ρjv(x + α<NVx
— 00

converge everywhere to a continuous limit. The set of all possible weak limits is the
set of g.r.f.'s the characteristic functional^ of which are given by

χψ(φ) = πp J ψ(φ(x))dx 0e^(T2), (4.5)
Γ2

where φe./ and has Levy-Khinchin representation of the type

itx --2

ψ(t)= j exp(itx)-l--
-oo \ -1- "Γ^

F(x) being a nondecreasing limited function such that F(— oo) = 0.

Proof. First of all note that, because of linearity, weak convergence of the g.r.f.'s
ξ(N) is equivalent to weak convergence of the distribution functions of the random
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variables ζ(N\φ) for any fixed φe^(T2) [in fact the characteristic function of the
joint distribution of the random variables {ζ(N)(φι\ ...,ξ(N}(φN)} calculated at the
point (tl9 .. ., ίj is just the characteristic function of ξ(N\t1φί + . . . + tnφn) calculated
at t= 1]. Now the characteristic function of ξ(N}(φ) is given by

GΓ(0= Π f*(tΦWN))
keZN

00

where fN(t)= j exp(itx)ρN(x)dx. Because of condition (4.4) the functions
— 00

are finite in any finite interval for N large enough, and for any
τ>0 we have

<>(ί) = /tα<N) £ φ(k/N)

+ Σ l o g ί j
keZίv I — oo

Since a(^} - »0 in force of condition (4.4), and since j φ(x)dx = 0 we have
^

Moreover by repeating the classical argument of Kolomogorov and Gnedenko
[15] with minor modifications, it is readily seen that pointwise convergence
of the sequence {g(φ\t)}^=1 is equivalent to pointwise convergence of the
following sequence

0f(0= Σ ϊ (™p(itφWN))-l)ρ^x + aW)dx,
keZjί ~~ °o

and that lim g(^\t) = lira gψ\t). Now gψ\t) is nothing else than a Riemann sum
JV-+00 ^ N^oo ψ ψ

of the integral J ψN(φ(x))dx, and the first assertion of the theorem follows easily
Γ2

by noting that we are dealing with functions for which pointwise convergence is
equivalent to uniform convergence on any compact set. The second assertion
follows from the fact that the limit law of a sum of independent variables subject to
the infinitesimality condition is necessarily an infinitely divisible law and from the
observation that if in the Levy-Khinchin representation of ψ

ίtx
J exp(ifx)-l-—-Ί )dF(x)

no V i +x /

we change the value of y the characteristic functional (4.5) does not change
[because of the condition J φ(x)dx = 0].

T2

Once we have the characteristic functional χ of the vorticity distribution we
obtain the corresponding characteristic functional of the velocity distribution Φ by
setting
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So that the characteristic functional of the velocity distribution corresponding
to the functional (4.5) is

Φv,(θ) = exp f v>(G(rotθ)(x)dx (θe^(T2)) . (4.6)
Γ2

Any g.r.f. corresponding to such a characteristic functional possesses a
realization on ^'(T2) given by a cylindric Borel measure (which in uniquely
determined), and therefore, by Proposition 3.2, a realization on s' with the same
properties (cf. [13], Chap. IV). The characteristic functional of the corresponding
measure on s' is obtained simply by substituting for θ its Fourier development in
(4.6):

. (4.7)

Theorem 4.2. If ψ( ) is the logarithm of an infinitely divisible distribution law with
φlv(0)< oo, the measure μψ on s1 identified by the characteristic functional (4.7) is a
solution of the stationary Hopf equation (3.7).

Proof. First of all we show that the sequence (B(N\ύ\ θ> converges in L2(dμψ) as
N-+ oo. Setting Z(N\ύ) = B(N+ l\u) - B(N\ύ) and denoting by £ψ{ } the average with
respect to μψ we have (we write for short Γm k in place of Γm k _ m k)

k,heIN+ i

/?k'h

k, he/^

/?k»h
Km,m'

where

+ Σ Mh Σ
k,h6/ίv+ iVΓzv k-m,me/Λr+ i

h — m',m'e/ίVH- 1

Since

m)

