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Space-Time Symmetries in Gauge Theories

P. Forgacs and N. S. Manton
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Abstract. A general definition of symmetries of gauge fields is proposed and
a method developed for constructing symmetric fields for an arbitrary gauge
group. Scalar fields occur naturally in the formalism and the pure gauge
theory reduces to a Higgs model in lower dimensions.

1. Introduction

In the study of solitons (instantons, monopoles, vortices) in non-abelian gauge
theories, space-time symmetry plays an important role. In the case of monopoles,
the only solutions which are explicitly known are those which generalize the
't Hooft-Polyakov monopole [1], which is spherically symmetric. The BPST
single instanton solution of the SU(2) self-duality equations [2] exhibits four-
dimensional rotational symmetry, and Witten's more general multi-instanton
solutions still have three-dimensional rotational symmetry [3].

The technique used in all these cases is to find an ansatz for the gauge fields
and Higgs fields, possessing the desired symmetry, to insert into the field equations.
In the case of 3-D spherical symmetry, for example, such an ansatz is required
to be invariant under the combined rotation generated by /^

/ί = ̂ i + ̂ i + '̂ί, (1.1)

where £ft is the orbital angular momentum, ίf. the spin, and ^". a generator of an
SO (3) subalgebra of the gauge group [4]. We see that this technique involves
embedding the symmetry group into the gauge group, which would also be the
case for more general symmetries.

In this article we completely reconsider the question of symmetries in gauge
theories. A set of symmetries is a group of motions of the underlying space-time
manifold, with which we associate transformations of the fields defined on it.
For a scalar field, this transformation would be just a shift of the argument.
A gauge field, A , possesses this group of symmetries if the appropriate trans-
formation only has the effect of a gauge transformation on Aμ, hence leaving
physical, gauge invariant quantities the same. We formulate this mathematically,
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for infinitesimal motions, in terms of Lie derivatives. We have tried to make this
paper almost self-contained, but for further details we refer the reader to [5].

In fibre bundle language, Bergmann and Flaherty have already proposed a
general definition of a single symmetry in gauge theories in terms of a Lie derivative
but they have not considered several symmetries simultaneously [6]. An alternative
general approach, developed by Harnad et al, is to consider finite symmetry
operations, e.g. finite rotations, which are associated with finite gauge trans-
formations [7]. This reduces to Lie derivative conditions in the infinitesimal
limit. We adopt the first of these approaches as our starting point. We obtain
a set of symmetry equations which can be solved completely, as differential
equations, but there remain certain algebraic constraints to be satisfied, relating
the Lie algebras of the symmetry and gauge groups. An important step in the
calculation requires the embedding of a subgroup of the symmetry group into
the gauge group, but not the whole symmetry group. Our class of symmetric
gauge fields is therefore considerably larger than the class obtained using previous
techniques, and of course includes them. The symmetric gauge fields are charac-
terized by several arbitrary functions, which can be interpreted as gauge fields
and scalar fields in a lower dimensional theory. If the metric of the underlying
space-time manifold has the same symmetries as the gauge fields, the Yang- Mills
action reduces to that of a gauge theory with Higgs fields in lower dimensions.
In general, the resulting gauge group is only a subgroup of the initial one, and
the new, lower dimensional space can be curved, even if the original space is flat
(or vice versa). The scalar fields have quartic interactions, and a global flavour
symmetry in general, with a flavour group closely related to the original space-time
symmetry group.

Witten established these interesting consequences of symmetries in gauge
theories in a special case [3]. The details are important, so we summarize his
results. His ansatz is for SU(2) gauge fields Aμ in 4-D Euclidean space, with 3-D
spherical symmetry and arbitrary time dependence. For later convenience, we
give his ansatz in spherical polar coordinates (ί, r, θ, φ) and in the so-called abelian
gauge, where Aa

t, A
a

r have non-zero components only for a = 3. The field compo-
nents are:

A? =(0,0, A,),

Aa

θ = (-φi9-φ2,0),

Aa

φ = (φ2 sin 0, - φ1 sin θ, - cos θ), (1.2)

where A0,Al,φl,φ2 are arbitrary functions of t and r. Now, the action is

(1.3)

where hμv is the flat metric in polar coordinates

;4; 2 * 2 Ω Y (1-4)r2 r2sm2ΘJ

Since, for the ansatz (1.2), the Lagrangian is independent of the polar angles,
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after integration the action reduces to

= 8π at ί * 01/2[i V"0 + $(DrfJ(D^J + *(1 -- φ\ - Ψ*)2], (1.5)
-oo 0

where

DlΦa = StΦm + BaιlAtΦH, m,n=ί,2, x° = t, xl=r (1.6)

and we raise the ij indices with glj = r2δlj. This is the action in curved space for
a two-dimensional abelian Higgs theory. The curvature scalar corresponding to
gij is R = — 2, so the theory is defined on a two dimensional surface of constant
negative curvature. As we can see, imposing spherical symmetry on a 4-D pure
SU(2) gauge theory leads to some surprises: the dimensional reduction to curved
space, the appearance of Higgs fields, and the reduction of the gauge group
to U(l).

The general methods developed in this article for constructing symmetric
gauge fields lead to an understanding of these features, and we shall conclude
with a reanalysis of Witten's ansatz.

