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Abstract. The quantum theory of both linear, and interacting fields on curved
space-times is discussed. It is argued that generic curved space-time situations
force the adoption of the algebraic approach to quantum field theory: and a
suitable formalism is presented for handling an arbitrary quasi-free state in
an arbitrary globally hyperbolic space-time.

For the interacting case, these quasi-free states are taken as suitable starting
points, in terms of which expectation values of field operator products may
be calculated to arbitrary order in perturbation theory. The formal treatment
of interacting fields in perturbation theory is reduced to a treatment of "free"
quantum fields interacting with external sources.

Central to the approach is the so-called two-current operator, which
characterises the effect of external sources in terms of purely algebraic (i.e.
representation free) properties of the source-free theory.

The paper ends with a set of "Feynman rules" which seems particularly
appropriate to curved space-times in that it takes care of those aspects of
the problem which are specific to curved space-times (and independent of
interaction). Heuristically, the scheme calculates "in-in" rather than "in-out"
matrix elements. Renormalization problems are discussed but not treated.

Introduction

0.1. Motivation

There has recently been some interest in the problem of self, or mutually interacting
quantum fields in curved space-times (see [1] and references therein). The value
of this work is two-fold. Firstly, it is important to know just how the many recent
results on linear quantum fields (see Sect. 0.2.) in curved space-times get modified
in the more realistic case of interaction. Secondly, Einstein's (and other) theories
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of gravity themselves can be viewed as special cases of the problem (see Sect. 5).
The purpose of this paper is to present a formal perturbation theory scheme

which is especially tailored for curved space-times: There are several problems
which are specific to curved space-times and which have nothing particularly to
do with interaction. The study of linear fields has already taught us several lessons
on how to tackle these problems, and we feel it is worth having a scheme which
incorporates these lessons right from the start.

Our work falls naturally into two parts. The first, and preliminary part summa-
rizes precisely those lessons. Thus, the paper begins by giving a clear statement
of what it means to quantize a linear field equation in a generic curved space-time.
In other words, we begin our discussion of perturbation theory with a suitable
treatment of the zero-order case! As example, we choose the covariant Klein-
Gordon equation interacting with a fixed external scalar field V.

(gμvVμdv + m2 + V)φ = 0 (0.1)

(all fields are taken to be C°° as in [2], hereafter referred to as I)
The second part presents a version of perturbation theory—based on an

idea of P. Hajicek [3]—which really does seem to be particularly suited to curved
space-times. And the paper culminates with a statement of the corresponding
set of "Feynman rules" for calculating expectation values for λφ4 theory

--^ (0.2)

0.2. Linear Fields (Sects. 1 and 2}

The physics of linear quantum fields in curved space-times has been intensively
studied over the last few years [4-8] and many fascinating results have been
obtained (see e.g. [9]).

At a more conceptual level, contemplation of the "generic curved space-time"
has forced us to consider rather carefully certain aspects of quantum field theory
which are often ignored in flat space-time. In particular, the existence of a unique
vacuum state and its corresponding preferred Hubert space representation are
only meaningful concepts for stationary situations [2]. In general, our space-times
are not stationary—or they may even be stationary in two different senses [10].
To single out one state and call it a "vacuum" can then often lead to confusion.

For these reasons, the algebraic approach to quantum field theory [11-14]
which is often something of a luxury for much of flat space-time physics, becomes
rather more of a necessity in curved space-time contexts. Especially important
to us is the very general algebraic concept of state which frees us from the need
to represent our field operators on some fixed Hubert space. Since, typically,
interesting states in curved space-times do not lie as vector (or density matrix)
states in the same representation (in the old language, one "vacuum" can consist
of an infinite number of particles in the representation corresponding to another
"vacuum") this freedom is essential for us to achieve the clarification of putting
all states on an equal footing.
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In Sects. 1 and 2, we explain the above ideas in more detail and develop a
formalism which allows us to handle efficiently an "arbitrary" state in an "arbitary"
space-time. More precisely, we discuss the set of quasi-free states on the set of
globally hyperbolic space-times. Roughly speaking, global hyperbolicity is equiva-
lent to the existence of a "choice of time". It is also the condition which guarantees
that the Cauchy problem is well posed. These matters are discussed further in
Sect. 1. The class of quasi-free states includes all the well-known "frequency-
splitting" states and is discussed further in Sect. 2.