+ δ(k + n)(5(h + m)] + tpιv(0)^(k + h + m + n)}

u5(k) is the Kronecker symbol: δ(k)= < , by substitution we get
lor

+vιv(θ) Σ
) » ι-m

+ k / Σ / I0J2 {2(v"(0))2 Σ m2^m]2 + ΆO) ( Σ : —m
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Now observe that if meH(^\IN+1) so does m = m — 2 — -̂  — k1 (because |m| = |m|
/C

and |k — ίh| = |k — m|) and it is easily seen that:

rm,*=-r^, (4.8)
so that

y Γ™Λ = y Γ™>* =Q
m6SN, m|k - m| me^ + , m|k - m|

Since moreover

we have :

N

Σ

and, in addition, the series Σ IKZ(lf)(w), 0>||L2(dMv) converges.
«= i

Since

by applying the theorem of Beppo Levi and the dominated convergence theorem,
it follows that the sequence <J3(Λ°(w), θy converges in L2(dμψ) as well as μv-a.e.
Therefore the left hand side of the stationary Hopf equation (3.7) makes sense, the
function B(ύ) which appears in it being the limit, in the sense of Proposition 3.4, of
the functions B(N\ύ\ as JV-»oo. [Notice that we have shown that the sequence
B(N\ύ) itself converges μv-a.e.] We have

B(ύ\ θy exp(i<w, θy)dμ(ύ) = lim J (B(N\ύ), θy exp(i<w, θy}dμ(ύ]
s'

= lip ~ Σ 0k| Σ Γm,k ί t//(σ(x))exp(im x)/mdx
~^°° ke/jv Ik —m,me/^ T2

• J ψf(σ(x))exp(ί(lί-m)'X)/\'k-m\dx+ J t/;r/((7(x))exp(ik x)dx
T2 Γ2

where σ(x) = Σ T ̂ k exP (^'x) •

Using (4.8) we see that the second term in the curly brackets gives no contribution,
and since the remaining double series converges absolutely, we have

J <β(M), Θy exp(ι<M, θy)dμ(ύ) = / Σ σk Ί Σ —2~ ί V'M*))exp(ίm x)c
s' keZ 2 lk-m,meZ2 m T2

T2 T2
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5. Properties of the Gaussian and Poissonian States

a. Gaussian States

For ψ(t)= - σ2t2 (<τ>0) we have a gaussian equilibrium state. In fact its

characteristic functional is :

(5.1)
κ

Denoting by μσ the corresponding measure on s', the measure of any cylindric set
A is given by

}= ί Π
A ke/

(5.2)

(here / is the set of integers corresponding to the variables on which the cylindric
set A depends. Note that Acs' implies /=—/). The following proposition
characterizes the support of μσ.

Proposition 5.1. Consider the sets:

\1J.\2k2

lim inf -

= <UGS'
lu |2/c2

lim sup —^—ry = 1L
/c-oo σ 2log/c 2

support of the measure μσ is contained in the set £#σ = ^
energy is infinite μΰ-a.e.

Proof. First of all we show that μσ(s'\^σ) = Q. We have
00 00

\ — σ \J \J — σ

. Moreover

w = l N=l

where

mf |uk

With the help of formula (5.2) we get:

and the conclusion follows from the fact that the infinite product is zero for all n, N

since the series £ (1 — l/7c2/") diverges. Consider now the set
k>N

c = ίues' lim sup|t/J2/c2/(σ2log/c2)<cl .
Jfe^oo

We have

_ oo oo

•*-.«= u. u^r,
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where
^c

N} = ίύESfsup\uk\
2k2/(σ2logk2)<c-l/n\,

and

n—>• oo N—>• oo

since S/£ C

N) 3 jtfff ~ ̂  and ^"^b^"c~
1>N). Proceeding as before we findC

and the infinite product is zero or finite according to whether the series

Σ k~2(c~ 1/n) diverges or converges. For c ̂  1 the series always diverges. For c> 1
/c^N

the series converges for n so large that c— l/n> 1, and for all such n we have

- *>) = !,

whence.it follows easily that μσ(jtfσ) = l, and therefore μσ(eβ/<y) = l.
To prove the second assertion we first calculate the average value of the

energy :

keZ 2

Consider the sequence of functions

:E^(ύ):=^(\ύk

2-σ2/k2) N = l,2,... (5.3)
fc^IV

since

reasoning like in the proof of Theorem 4.2 we conclude that sequence :E(N\ύ):
converges, as JV->oo, in L2(dμσ) as well as almost averywhere. Since the limit is