Related to these ideas is the development of dimensional reduction techniques
in theories of gravity. Originally proposed as a method of physically interpreting
26- and 10-dimensional dual models [8], and later applied to the physical inter-
pretation of classical gravity in more than 4-D [9], the recent application has
been to the construction of extended supergravity theories in 4-D [10]. The
dimensional reduction is achieved, as in gauge theories, by imposing symmetries
on the fields in the extra dimensions.

2. Symmetries of Gauge Fields

Since in our definition of symmetry the concept of a Lie derivative plays a funda-
mental role, we give an elementary description of it. Let φ be a mapping of a
D-dimensional manifold J( onto itself

φ'.Jl^Jl', x\-+x (2.1)

The mapping φ could define one of the possible motions in a group of symmetries.
To deal with general tensor fields, we need to consider the coordinate trans-
formation associated with φ (xμ -> xμ') which gives the point x the same coordi-
nates in the primed system as x has in the unprimed system, that is xμ' = xμ. We
can restrict attention to an infinitesimal mapping defined by a (contravariant)
vector field ξμ(x)

xμ = xμ + εξμ (2.2)

If this mapping is a possible motion of a symmetry group then ξμ(x) is referred
to as a symmetry generator. The associated transformations of tensors is defined
in the following way. Considering first the (co variant) vector field Aμ(x) we define
the transformed field A (x) so that its components in the primed coordinates
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at the point x,Aμ,(x), be equal to the components in the unprimed coordinates

(x). (2.3)

of Aμ at x,

Therefore

^γv'

Λ.M = ̂ » = 0; + ^V)(AM + tf'SΛ> (2.4)
The Lie derivative of A with respect to ξμ is defined to be

LA =lim-(I(x)-^(x)). (2.5)
ε->0 β

In our case, it takes the value

LΛ=VK+^A (2 6)
Similarly for a general tensor we find

H-^ϊ^ , (2.7)

which preserves the tensor type. The Lie derivative of a tensor product is given
by the Leibnitz rule and contractions are respected, so that the order of Lie
derivation of a tensor and contraction of indices is immaterial. The vector field
Aμ is said to possess the symmetry generated by ξμ if

Άμ(x) = Aμ(x), (2.8)

which implies that the Lie derivative "LξAμ vanishes.
We now generalize these ideas to gauge theories. Suppose that the gauge

group G has generators Ta with commutation relations [Tfl, Tb] = gabcTc, and
normalization Ύr(TaTb)= —2δab. Under a gauge transformation g(x)eG, the
gauge field, Aμ(x) = Aa

μ(x)Ta, has the transformation rule

A'μ(x) = gAμg-ι+(dμg)g-1. (2.9)

For the gauge field, we impose the weakened form of the symmetry requirement
(2.8), that for some particular gQ(χ)

Aμ(x) = A'μ'(x). (2.10)

For an infinitesimal mapping, the gauge transformation must be of the infinitesimal
form

for some W = Wa(x)Ta in the Lie algebra of G. The symmetry condition (2.10)
now implies

which we call the symmetry equation for A .
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If we suppose that W is a coordinate scalar and that it has the gauge trans-
formation rule

\ (2.13)

then the symmetry equation (2.12) is invariant under general coordinate trans-
formations and more importantly, is gauge invariant. Now, given any vector
field ξμ(x)9 there is always a choice of coordinates so that ξμ> = (1, 0, . . . , 0). In these
coordinates, the gauge transformation

g = & exp - ΐ W(y, x2,..., xD)dy, (2.14)
o

gauges W away, so that in this gauge and these coordinates the symmetry of
Aμ reduces to the statement that Aμ is independent of x1. When there are several
symmetries, and we cannot simultaneously perform the necessary coordinate and
gauge transformations on each symmetry equation, then the general form of the
symmetry conditions is essential.

It should be noted that our symmetry conditions apply to only the (coordinate)
co variant components of the gauge field. With no assumptions about the metric
tensor, the contravariant components do not possess any symmetry. Later, we
shall consider the metric in more detail.

We consider now a gauge field which possesses several symmetries

(^IX + W, = W' IZm^N (2.15)

Clearly, this implies a vector space of symmetries, since if

TO = «(*), (2-16)

is any linear combination of the ξm with constant coefficients, then

V^ΛW (2.17)

We can assume that all the symmetries of Aμ belong to this vector space.
Now, if ξm, ξn are two particular symmetry generators, then the commutator

of the corresponding Lie derivatives gives

fl^-A - ALftX = L« JW - L4,ttW (2 18)
This reduces to

V, = WJVn - LΛ - ίWm, WJ), (2.19)

where η is the Lie bracket of ξm and ξn, defined by

*lβ = ttm>ttμ = W&-ξK (2-20)

This new symmetry equation must belong to the vector space, so that for some
constants fmnp we must have

K m ^ J " = / m n > (2.21)
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and then, for consistency, we require

hmWn-LξnWm-\_Wm,Wn-]-fmnpWp = 0. (2.22)

The Lie bracket is antisymmetric and satisfies the Jacobi identity, so that closure
under the Lie bracket of a vector space of vector fields is a prototype Lie algebra.
The structure constants fmnp satisfy the corresponding properties for an abstract
Lie algebra

/ = -/ , (2-23)J mnp J nmp ' x '

f f +f f +f f = o. (2.24)
JmnpJpqr JnqpJpmr J qmpJ pnr ^ '

In fact, to obtain eq. (2.22) we have assumed that there is no ψ for which
Dμψ vanishes. For if

we can gauge transform ψ into a Cartan subalgebra of the gauge group, and then
ψ must be constant and Aμ commute with ψ. The theory reduces to one whose
gauge group is the little group of ι/r, and this should be considered in its own right.