Alternative discussions of quantum field theory in the generic case—not
always in agreement with the present purely algebraic point of view—may be
found in refs. [15-18].

0.3. Interacting Fields (Sects. 3 and 4)

In Sects. 3 and 4 we give a heuristic treatment of non-linear fields in curved space-
times. Our approach is strongly influenced by recent work of P. Hajicek [3].
The original development of this theory [3] proceeded in two stages: first calcu-
lating in flat space-time, and then using covariance arguments to guess the result
for curved space-times. The present paper gives a short and self-contained repro-
duction and generalization of Hajicek's principal results within a "manifestly
generally co variant" framework.

Very roughly speaking, the difference between Hajicek's approach and other
recent work on interacting fields in curved space-times (Birrell and Taylor [1],
see also [19]) is that it yields a perturbation theory for "in-in" rather than "in-out"
matrix elements of products of fields. Such an "in-in" approach seems particularly
appropriate in gravitational contexts where, typically, (collapsing stars, expanding
universes etc.) we have only one asymptotic regime.

The intention, then, is to provide (in a set of "Feynman rules") a formalism
with the following kind of flexibility:
(a) One is free to choose (from the set of all quasi-free states) an arbitrary state

of the field in the asymptotic regime (i.e. at " — oc " where gravitational fields
are weak).

(b) For each such choice, the rules allow one to calculate the resulting expectation
values of correlations between fields in interesting regions of the space-time
(i.e. where gravitational fields are strong).
Following Schwinger [20-21] the treatment of an interacting field theory

such as (0.1) in perturbation theory can be reduced to a simpler problem involving
classical external sources. This is explained in Sect. 4. In the case of equation (0.2),
we need to study

(g^Vμdv + m2+V)φ = J (0.3)

where J is our external source. This equation is studied in Sect. 3, where we derive
the so-called two-current operator (cf. Hajicek's "two-current functional" [3]).
This two-current operator codes, in a convenient algebraic form information about
correlations between fields in the presence of sources, given an arbitrary (algebraic)
state of the field to the past of these sources. The derivation, definition, and inter-
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pretation of this two-current operator makes essential use of practically all the
concepts and formalism developed in Sects. 1 and 2. It is then but an easy step
(in Sect. 4) to our promised Feynman rules.

1. The Classical Theory

Note: (1) As in the previous paper [2], we use Hawking and Ellis [22] (H.E.)
especially chapters 1 and 6 as a reference throughout — except that we choose
signature (H ---- ). (2) All space-times are assumed to be space and time
orientable.

1.1. Global Hyperbolicity, Choices of Time and Space-Time Splits

Given a space-time (Jt>g)\ we define a choice of time to be a function

satisfying
(1) / is C°° with d/ everywhere time-like.
(2) (implied by (1) up to a sign) t increases along every future directed non-

spacelike curve.
(3) Along any inextendible non-spacelike curve, / takes all values in ( — oo, oo)

The crucial result, due (with slightly different definitions) to Geroch [23] is

Theorem: Given a space-time (M, g); equivalent are:
(a) (Jί, g) is globally hyperbolic
(b) There exists a (global) Cauchy surface in (Jt, g)
(c) There exists a choice of time on (Jt, g)
A proof (using H.E. definitions) follows from H.E. Props 6.6.3 and 6.6.8 and
appealing to the smoothing procedure of Seifert [24] mentioned in H.E. Prop
6.6.8.

Thanks to this theorem, we need not give the (rather technical) definition
of global hyperbolicity. Rather, we may think equivalently, of space-times admitting
a choice of time.