μσ-a.e. finite and the series ^ k~2 diverges, we conclude that the series ]Γ \ύk\
2

keZ2 keZ2

diverges μσ-a.e.
Gaussian equilibrium states are associated to enstrophy conservation : formula

(5.2) shows that they are Gibbs states with Gibbs factor exp( — S/σ2) (σ2 plays here
the role of a "temperature" associated to enstrophy). It is natural to take energy
conservation into account and to consider equilibrium states with Gibbs factor
exp( — E/a2 — S/σ2) (cf. [1]). A standard way to give a mathematical definition of
such states is to consider the sequence of the measures on s' which have as densities
with respect to dμσ the following cylindric functions :

f exp(- ^oΓ2 Σ |ώJ2W N=l,2 . . . (5.4)
k^N I s ' \ k^N I

The limit, as 7V-^oo, of such measures, if it exists, will define the state we are
looking for.
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Theorem 5.1. The sequence of functions (5.4) is a Cauchy sequence in Lp(dμσ)for any

P^l.

Proof. To simplify notations we assume σ — α = l, and μί=μ. We have

:E(N\ύ): being defined by equality (5.3). The normalization factors

5'

converge to a finite limit as JV-κx). Now, since

|exp (x) - exp (y)\ ^\x-y\ |exp (x) + exp (y)\

we have, setting U(N}= - :E(N}:

for any choice of the integers r,q,p^l such that p"1 = q~1 +r~l. Moreover since

and the series ]Γ r/k~2 — log(l + r//c~2) converges, we have that ||exp(17(]V))||Lr(dμ)

keZ 2

is limited, uniformly in N. To estimate || t/(N) — U(N>)\\Lq(dμ) assume N'>N and q to
be even (if q is odd we can use the inequality

) _ TT(N') || < || ττ(N) _
U \\mdμ)=\\U

Setting q = 2s we find :

Σ
m = l Pι,...,pm = 0

Pl>P2> >Pm

where n(p1? ...,pm) are combinatorial factors, so that the result follows
immediately.

As a consequence of Theorem 5.1 we have a new class of gaussian measures
which are absolutely continuous with respect to the old ones, with density given by
the limits of sequences (5.4). Therefore they have the same support properties. The
new class is labelled by two positive parameters, σ and α. It is easy to show that the
stationary Hopf equation makes sense for such measures, and that they are
stationary solution of such equation. In fact the characteristic functionals are

and the proof of Theorem 4.2 can be repeated step to step. We have found
therefore a new class of gaussian equilibrium states. We remark that similar
results on gaussian states are contained in the paper [18].
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6. Poissonian States

Definition 5.1. We shall call "simply poissonian equilibrium state with vortex
strength K and parameter c" (K Φ 0 and c> 0 are real numbers) the equilibrium state
of the class described by Theorem 4.1 which corresponds to the function

V>(ί) = c(exp(iιcί)-l).

For such a state vorticity is distributed according to the characteristic
functional

c(εxp(ίκφ(x))-l)dx\ φe^(T2). (5.5)2 /
Definition 5.2. We shall call "poissonian equilibrium state" any state of the class
described by Theorem 4.1 which corresponds to a function ψ of the type

n

ψ(t) = Σ c/exp (iKjt) —l),n being a positive integer, and c. > 0, κj Φ 0 real numbers.
7=1

For such states the vorticity distribution is a superposition of a finite number of
independent simply poissonian vorticity distribution.

Proposition 5.2. For any poissonian state there exists a stochastic measure (with
sign) ξv(ι) on T2, with'finite total variation μψ-a.e., such that the g.r.f. which gives the
vorticity distribution admits μψ-a.e. the representation

<ξ,φy=SΦ(x)ξψ(dx) φe^(T2). (5.6)
T2

Proof. Since this result is a consequence of a general theorem which can be found
in [16] (for the case of processes, but the restriction is not essential), we shall only
outline the proof for simply poissonian states (the generalization to poissonian
states is however very simple). Consider the g.r.f. identified by the characteristic
functional (5.5), with c = κ—l for simplicity). The latter obviously makes sense for
φ = tχA, with A a Borel set in T2 and χA its characteristic function, so that we
can associate to any Borel set A C T2 a random variable ξ'ψ(A) such that