The definition of spherical symmetry used by previous authors is a particular
case of our formalism. The three symmetry generators of 3-D rotations in Cartesian
coordinates ξl

m = εmijxj satisfy the SO (3) algebra

and the consistency equation (2.22) has a constant solution Wm = — 3~m, where
3~m generate an SO (3) subgroup of the gauge group. The symmetry equation
then takes the form

VA4 + β«Λ - D^ 4] = o. (2 27)
where we recognize the terms of the combined rotation /^m (1.1).

Returning to the general case, we can derive, from the symmetry of the gauge
field, the corresponding symmetry of the field tensor Fμv = dμAv - dvAμ - [Aμ, Av~].
Equation (2.12) implies that

= -[Fvμ,W-\. (2.28)

This simplifies to

which is the symmetry condition we expect for a gauge covariant tensor.
We conclude this section with a discussion of certain scalar fields with inter-

esting and useful symmetry properties. It was pointed out by Lohe [11], that if a
gauge field is time-independent, then the time component A0 could be interpreted
as a scalar Higgs field φ. Part of the field tensor then reduces to a covariant deriva-
tive FQi = — D.φ. Olive has obtained striking results in the quantum theory of
monopoles by developing this idea [12]. We can obtain a generalization of Lohe's
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result. Using the symmetry equations (2.15), we find

(2.30)

Defining the scalar field Ψm = ξ^Aμ — Wm, we have reduced part of the field
tensor to a covariant derivative

£μF = — D Ψ C2 Ή ϊ^m^μv ^v m > \Δ ̂ L)

a result which is independent of the gauge. The fields Ψm are related to, but not
the same as, the Higgs fields we introduce later. They possess the symmetry
property (no summation over m)

L^-IX^J^, (2-32)

which we expect for a covariant scalar field, and from (2.9) and (2.13) we see that
Ψm is indeed covariant. We can obtain a stronger result than (2.32) if we use the
symmetry equations for Aμ, together with the consistency conditions (2.21),
(2.22). We find:

HΛ-[^»>yJ=/«Λ (2 33)
from which we can now calculate a double contraction of the field tensor

=/«Λ-[y«>yj (2 34)
We see that the field tensor has certain components which are expressible as
covariant derivatives of Ψm and some which are algebraic and quadratic in Ψm .
This will allow us later to reduce the action to that of a Higgs model with a quartic
potential.

3. Construction of the Symmetry Generators

In this section, we show how to find all symmetry generators satisfying a given
Lie bracket algebra, then consider the consistency equation (2.22) for the fields
Wm, and finally combine the results to simplify the symmetry equations for the
gauge field. First, we calculate solutions of the equation

K«.y=/™p^ (3-D

Suppose that, at any given point, the vectors ξm span an JV'-dimensional subspace
of the complete D-dimensional (tangent) space. Then, by Frobenius's theorem,
there exists a family of N'-dimensional surfaces, SF, to which ξm are tangent, if
Eq. (3.1) is satisfied. We shall restrict our attention to a single coordinate neigh-
bourhood, and ignore global problems throughout. Then we can choose coordi-
nates for the manifold Jί

x" = (xi, /), 1 ̂  i ̂  D', 1 ̂  α ̂  N'9 N' + Df = Z), (3.2)
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so that these surfaces are defined by xl = constant, and the components of ξm

are then ζμ

m = (0, ξ^). Because the derivatives we shall consider are directed along
ξm, we may now work on a given surface, ̂ 0, with xl constant, so that for the
remainder of this section we regard ξm,Wmas functions of y but not of x, and we
treat ξm as the JV'-dimensional vector with components ξ^ . We also temporarily
ignore the components .̂(1 ̂  i ̂  D') of the gauge field.

The fundamental solution of Eq. (3.1) is the set of infinitesimal right translations
on the symmetry group, S. S is the abstract Lie group with constant matrix gene-
tors Jm, and the same structure constants f , as in the Lie bracket algebra
(3.1), so

We now assume this algebra is semi-simple, so that the structure constants are
totally antisymmetric, and normalized by fmnpfmnr = 2δpr For our purposes,
the group is unique since we are working on a coordinate neighbourhood.

Let sεS have coordinates / (e.g. Euler angles for SO (3)). Then,

s(l + εJm) = s + εξ*mdsp9 (3.4)

where ya + εξ^ are the coordinates of s(l + eJm), thus defining the infinitesimal
right translations ξfy) on the group. We can write (3.4) as

sJm = Lξj. (3.5)

Since Jm is constant

L, L. s = sJmJ\ (3.6)
Sm ζn

from which we derive, for all yα,

so that (3.1) is satisfied. For a Lie group of dimension IV, ξ°^(y) is an N x N matrix
which is non-singular everywhere.