When a choice of time exists, there will in general be many. Choosing one of
them, the / = const, surfaces ^(t) are then smooth spacelike (global) Cauchy
surfaces. In fact, (2) of "choice of time" above alone would imply they were (H.E.)
partial Cauchy surfaces. (2) and (3) would imply they were (H.E.) global Cauchy
surfaces.

To complete a splitting of our space-time into space and time, we augment
our "choice of time" with a choice of time-like vector field Y (such 7s will exist
thanks to time-orientability). (2) of choice of time guarantees that the integral
curves of such a Y cut every ^(t) exactly once. So we induce for each t a diffeo-
morphism

defined by identifying points cut by the same integral curve of Y. We shall refer
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to a choice of time together with such a Y as a space-time split. Given such a
space-time split, we may then realize Jί as a product manifold:

Jt -> R x #(0)

W (i i)
Now, at each point on Jί we have the unit future-pointing normal N (in local
coordinates = Nld.) and the induced Riemannian metric 3gij for the #(ί) which
passes through that point. Choosing local coordinates xl on (̂0), we get from
(1.1) above coordinates fox1) on Jt.

Defining the lapse and shift functions (α, β*) [25] (which we will think of as
time-dependent functions on #(0)) via:

d_

dt''

then, we can show that the metric takes the form

(1.2)

1

40upper =

_£
α2

*nV

/

(1.3.)

where

Also, we have*J —4g = ot>

1.2. Lerays Theorem

For completeness, we give again the fundamental result on existence and unique-
ness of solutions to our equation (0.1) [26-28]

Theorem. Let (M> g) be an oriented globally hyperbolic space-time, %> some Cauchy
surface-unit future-pointing normal N($ . Then the Cauchy data

given by

Φ=

defines a unique solution in C^(Jt} having compact support on every
other Cauchy surface. Furthermore, the solution has support in J+(suppΦ)(J
J~(suppΦ)—the union of the causal future and the causal past of the support of
the Cauchy data.

We can summarize the results of Leray's Theorem by referring to the class
S of C°° solutions with compact support on Gauchy surfaces. S is equipped with
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a symplectic form σ :

(1-4)
#

where ^ is some Cauchy surface, unit normal N($\ volume element dη(^) =

That this is independent of ^ follows easily from an application of Gauss'
theorem to the conserved current

Jμ=(Pldμ(P2 (I'5)

1.3. Classical Green's Functions

In practice, the solution to the Cauchy problem will be given in terms of classical
Green's functions [26-29]. Define first the advanced and retarded Green's
functions AA, ΔR satisfying

LlA
A>R(x,x') = δ(x,x')

AA(x,x') = Q ( x > x f )

AR(x,x') = Q ( x < x f ) (1.6)

where the subscript ί on a differential operator indicates action on the ίth variable,
where > ( < ) signifies "to the future (past) of" and Lφ = 0 is an abbreviation
for (0.1).
Note

( l ) A A ( χ , χ ' ) = AR(x',χ) (1.7)

(2) In the sequel we shall use "3-smeared and 4-smeared distributions" e.g.

A(x,f) = j A(x,

Now, we define the Jordan- Pauli Green's function

A(χ, x') = AA(x, x') - AR(x, xf) (1.8)

which is easily seen to satisfy (0.2), to be antisymmetric, and to provide a solution
to the Cauchy problem through :

(1.9)

Note also for later use, the following important special case:

(1.10)

1.4. Classical Dynamics

For each choice of Cauchy surface #, define the linear phase space (D(̂ ), σ
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where

g>Cίf) (1.11)

and σ<g is the symplectic form

σ^Φ, , Φ2) = J(/ip2 - Pl/2)<W (1.12)

where Φ = ( "Me /)(«).
W

We can then specify dynamics in a manner independent of any choice of
coordinates (cf. Kuchaf [30]) by giving for each pair (#1,

(#2 of Cauchy surfaces
the symplectic map

^(#2,*1):(I>(tf !),*)-> (D(V2),σ) (1.13)

defined by associating Cauchy data corresponding to the same solution.
To make contact with the traditional canonical formalism, we make a space-

time split (Sect. 1.1.). The diffeomorphisms δ(t) : #(ί) -> #(0) then allow us to
identify all the surfaces ^(t) with some initial surface #(0) say. To identify the
linear phase-spaces at each time, there are several possibilities: One convenient
one is the map