[where m( ) is the Haar measure on T2 and m(T2) = (2π)2]. Now if we associate to
any Borel set A C T2 the random variable ξψ(A) = ξf

ψ(A) — m(A) it is easy to see that :

i) ξψ(A)eL2(dμψ)
ii) ξψ(AuB) = ξψ(A) + ξψ(B) μψ-z.e.ifAπB = φ

iii) Λψ(ξψ(A)ξψ(B)) = m(AnB)
for any Borel sets A, B C T2. The family of random variables ξ (A), for all Borel sets
A, defines therefore a stochastic measure on T2, whose structure function is m( ),
and a trivial verification shows that representation (5.6) takes place μv-a.e. Note
that for any Borel set A ξψ(A) + m(A) is a random variable which takes integer
values μv-a.e. and is Poisson distributed with parameter m(A).

Corollary 5.1. For any poissonian equilibrium state energy is infinite μψ-a.e.

Proof. Again we will give the proof only for the simply poissonian state with
c = κ=l, since the extension is not difficult. As a consequence of Proposition 5.1
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i n

we have that μv-a.e. wk= - -r Σ expίik x^), the finite positive integer n and the
kj=1

points Xj eT2 (x^φX; for z'Φj) depending on ύ. Therefore:

and the result follows immediately since the series Σ k~2 diverges, whereas the
keZ2

series defining the Green's function of the Laplacian in T2, Σ AΓ2exp(/k x),
converges for x Φ 0. ke^2

7. Equilibrium Dynamics for a Class of Poissonian States

In this paragraph we construct the time evolution for the Euler equation on a set
of full measure with respect to all poissonian states for which vorticity takes only
positive, or only negative, values (i.e. for which all vortices rotate in the same
direction).

First of all we need to give sense the Euler equation (2.12) as a differential
equation in 5'.

Definition 6.1. We shall say that the function ύ( •) IR1 -»s' is a solution of the Euler
equation with initial data ύ0 whenever M(()) = MO, the limit B(ύ(t))= lim B(N\ύ(t))

N^oo
exists in s', for all t, the functions <w(ί), θ> are derivable for all t and all ΘES, and the
equality takes place

d
,0> feIR 1 , ΘES. (6.1),

In the following we shall call "Euler equation" Eq. (6.1). It is easily seen (cf.
[11]) that whenever Σ /c2 |w(

k

0) |2< oo Eq. (6.1) is equivalent to the usual Euler
keZ2

equation in weak form.

Theorem 6.1. Let μψ be the measure on sf corresponding to a simply poissonian state.
There exists a set Pψ, μψ(Pψ) = 1, such that for any we Pψ there is a solution ύ(-)of the
Euler equation (6.1) satisfying the initial condition ύ(0) = ύ. The solution is such that
the components ύk(t) are analytic in ί, and is unique within the class of functions
possessing this property (hereafter to be called "analytic").

Proof. We set for simplicity κ=ί. Consider the sets

j=ι

for some (x1? ...,xn)e(T2)n,χ.φx7 for ϊφj i n=l,2,. . .

00

As a consequence of Proposition 5.2 it is easily seen that the set Pψ = (J P(^ is a
n= 1

set of full measure : μψ(Pψ) = 1. Consider now the ordinary differential equation in
(T2)"

-̂  Xi(ί) = rotxί X g(xi(t) - x (ί)) i = l,...,n (6.2)
at j φ l
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with the initial condition

x,(0) = X i , (6.3)

g being the Green's function associated to the operator —A. Equations (6.2) are a
set of hamiltonian equations, the hamiltonian being

(they are the Onsager vortex equations on T2, cf. [2]). Since the function g(x) is
everywhere analytic except at x = 0, where it diverges logarithmically to + oo, the
variety j^ = const in (T2)" keeps everywhere at a finite distance (depending on jj?)
from the hyperplanes Xj = Xj, z'ΦΛ so that (6.2), as a differential equation with
analytic right hand side posseses a unique analytic solution satisfying the initial
condition (6.3). Denote by xf(ί), i= 1, ..., n, the solution and consider the function