We obtain further solutions of (3.1) as sets of right translations on right coset
spaces of S. Let R be a Lie subgroup of S, of dimension N — N', with generators
Jm, (N' + 1 ̂  m ̂  N)9 and let the coset Rs have coordinates jΛ As before

Rs(l+sJm) = Rs + eξ*mdΛ(Rs), (3.8)

where / + εξ"m are the coordinates of the coset Rs(l 4- ε Jm). It is easy to show
again that ξ*m(y) satisfy (3.1).

In fact these are the only solutions of (3.1), for the Lie group S always acts
as a transformation group on the surface ^0 , that is, as a group of mappings,
S x ^0 -> ̂ 0 . Suppose R is the subgroup of S which maps a given point z0 onto
itself. Let z be any point and suppose seS maps z to z0. Then all elements of the
coset Rs map z to z0, and we may .identify z with Rs. We can therefore always
identify the surface ̂ 0 with some coset space S/R and ξm with the corresponding
infinitesimal right translations.

At this point, we clarify our use of coordinates. We have used y* (early greek
indices) interchangeably for SEQ and the coset space S/R, and use yω (late greek
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indices) as coordinates of the subgroup R. If we fix an origin

s0(/)e£s(/), (3.9)

for each coset in a smooth way, then every element of S can be written uniquely,
with coordinates / = (/°, /), as

s(/Hr(/>0(/), (3.10)

for some reR. Writing

pi — (?(o *ϊ*\ /α 1 l\
Sn~v»m' W \^'LL)

on the group S, it is easy to see that the components *ξ<jn, which are independent
of yω, are in fact the symmetry generators on the coset space, denoted before by
^, that is

(3 12)\ > • L*'J

These coset space generators are therefore obtained from the symmetry generators
on the group by projection.

We can now proceed to the consistency equation for the fields Wm, Eq. (2.22).
In a sense to be explained, the solution is always Wm = 0. Assume that £* are the
right translations on S/R. The Wm are defined on the coset space, but now we
embed our coset space problem into the whole group S. We regard Wm formally
as defined on the group, but constant on any coset, so that

wn(y°9f) = wmw) vy. (3.13)
Since ξ*m is a projection of ξ^9 and Wm is independent of yω, we can identify the
corresponding Lie derivatives of Wm

^Wm = ξyxWm, (3.14)

so that Wm is a solution of the consistency equation on S

F* (j w _ ?*d*W — [W Wl — f W =Q Π15Ϊ(^m c yά κ κn *n α K K m L κ κ

m ' K K«J JmnpYVp U? \3.LJ)

with the restriction that Wm is independent of yω.
On the group, ξ^ form an invertible matrix, so we can unambiguously define

new fields W&, which in general are not constant on each coset, by

Wm = ξlW,. (3.16)

In terms of W^ Eq. (3.15) simplifies to

S&Wf - dfWs - \W&, Wf ] = 0, (3.17)

so that W^ is a pure gauge defined on the symmetry group,

Wί = (dίg)g-ί. (3.18)

By embedding our problem in the symmetry group, we have enlarged the
class of gauge transformations to include those that depend on /°, and from (2.13)
we see that W^ transforms as an ordinary gauge field on S. By a choice of gauge
we can simply set W« = 0 and hence Wm = 0 on the symmetry group. To obtain
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solutions on the coset space, we would require Wm, given by

Wm = ̂ (8,g}g-\ (3.19)

to be independent of yω. In general, such a Wm cannot be gauge transformed to
zero on the coset space because the gauge transformations cannot depend on
yω. In explicit examples, we have been able to calculate these Wm and then find
gauge fields satisfying the symmetry equations.

We have developed more powerful tools, however, realizing that the symmetry
equation itself can be embedded into the whole symmetry group. Recall that on
the surface ^0, identified with the coset space S/R, we are considering just the
components of the gauge field Aa(yβ). But now, as before, we regard AΛ formally
as defined on the symmetry group but constant on any coset, and we introduce
extra components Aω = 0 corresponding to the subgroup coordinates yω, so

^(/)Ξ (4»(AΛα(/)) = (0> Λ(/)) (3-20)

Then, any solution of the symmetry equation on the coset space is a special case
of a solution on the group. To see this, we split the equation on the group as
follows

(̂ »Mί + CVω = dωWm - [Aω, WJ,

(^OΛ + &&A, = dβWm - lAβ, Wm-\. (3.21)

The first of these equations is automatically satisfied, remembering that Wm, ξ^
are independent of yω. The second reduces to the symmetry equation on the
coset space.

It is not difficult to solve the symmetry equation on S. We can use the enlarged
gauge freedom to set Wm = 0, and the symmetry equation reduces to

LξrnA, = Q. (3.22)

Written in this way the gauge group decouples and we can solve for each compo-
nent separately:

L4m>42 = 0. (3.23)

This equation is well known in Lie group theory, and will be discussed in the next
section.