(U4)

In other words, we choose Cauchy data (ft(x), nt(χ)) at time ί where

(Note: Our definition differs slightly from the usual one: our π is a scalar, the

usual one is the scalar density A/3#(0)π).
We can now view dynamics as the two-parameter family of symplectics

("Bogolubov transformations")

^\t2,tί) = χ-\δ(t2))o^^(t2)^(t1))oχ(δ(tί)) (1.15)

on the fixed phase-space D((£(Q),σ') &'f(t29tί) may be represented in a straight-
forward way as a "matrix-integral" operator using (1.9). Finally, the time evolution

t^ is generated in the sense of classical mechanics by the Hamiltonian

H(f, π)(ί) = ̂  J yW^xα( — + R^'djdjf + R(m2 + V)f2 J

+
= {σ(Φ,h(t)Φ) (1.16)
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where

( - dl(aR)d. + aR(m2 - Δ(<g) + V) - (V.j8ί + βld.)

where J(#) is the Laplace-Beltrami operator for (̂ , 3g), V. denotes the covariant

derivative for (̂ , 3g) and jR denotes I i

The Hamiltonian equations (first order form equations) can be written

(1.17)

2. Quantization

2.1. Canonical Quantization

To quantize our equation in an arbitrary curved background, it turns out that
the traditional Hubert space formulation is not adequate and a more general
algebraic approach is more appropriate. To motivate the use of an algebraic
approach, we begin in this section with a heuristic discussion of canonical quanti-
zation. We shall have to take a similar canonical approach when we come to deal
with external sources in Sect. 3.

We begin by introducing "3-smeared" quantum fields on

R(Φ}= f
)

\D(^(0)} (2.1)

and impose the usual commutation relations

[Λ(Φ1λR(Φ2)] = ίσ(Φ1,Φ2) (2.2)

Equivalently, writing W(Φ) = eiR(φ\ we have the Weyl relations

/ ίσ(Φ Φ Λ
W(Φ1)W(Φ2) = expί -- ^-^ JW(Φ, 4- Φ2) (2.3)

Proceeding heuristically, the quantized Hamiltonian must satisfy (using (1.16),
(1.17), (2.1), (2.2))

[H(tlR(Φ}]=-iR(h(t}Φ} (2.4)

We now impose the Heisenberg-picture evolution

R(Φ)^U(t2,t1)R(Φ)U(t1,t2) (2.5)

where the "unitary propagator" U(t2,tl) = Te~l^H(t}dt



Generally Covariant Perturbation Theory 37

Using equations (1.17), (2.4); this reduces to

ί)Φ] (2.6)

and we similarly get

tJΦ} (2.7)

We shall not give a rigorous mathematical meaning to equation (2.5). Recall
that, in the stationary case, everything can be given mathematical meaning by
a roundabout route (see I for details). One takes as starting points equations (2.3)
and (2.6). First, one defines the algebra (̂D(0), σ) generated by the W's in (2.3)
(see e.g. [31-32]). Then (2.6) defines a one-parameter group of automorphisms
of this algebra generated by α((ί2 — ίι),0) where

α(ί2, g : W(Φ)» W(F(t29 tJΦ) (2.8)

One then seeks a vacuum state and its corresponding representation. In this
representation, we can define the implementing unitary group U(t) and hence
finally H(t) such that U(t) = e~if*(t\

In the non-stationary case, everything goes through up to equation (2.8).
(Of course α is no longer a group.) But, there is no analogous procedure beyond
that. In general, it is unfruitful and often impossible to find a representation for
which α(ί2 , ίj) is implemented for all ί. (Typically, one has creation of an infinite
number of particles etc.). Thus one gives up hope of assigning any mathematical
meaning to Te~l^^(t}dt. One similarly gives up hope of defining the H(tfs as
positive operators all on the same Hubert space.