Γ1 Σ exp(ίk x/ί))
j=l

(ύ(t\βy is differentiable in t for any ίeR1 and we have

~<ύ(t),θy = Σ 4A(f)θk = Σ Γ Σ x (exp(-ik xj)θk.
dt keZ2" f keZ 2 / C j = l

A straightforward calculation yields

<'("(i))=-i Σ [(m

Σ ((m± k)lk - m|/m)Mm(ίK _ m(ί)
e/ίv
meljv

(mx k/m2). Σ expWm
^ s, j = 1
ljv

exp (ik - xs(ί)) Σ Σ (m±K) exP (ίm '
s = l j Φ s me/jv

k- me/jv
n

+ (i/k) Σ exp (ft xs(ί)) Σ m1 k/m2 .
's = 1

0 . k -
Since

X m1-k/m2= X |m1 k(/c2-2k m)/(m2|k-m|2) = 0
me/]v meljv

k — me/ΛΓ k — me/iv

(cf. proof of Theorem 4.2), and since

X (mλ/m2) exp (im (x/ί) - xs(ί))) ̂ 7̂  i rotXs6f(x/ί) - xs(ί)) ,

we have that — ύk(t) = Bk(ύ(t}) and (6. 1) is satisfied. The functions flk(f) are obviously

analytic since a composition of analytic functions is analytic. Let v(t) be another
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analytic solution satisfying the same initial condition at ί = 0; the functions vk

coincide with the functions ύk and so do all their derivatives, which may calculated
with the help of Eq. (6.2) in terms of the initial data. Since the function vk(t) and
wk(ί) are analytic and have all derivaties equal at ί = 0, they must coincide.

Actually a stronger result is true, which we give as a corollary.

Corollary 6.1. There exists a set P in sf such that for any ύeP there is a unique
analytic solution M( ) of the Euler equation (6.1) satisfying the initial condition
w(0) = ύ, and, moreover, μψ(P) = 1 for any measure μψ corresponding to a simply
poissonίan state or to a poissonian state for which all vortex strengths κ are of the
same sign.

Proof. Consider the sets

7 = 1

for some (x^ ...,xn)E(T2)n,κs,κj>Oandxjή=xs for

The set P(n} corresponds to all possible configurations of n vortices with vortex
strengths of the same sign (i.e. all vortices rotate in the same direction). It is not

GO

hard to see (cf. Proposition 5.2) that the set P = (J P(π) is a set of full measure for
n= 1

any poissonian state satisfying the conditions of the corollary. Now, by repeating,
with small modifications, the proof of Theorem 6.1 it is seen that existence of
dynamics on the set P follows from the existence of a unique solution for finite
systems of vortices rotating in the same direction.

Notice that for poissonian states with vortex strengths of both signs the
theorem does not hold, since finite configurations of vortices of both signs may be
catastriphic, i.e. two vortices may collapse in a finite time [17].

Conclusions

Equilibrium dynamics for poissonian states admitting only positive (or negative)
vorticity has been easily obtained via the Onsager vortex equations. The problem
is more complicated for the other physically interesting cases. For poissonian
states with vorticity of both signs equilibrium dynamics can be constructed, by
means of the Onsager vortex equations, only of the set of the catastrophic con-
figurations which we mentioned at the end of the preceding paragraph is shown
to be of zero equilibrium measure, as it is reasonable to expect. For this, however,
one should wait until a sufficiently complete characterization of the catastrophic
set is given (which seems to be a hard task). For gaussian states there are some
preliminary results [18], however the problem is essentially open.

Once equilibrium dynamics have been constructed we can investigate the
evolution of initial states which are absolutely continuous with respect to the
equilibrium measure. Convergence to equilibrium for such states is strictly
connected to the ergodic properties of the corresponding "equilibrium dynamical
system" (which is the dynamical system on phase space given by equilibrium
measure and time evolution). The investigation of the ergodic properties of the
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equilibrium states is probably as difficult a problem as it is in statistical mechanics
(cf. [19]).

For poissonian states we can say for sure that ergodicity does not hold, since
there are invariants of the motion (at least the vortex number, the hamiltonian and

n

the vorticity center x= £ Xi(fX) Even on the manifolds identified by such
i = l

integrals of the motion the system is in general nonergodic and apparently a
variant of the Kolmogorov-ArnoΓd-Moser theorem holds [20]. The situation is
similar to that of finite particle systems.
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