4. Solution of the Symmetry Equations

An invariant tensor on the Lie group S satisfies

L^ϊ::: = o> (4 i)
for all infinitesimal right translations ξm. Our aim is to find vectors which are
invariant, to solve (3.23), but for later purposes our discussion is more general.
We can define infinitesimal left translations ξ*, so that

L, s = sJm, Lr s= ~Jms. (4.2)
Sm ζm

The vector fields ζ satisfy the same Lie bracket algebra as the ξ 9 and are related
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to ξm by the coordinate transformation which maps each group element to its
inverse. At the identity, we see that ζm=—%m

The commutator of L , and Lr vanishes, since
Sw ζn

L,~ L, s = - J"sJm = L Lr s , (4.3)
Si Sm <sίtι SM

and therefore

(4.4)

But the Lie bracket is identical to the Lie derivative in this case, so

L5J2 = 0, Vm,n, (4.5)

and therefore, ̂  are invariant vector fields.
We can define covariant vector fields ξm~ by inverting the matrix ξ^ , as follows

which immediately implies another orthogonality relation

tJί = 4 (4-7)

Fields ξm* are similarly defined so that

<^:=<L,> £^£=4 (4.8)
Since δmn is a constant scalar, all of whose Lie derivatives vanish, we can use the
Leibnitz rule to show that

L«Jπ« = °' Vm>" (4-9)

Finally we can write down a general invariant tensor

τv! -Λ 7 ? . ?y?5 M im
Jά/3... mn...pq..>mv>nβ..>p(τq -> l^ 1UJ

where /lmπ pg is a set of constants. All Lie derivatives ^ξmT vanish, by the Leibnitz
rule. Indeed, these are the only invariant tensors, for the vectors |̂  form a spanning
set at any point, as do the vectors ξm* . The most general tensor can then be written
in the form of (4.10) with λ position dependent. The Leibnitz rule shows that
for T to be invariant, λ must however be constant.

Of special interest is the invariant tensor

** = £& (4-11)

This acts as a raising operator, since from Eq. (4.6)

so that ffif is theΛ (left) metric tensor on the Lie group. The related (right) metric
tensor haβ = ζa

mζβ

m is also invariant, since

= 0, (4.13)
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using the total antisymmetry oϊfmnp. Since /zα/? and h^ are equal at the identity,
we conclude that they are equal everywhere, so there is a unique metric tensor.
By a similar argument we have the useful equality

f ξ* ξβξy = - f ξ* ξβξΐ . (4 14)
Jmnp^m^n^p Jmnp^m^n^p \ r J-^J

The tensor on the l.h.s. is clearly invariant, and the invariance of the r.h.s. follows
from the Jacobi identity for the structure constants. This tensor also has a geo-
metrical significance on the Lie group, which we now show.

The symmetric Riemann-Christoffel connection, obtained from the group
metric, is

β&
J = —ξ-d^+^f ζy

mζnbζ Λ > (4-15)

but it is more natural to define parallel transport of tensors by the requirement
that they be invariant in the Lie derivative sense. In that case, the connection is

which is not symmetric, and the invariance of tensors in reinterpreted as the
vanishing of (coordinate) covariant derivatives. The tensor appearing in Eq. (4.14)
is then the torsion, the antisymmetric part of this connection. We note that with
the symmetric connection, the invariant curvature tensor is

and the torsion is zero, whereas the connection (4.16) with torsion has vanishing
curvature.

Now we consider the symmetry equation, which in the gauge where Wm = 0 is

^ = 0, Vm. (4.18)

We have seen that the solution of this equation is

^ = Φ°?mά, (4.19)

where the coefficients Φa

m are independent of jA We now reintroduce the coordi-
nates x', which were suppressed earlier, and the corresponding components of
the gauge field. Still embedding the coset space into the symmetry group, and
in the gauge where Wm = 0, the complete solution of the symmetry equation
can be expressed, in terms of arbitrary fields A"(x) and Φa

m(x) defined on the space
«f, as

Aί = A$c), (4.20)

^S = ΦiWf«ί(y) (4 21)
The scalar fields Ψm are given by

*» = &£«, (4-22)

where Φn = Φa

nT
a. We know that under a gauge transformation, Ψm transforms

covariantly. This will be realized if we define Φm to transform covariantly as well,



Space-Time Symmetries in Gauge Theories 27

so that Eq. (4.22) is gauge invariant. The fields Φm appear as Higgs fields in the
dimensionally reduced Lagrangian, later.

The solution (4.19) for A* is the most general one on the symmetry group,
but we must now impose constraints on Φm and A. to ensure that we obtain a
solution on the coset space. We require, in some gauge, that the components
Aω vanish and that the non- vanishing components be independent of yω. A
sufficient, and obviously necessary, condition for this is that all the components
of the field tensor Fiω9FΛω9Fτω vanish, which is a gauge invariant condition.
For if all components Fτω, corresponding to the subgroup coordinates, vanish,
then there is a gauge where Aω = 0, and in such a gauge Fi0),F^ are zero only if
Ai9 A^ are independent of jΛ

To calculate the field tensor, we use the expressions (2.31), (2.34), or rather
the obvious extension of these results to the symmetry group

&*=-*>?„, (4-23)

£ΦW»Λ -[s'»»yJ- (4-24)

Inserting the form (4.22) for Ψm9 and using the property of the torsion (4.14) as
well as the orthogonality properties of ξm we obtain

^ = U5Λ,-IΛ.ΦJ), (4-25)

Thus, for Flω, F&ω to vanish in this gauge, and hence in any gauge, we require

U3Λ-[^*J) = o. (4 27)
U/™pΦp + [Φ»>φJ) = ° (4.28)

It is easy to see what a condition of the form λnξnω = 0 means, since (3.10)
and (4.2) imply that