Fortunately, the algebraic formalism [11-14] is just what.we need for making
sense of the situation. We are still able to define the Weyl algebra and quantum
automorphisms are still completely defined by (2.8) in terms of the classical
time-evolution ^~(t2,t^). Thanks to the general concept of state (see Sect. 2.3)
available in the algebraic formalism, there is no need to choose a Hubert space
representation. The theory is completely fixed by equations (2.3) and (2.7). We
shall continue our discussion of the algebraic formalism in Sect. 2.3.

2.2. Covariant Formulations

We can summarize the content of equations (2.3) and (2.7) by considering
the Weyl algebra over the symplectic space of classical solutions (S,σ) (see (1.4))
generated by the single equation

W(φι)W(φ2) = expί - iσ(φι

2

9<P2Λw(φι + φ2); φeS (2.9)

For, if we were to take this as starting point and then define W(Φt), Φtε(D(%(ϋ)\ σ)
as W(X(δ(t)~1)Φ) where Φ are Cauchy data of φ on #(ί) (see (1.14)), we would
recover (2.3) and (2.7).

Finally, we define the covariant "4-smeared quantum field"

W(F)=W(Δ(F,')); FeCgW) (2.10)
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which, in virtue of (1.10) and (2.9), satisfies

W(Fl)W(F2) = expl v *' 2/ }W(Fί + F2) (2.11)

Formally,

W(F) = exp i J φMFMv7- 4#d4x (2.12)
M

where φ(x) is the usual quantum field.

2.3. Algebraic States

The algebraic concept of state is more general than that of vector (or density
matrix) state. A state ω is defined as a positive linear functional on the Weyl
algebra (equivalently the algebra generated by W(φ)\ W(F)'s, or W(Φ)'s). (Positi-
vity corresponds to ω(A*A) ;> 0 for A in the algebra.) Roughly speaking, specifying
a state corresponds to directly specifying the expectation values of all possible
products of fields (cf. Wightman functions [33]). In the canonical approach,
(W(Φ)\ ΦεD(^(0))) we must, of course, also specify the time-evolution on states
by the dual action of (2.8)

ωt2(W(Φ)) = ω f ι(WW2, ίJΦ) (2.13)

which we can think of as an algebraic version of the Schrόdinger picture.
In usual flat space-time physics, it is usual to augment the strict C* algebra

framework: On the one hand, there are certain "observables" e.g. Hamiltonian,
generators of groups etc. that are not in the C* algebra. "Dually", it is often useful
to choose a representation of our algebra, and focus attention on the set of vector
states (or, more generally, density matrix states) arising in this representation.
In fact one has the "vacuum representation" mentioned in Sect. 2.1. which is
designed to represent the Hamiltonian as a positive operator. The advantage
of this is that states can be labelled by their energy: There is something rather
special about saying the vacuum state has zero-energy which one tends to miss
if one just writes down the two-point correlation function

= (p2 + m2)2 1 / 2

Po

etc. Certainly, to some-one brought up on flat space-time physics, this picture
with Fock spaces, "particles", Hamiltonians etc. looks more familiar. Nevertheless,
we know that, strictly speaking, it is inessential: The specification of a state by
giving all its π-point correlation functions contains all physical information.

Now for quantum theory on globally stationary space-times, we can still
mimic the vacuum construction referred to above (see I).

However, in the generic case where we have no symmetries, the usefulness
of global observables such as the Hamiltonian diminishes and — as we pointed
out in Sect. 2.1 — we cannot hope for the luxury of a preferred representation. For
this reason, the "generic space-time" forces us to adopt the algebraic approach.
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2.4. Quasi-Free States and Quantum Green's Functions

There is a particular class of states which will play a special role in our treatment
of perturbation theory, namely the quasi-free states1 [34-36]. Let s be a positive
bilinear form on the space of classical solutions S, satisfying

(2.14)

and let t be any linear functional on S. Then we define the quasi-free state ωs e via

ls(ψ'φ) -"'-Λ (2.15)

(condition (2.14) is needed to ensure the positivity of ωs^.
We shall often consider the case t = 0, whereupon we write ωs instead of

This class of states is important for several reasons. Firstly, it is mathematically
simple. Secondly, it includes all the so-called "frequency-splitting vacuums"
usually considered in work on quantum theory in curved space-times (see e.g.
[4,16]). It also includes the vacuum states ω(W(Φ)) = e~ l | x φ | 1 2/2 which we cons-
tructed in I [2] for stationary space-times. Note also that (considered as states
on W(D(^(ΰ)9σ)) this class is invariant under the time evolution "Bogolubov
transformations" (2.13).

We develop some formalism for handling these states efficiently:
Given an 5 satisfying (2.14), we define the "positive and negative frequency Green's
functions" corresponding to a choice of s

A +(F, G) - s(Δ(;F\ Δ( , G)) + ^Δ(F9 G)

Δ-(F9 G) = s(Δ(', F\ Δ(; G)) - Δ(F, G) (2.16)

We also define the "Feynman" and "AntiFeynman" Green's functions2

Δ*(F, G) = Δ + (F, G) + iΔR(F, G) (2.17)

Finally, we define the "mean field value"

<φ>ΛF) = W, )) (2.18)

We have from (2.10), (2.12), (2.15), (2.16), (2.17), (2.18)

(2.19)

1 One might wish to adjoin those states which arise as density-matrix states in the GNS representa-
tion of each ωs ( . To keep the exposition clear, we do not refer to these in the main text.

2 Note our definition of Feynman propagator which corresponds heuristically to < in | T(φ(x)φ(y)) | in >
differs from another possible definition [1,19] as <out|
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A*(x,y) (2.20)

where T is the time-ordered product (later times to the left), £ the anti-time-
ordered product (later times to the right).

When f is non-zero, (2.20) represents the "truncated expectation values"

ωs(φ(x)φ(y)) = ωs^(φ(x)φ(y)) - < φ >/x)< φ >/y) (2.21)

3. External Sources

3.1. Canonical Quantization

In this section, we follow closely the heuristic approach of Sect. 2.1. to quantize
the equation

where Je C^ (Jΐ)
After a space-time split, we write the classical canonical Hamiltonian

Hj(t) = ±σ(Φ,h(t)Φ)-σ(ΦJ) (3.1)

corresponding to the first-order form

A
(3.2)

where h(t) is given by (1.16) and

/ 0

*"" \

1/2

(3.3)
W

We thus take the quantum Hamiltonian to be

HJ(t) = H0(t)-R(j) (3.4)

Then, we have the following formula for the unitary propagator in the presence
of the source

where U(t2^t^) is the unitary propagator in the absence of a source (2.5). W is
the "4-smeared" Weyl operator ((2.10), (2.12)) for the source-free theory and J'
is equal to the external source between the t = tί, and t = t2 surfaces and zero
elsewhere, (see Fig. 1).

The form of our formula shows the independence from the particular space-
time split chosen. To prove it, however, it is convenient to choose such a split,
whereupon we make the following identifications in (3.5):
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t=t

Fig. 1.

ΔR( f, J') =-} σ(^'(tl , t'W)dt\ \2T\t, , t'W'W) (3.6)

(3.7)

which easily follow on using (1.9), (1.10), (2.10), (3.3). (3.5) now easily follows by
differentiating both sides with respect to t and using the relations

jt W(Ψ(t)) = p'^fr)'^)) + iR(Φ(t))jfV(Ψ(t)) (3.8)

(where Ψ(t) is an arbitrary function of t) and

U(t2, g#(Φ) = R(3"(t29tJΦ)U(t29tJ (3.9)

which follow from (2.3) and (2.5) respectively.