(dj}r^=-J™lmω. (4.29)

For m > N' (that is, Jm a generator of R), ξmω are therefore the infinitesimal left
translations on the subgroup # and for m ̂  N'9 ζmω are zero. For λnξnω to vanish,
therefore, we require λn = 0 for n > N' so the equations (4.27), (4.28) reduce to
the constraints

δ<Φ Ϊ I-[4 i,Φj=0, V i , V n > Λ T , (4.30)

/m,p*p + [*»>*J = °> V m , V n > i V ' . (4.31)

We see from Eq. (4.31) that Φ' = { - Φm : m > N'} generate an jR subalgebra
of the gauge group algebra, though not necessarily faithfully. We shall assume
from now on, however, that R is a subgroup of G generated faithfully by Φ'. Now,
we wish to obtain a dimensionally reduced action involving completely uncons-
trained fields. Although the embedding of R into G could vary continuously with
x9 there is no way that any element of Φ' could be completely arbitrary. Also,
because of the constraint (4.30), these fields would have no kinetic term. We
therefore fix the elements of Φ' to be constant, which is possible by a y-independent
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gauge transformation leaving the form of the gauge fields (4.20), (4.21) unchanged.
The first constraint now requires that A. commute with all elements of Φ',

that is, A. are gauge fields for the little group of Φ'. This little group is the residual
gauge group of the action after dimensional reduction. This follows from the
observation that solutions of both constraint equations are generally gauge
invariant, but only gauge transformations in the little group keep the elements
of Φ' fixed. We have analysed the second constraint (4.31), but since we have
not explicitly used the results, the details can be found in the Appendix. This
constraint equation relates the induced representations, denoted by M' and M"
respectively, of R over S/R and of R over G. If we denote by M\ and M'( the irreduci-
ble components of M' and M", then corresponding to each pair (MJ, M J) where the
two components are the same, there is a single non-vanishing, and arbitrary,
residual Ήiggs field component.

The constraints guarantee that the gauge fields on S can be gauge transformed
to a solution of the symmetry equations on the original space. We have identified
R as both a subgroup of S and of G, by identifying, for m > N\ the generators
Jm and - Φm = - Φa

mTa. Since on the symmetry group

A, = ΦΛ»> (4-32)

we deduce from (4.29) that Aω is the pure gauge generated by r(yω). The gauge
transformation that makes Aω vanish, and the other components independent
of yω is therefore r~i(yω). This gauge transformation leaves A. unchanged, as
A. commutes with all the generators Φm(m > N'\ and transforms A& homogene-
ously, so that the final solution of the symmetry equations on the original manifold
Jί is

A« = r-iφmrξm,. (4.33)

In this gauge, the components of W* are

Wa=-r-1da>r=-r-1Φ,sξmω,

Wx = Q, (4.34)

and the fields Wm = ξ*mW, on Jί are

Wm=-r-iφnrξ°ξnω. (4.35)

These fields clearly play the role of the absent gauge field components Aω .
Since, by construction, the fields AΆ,Wm are independent of the subgroup

coordinates y\ they can be calculated for those values, say yτ = yτ

0 , for which r = 1,
thereby obtaining the simpler expressions

A = Φ ξ I τ τ (4.36)α m^m<x\yτ=y0 ^ '

and,

W = - Φ ζωξ \ r τ . (4.37)γv ^ ^ ω l = v '
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5. Dimensional Reduction of the Action

We show how the Lagrangian defined on the original manifold Jt can be reduced
to a Higgs model on the space 3C. As was already mentioned, we assumed nothing
about the metric of Jί and can say nothing about the symmetry of the contra-
variant components of the gauge fields Aμ (μ is raised by the metric tensor of
Jt\ With no assumptions about the metric hμv(x\ yΛ) (even if Jί is flat) we can
say little about the Lagrangian.

This may indeed be the physical situation and we are familiar with one example
where this is the case. In a calculation of the force between monopoles [13],
it was necessary to assume that the monopoles accelerated rigidly. It can be shown
that rigid acceleration of an extended soliton is equivalent to the vanishing of
the Lie derivative L^ of all fields. In this case ξμ generates non-uniform motion
and is clearly not a symmetry of the metric of flat space.

We can reduce the Lagrangian only if we make a special ansatz for the metric,
so that it is symmetric. A natural ansatz for hμv(xl, ya) is

O \
0

R2(x

where hij(x) and R(x) are arbitrary functions and haβ = ξ^ξ^ is the projection
of the group metric to the coset space, which is invariant on the coset space.