3.2. The Two-Current Operator

Now consider the operator

φ(J2 , j j = (Te-ift**'*™*)- l(Te-^^ (t)dt) (3.10)

which corresponds to propagating forwards in the presence of source J1 , and
then backwards in the presence of J2. (We now assume our t = ti and t = t2

surfaces are chosen to the past and future respectively of the supports of J1 and J2).
Using (3.5), (2.11) and (1.8), we easily obtain the formula for this two-current

operator

-J2} (3.11), 2 ,

In the next section, we shall use this operator as a basic tool for treating self-
interacting fields in perturbation theory. We conclude this section with some
comments about formula (3.11).
1. Formula (3.5) and its derivation are both quite formal, and, as we discussed
in Sect. 2.1., cannot, in general, be given a mathematical meaning.
2. Formula (3.11), on the other hand, is quite remarkable: Although its derivation
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was formal, it can immediately be given a mathematical meaning within the
algebraic framework : It is an element of the Weyl algebra !
3. The physical meaning of our two current operator can be understood as
follows: Suppose for a moment that (3.5) does make sense — i.e. that we can
choose some representation in which V(t2,t^) are implemented. Then, for any
two vector states, |α>, | f e > , we define the amplitude (cf. Hajicek [3])

We then have a formal identity

where n is a complete set of states. This latter is Hajicek's [3] "two current func-
tional": the amplitude for |α> to persist after propagating forwards under J \
and backwards under J2 .

We can now drop our assumption about representations and implementability
and returning to the algebraic framework, define the ω-persistence amplitude
to be ω(Θ(J2 , JJ) where ω is a state in the algebraic sense.

In particular, for the quasi-free states ω € introduced in Sect. 2.4, we have
(by (2.10), (2.12), (2.15), (2.16), (2.17), (2.18), (2.19), (2.20)

^) (3.12)

4. Finally, note that formula (3.11) could have been derived — up to a phase — by
purely algebraic methods: Consider the symplectic transformation on classical
Cauchy data at time ί, caused by propagating forwards under J1 and backwards
under J2 . It is easy to see that this induces an automorphism of the Weyl algebra
over such Cauchy data which is implemented by W(Jί — J2). Note that this
automorphism is inner : there is no need to choose a representation. Unfortunately,
this approach is incapable of fixing the phase (which in this context is important
as it can be a functional of J's) and it seems we are forced to derive (3.11) by the
heuristic methods given above.

4. Perturbation Theory for Interacting Fields

4.1. Use of Sources

In this section, we sketch how our two-current operator can be used to develop
a "generally covariant perturbation theory" for interacting fields on fixed curved
space-times. For sake of definiteness, we shall illustrate our method with λφ4

theory, i.e. the equation

J (4.1)

Here, we have included also an external source JeC^(J^). Now, for any such
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equation (keep in mind (0.3) and (4.1)), the two current operator Θ(J2,J^) ((3.10)
generalizes in an obvious way for (4.1)) is a convenient device for recording all
the information of the source-free theory. Indeed, knowledge of the expectation
value of the two-current operator in a given state suffices to completely specify that
state for the source-free theory. In fact, the natural object to calculate is

<y1.. ym;xί...xnyω = ω(Txj:y(φ(yί)...φ(ym)φ(x,)...φ(xn))) (4.2)

where all φ(y)'s are to the left of all φ(x)'s Tx signifies re-ordering the φ(x)'s in
order of increasing times: later times to the left; and J.y does the same job for

but with later times to the right.
We easily have (from (3.10))

ιγ- δJ2(ym)

(where the limits tί and t2 in &(J2, J v ) are to the past and future of all (x1 ... xn,
yί... ym). As illustration of this equation, the reader may easily check how equations
(2.19), (2.20) follow from (4.3).

4.2. Perturbation Theory

Now, our goal is to have a perturbation theory for determining a state of the
self-interacting theory. Given a quasi-free state ωs/

3 on the free theory, we seek
a state ω's € on the interacting theory satisfying in some sense (for an arbitrary
space- time split)

lim {ωf^(φt(xl)...φt(xn)) - ωs^(φt(xl)...φt(xl))} = 0 (4.4)

where x1 . . . xn are points in
Of course, we cannot take equation (4.4) seriously (Haag's theorem and all

that! [33]). It is to be understood in the spirit of perturbation theory where one
still needs to renormalize later. The developments of this section are all entirely
formal, culminating in a suitable set of "Feynman rules". We stop short of discuss-
ing any renormalization procedure.