We would like to express the Lagrangian in terms of Φm and A. assuming
that these are the constrained fields. The original action

£ = - ^Tr $dDxμh1/2FμvFστh
μσhv\ (5.2)

can be expanded to give

j^= -±Trfd*V<T/Λ l / 2 FtjFklh
ikhjl

— F F hίjhaβ H __ F F haβhβδ

r r ϊ i n ^ r r n n
V

The components of the field tensor Ftj are defined in terms of A. and cannot
be simplified. We have expressions for the other components of the field tensor,
from (4.25), (4.26). These have not been gauge transformed to their correct form
on the coset space, although we know, having applied the constraints, that this
can be done. However, yet again we can calculate on the symmetry group. We
have

Fa Fa hij?" & = Fa Fa ^ ̂ hίj (5 4)Γ iΛΓ jβn ^m^m Γ άίΓ βj^m^mn ' v j ^>

since the extra components of the field tensor on the r.h.s. all vanish. Now substi-
tuting the expressions (4.25) for the field tensor, and using the equality of left
and right group metrics together with the orthogonality relations (4.6), we find

*WυK = (DtΦJ(DjΦjrhl>. (5.5)

The incorrect gauge does not matter, since we have calculated a gauge invariant
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quantity. In a similar way

F ̂ jFh" = (frstΦt + [Φ, , ΦMfrΛ + [φr. W

+ aabcaadeφbφdφcφe
1 y y r r s s '

= 2F(Φ). (5.6)

Apart from the factor /j1'2, the Lagrangian is explicitly independent of y*, so
integrating we obtain

JS? = Ω f dD'xΛw> (det A. .)1/2 Γ- Fa.Fa.,hV
J v U7 ^ U *»

where Ω is the volume of the coset space. This action is not in its usual canonical
form, since it still contains explicit geometrical factors R(x\ apart from the metric.
We can redefine the metric

gίj=f(x)hίj, (5.8)

in which case we obtain a canonical form if and only if /= R2 and D' + N' = 4,
that is, the original space is 4-dimensional, and then the action is

+ ^DiΦjr&jΦjrgV + F(Φ)] , (5.9)

where C is a constant. This will describe an action in curved space even if the
original metric hμv is flat, but the coset space is curved. There is an alternative
case of physical interest. We may start in more than four dimensions and use the
symmetry to reduce to four, interpreting the reduced Lagrangian as physically
relevant. We shall then require that the hlj be simply that of flat space. ,R must
be a constant in this case. The form of the Lagrangian (5.7) is canonical if we
rescale Φ. R will then appear in the ratio of coupling constants to mass parameters
in the Higgs potential.

An interesting example, details of which appear in reference [14], seems to
be the case of spherical symmetry in 6 dimensions applied to an SU(3) gauge
theory, the 2 extra dimensions describing a sphere of radius R. One solution, with
the largest set of Higgs fields, reduces to the 4-dimensional Weinberg-Salam
model without fermions. The Weinberg angle is predicted, as well as the Higgs
particle mass, leaving only the e.m. coupling constant and the mass of the W
boson as free parameters. This scheme may be theoretically less ad hoc than the
conventional reduction from SU(3) theory using a super-strong Higgs mechanism
[15], or than the recent scheme of Fairlie which is similar to ours, using toroidal
symmetry U(l) x U(l) rather than SO(3) to reduce from 6 to 4 dimensions, but
then requiring an apparently arbitrary ansatz to obtain SU(2) x U(l) fields rather
than SU(3) fields [16].

Apart from the example of Witten's, which we examine in the next section,
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we have considered one other example of reduction from 4-dimensions. This
is the case of SO (4) symmetry in an SU(2) gauge theory. It is simple to show,
using our methods, that the action reduces to a one-dimensional scalar field
theory with no residual gauge freedom.

Finally, we mention a feature of the Lagrangian (5.7) which is very intriguing,
namely, the global invariance of the Higgs potential, and of the kinetic terms
for the Higgs fields, under the group S. This is in the algebraic sense of a flavour
group and seems disconnected from the geometrical way in which S has previously
been considered. This symmetry is also broken when the constraints are applied,
down to the little group of R in S.

6. Witten's Ansatz Re-Examined

To illustrate our formal machinery, we rederive Witten's ansatz, where both
the gauge and symmetry groups are SO (3). The SO (3) symmetry group is para-
matrized by the three Euler angles (χ, θ, φ\ and a general group element s(χ, Θ9 φ)
is defined as

s(χ,θ,φ) = &z(χ)<»x(θ)az(φ), (6.1)

where &z(χ) denotes a rotation about the z-axis through an angle χ, etc. Since
rotations about the z-axis form an SO (2) subgroup we can compare (6.1) with
the general expression (3.10) and conclude that the angles θ, φ are coordinates
for the right coset space SO(3)/SO(2), with χ the coordinate of SO (2). The Witten
ansatz is defined on a four-dimensional space with coordinates (ί, r, θ, φ) where
the spherical polar angles are to be identified with the coset space coordinates.
The symmetry generators, written as ξ^ = (ξθ

m, ξ^) are

ξ\ = (cos φ, — ctg θ sin φ),

ξ"2 = ( — sin φ, — ctg θ cos φ),

££ = (0,1). (6.2)

These may be obtained, by projection, from the infinitesimal right translations
on the symmetry group, written ξ2

m = (ξ* , ξθ

m, ξφj,

& ίsin(P . n \C = ——;r, cos φ, — ctg 0 sin φ ,1 ^ sin θ )

ά _/cosφ
C 2 ~ V s i n θ '

ξ|= (0,0,1), (6.3)

Both sets of generators satisfy the SO (3) Lie bracket algebra

[_ξm,ξn~] = smnpξp (6.4)

and in both sets we have suppressed the components ξr

m, ξ^ which vanish.
To construct the symmetric gauge fields we use the symmetry generators
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on the group <fmά, which are

?ιά = (°> - cos & ~ sin θ sίn *)»
?2ά = (0, -sinχ,sinθcosχ),

?3ά = (-l,0,-cosθ). (6.5)