To understand the meaning of this formal equation, note first that if our
system was stationary for the given coordinates, and ωs^ time-translational
invariant, we could dispense with the limit, and impose equality at each time.
In general, ωs f is to be interpreted as an "in" state, and is set equal to ωs ^ at — oo
(in the sense of the Schrodinger picture).

Following the strategy of Sect. 4.1., we clearly have that the expectation value
of the two current operator for the interacting system is given in terms of the

3 See footnote 1: It should be a straightforward matter to extend our perturbation theory to vector
states in the GNS representation of any given ωs —just as in usual perturbation theory it suffices to
calculate vacuum expectation values to extract information about many particle states.
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ωs f expectation value for the free two-current operator by

_ f j_yjωWJ2? Jι)} (4 5)
\ O J 1 / )

Formulae (4.2), (4.3), (4.4), (4.5), (3.12) lead to the following "Feynman rules"
for <y1 "-ym,x1 "'xn^ω' (to understand how "Feynman rules" follow from
(4.5), cf. [37, 38]).

(For simplicity, we assume / = 0; it is easy to generalize our rules for non
zero /)
1. draw all possible diagrams with endpoints xί ... xn ;y1 ... ym and with 4 lines
meeting at each internal vertex.
2. Label all internal vertices with all possible mixtures of x, x', x/x ...... y, /, y" ......
3. "Propagators" are assigned to internal lines as follows:

4. There is a factor of — iλ for each x vertex and a factor of + iλ for each y vertex.
5. Integrate over internal vertices.
6. Finally, divide by symmetry factors (where in recognizing a symmetry, lines
corresponding to different propagators are regarded as different).

5. Discussion

Perhaps the most important goal for the study of interacting quantum fields
on curved space-times is to improve our understanding of results on the renorma-
lizability (or otherwise) of gravity itself.

While the question of renormalizability of Einstein's theory (with matter)
seems to have been settled without doubt in the negative [39, 40], the specifically
"curved background aspect" of the problem has never been seriously considered.
An inspection of 't Hooft and Veltman's article' [39] for example shows that,
even though they adopt the so-called "background field" method, they are forced —
at crucial points in the argument — to fall back on flat-space-time methods (e.g.
dimensional regularization). These flat space-time methods combine with general
covariance arguments to yield the desired results. But still, it would be more
satisfactory to have a complete renormalization procedure (including regulari-
zation procedure) which worked directly on an arbitrary curved space-time.
Birrell and Taylor [1] and others have made some first steps in this direction, but,
as they point out, a crucial step in their treatment also involves appeal to flat
space-time renormalization theory combined with general covariance arguments.
It thus seems fair to say that the extension of renormalization theory to apply
to curved backgrounds (and, indeed other non-translationally invariant systems)
remains an unsolved problem. From this point of view, our work constitutes
only a small initial step. As we mentioned in Sect. 4, our Feynman rules are only
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formal and the main problem, that of short-distance divergencies, will be the
same as in any other scheme: We do not expect the renormalizability question
for our "in-in" scheme to differ substantially from that of the "in-out" scheme
[1] (see also [3]).

The purpose of our work was to provide a scheme in which this main problem
remains the only problem:

In other words, a scheme in which those problems which are common to all
(including free) curved space-time QFT's are automatically taken care of. Thus
we are left free to concentrate on the problems caused by interaction.

In particular, our "in-in" scheme has the following advantages4.
(1) By focussing attention on expectation values (rather than matrix elements)
it is closer to the interesting physical questions.
(2) It needs only one asymptotic regime—as in many important gravitational
contexts.
(3) It fits in naturally with the algebraic approach—with the advantage of viewing
all states on an equal footing and eliminating confusion about "vacuums".
(4) It automatically takes care of the "infinite particle creation" divergencies
which are the characteristic feature of curved space-time backgrounds.
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