The generator of the subgroup SO (2), which defines the sphere as a coset space,
is T3, so we must impose the constraints

a.φ«_ε«^φ'3 = 0, (6.6)

β«3pΦ; + ^C*S,*β3=0. (6-7)

Since the little group of Φ3 is U(l) we expect an abelian Higgs theory to emerge.
Fixing a gauge where Φ* = Φ\ = 0, the solution of the constraint equations is

*5 = (0,0,1), (6.8)

where Φ19φ2 and 4. are arbitrary functions of (r, ί). The components of the gauge
fields A = Φ are now

Aθ = ( ~ Φl COS X ~ <t>2 SiΠ & - Φ2

 COS X + 01 Sin '̂ °)>

^ = ( — 01 sin0sinχ + 02sin^cosχ, — 0 2sin^sinχ — φ1 sin 0 cos χ, — cos θ).

(6.9)

We see that Aχ is non-zero, and that Aθ and Aφ depend on χ, but after a gauge
rotation about the 3rd isoaxis through an angle χ, leaving At unchanged, we
find that Aχ vanishes and

Aa

φ = (φ2 sin θ9-φ1 sin θ, - cos θ), (6.10)

which agrees with Witten's result.
Knowing this gauge rotation, we can use the result (4.35) to calculate Wm.

We find

r« = 0. (6.11)
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These expressions and those above for the gauge field can also be simply obtained
from (4.36) and (4.37). It can be checked that on the original space

LξmA^DμWm. (6.12)

We have rederived Witten's ansatz and proved that it is essentially unique,
as he stated. In fact there are degenerate cases which he ignored. The solution
of the constraint equations (6.6) and (6.7) where Φί,φ2 vanish, but Φ\ is an arbit-
rary constant, leads to an abelian monopole of arbitrary charge, with a radial
electric field. The solution where all Φm vanish gives a pure SU (2) gauge theory
after dimensional reduction.

The flat space metric in spherical polars is of the general form (5.1), required
for dimensional reduction of the action, and the 2 dimensional action that Witten
obtained is an example of our general result.

7. Conclusions

We have developed a general method for finding gauge fields invariant under
any group of symmetries and for any gauge group. The symmetries imply that
the space on which the gauge fields are defined can be decomposed into a family
of subspaces, each of which can be identified with a coset space of the symmetry
group. We have shown that symmetric gauge fields on this coset space can be
lifted to the group itself, where the gauge group decouples, and the fields may be
expressed in terms of infinitesimal translations on the symmetry group. Certain
purely algebraic constraint equations have to be satisfied in order to obtain
a well-defined solution on the coset space.

Scalar fields appear naturally as a result of the symmetries, and the pure
gauge theory reduces to a lower dimensional Higgs model with a precisely deter-
mined quartic potential. In practice, it is easier to calculate the Lagrangian for
this Higgs model than the explicit form for the symmetric gauge fields.

Appendix

We analyse here the second constraint, Eq. (4.31), which must be imposed to
obtain a well defined symmetric gauge field on the coset S/R. It has been assumed
already that the generators Jn and - Φa

nT
a, for n > N' in each case, both generate

R, as a subgroup of S and G respectively.
The constraint (4.31)

^ V m , V n > N ' , (A.I)

can be rewritten as

M'mpΦ
a

p = Φb

mM"b°, (A.2)

where M' and M" are matrix representations of the Lie algebra of R, with

M'(J")mp=-fnmp, V n > J V ' ,

M"(J")ba = - Φc

ng
cba, Vn>N'. (A.3)
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Mf reduces naturally into two representations: the adjoint representation of
R together with the induced representation of R over S/R. We have solved the
part of the problem involving the adjoint representation of R by assuming that
R is a subgroup of G, so now we need only consider the restriction of (A.2) to the
coset space. There is no restriction on M", which is the induced representation
of R over G. We can choose bases so that both representations split into their
irreducible parts, and such that the submatrices of any irreducible component
occurring more than once are identical. The irreducible components of M' are
denoted by M;, and those of M" by M?.

Now consider, for some pair (M|, MJ) the restriction of Eq. (A.2) to the sub-
spaces on which this pair acts, which we write

. (A.4)

If the matrix Φ(IJ) is non-vanishing, it is necessary that its rows be independent,
and also its columns, since otherwise either M( or M'( will be reducible. If M\
and MJ have different dimensions, this means that Φ(ij} must be zero. Even if
M! and MJ are different irreducible representations of the same dimension, Φ(ίj)

vanishes, since (A.4) implies that M'. and MJ are related by a change of basis.
Finally, if M'. and MJ are the same representation, with identical matrices, then
(A.4) states that Φ(IJ) commutes with all matrices in the representation M'r Schur's
lemma then requires

φ(ίΛ(x)l, (A.5)

where φ(ίj\x) is an arbitrary function.
We conclude that for each irreducible pair (MJ, MJ) there remains a single

Higgs field component φ(ij\ associated with a unit matrix, if MJ and MJ are the
same. All other Higgs field components must vanish.
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Note added. After this article was completed we discovered that the construction of invariant connec-
tions on principal fibre bundles, equivalent to our symmetric gauge fields, has been considered in the
mathematical literature [17], [18].
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