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Lorentz Covariance and Kinetic Charge
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Abstract. There is a one-to-one correspondence between inequivalent co-
variant displaced Fock representations of the free relativistic field and the 1-
cohomology of the Poincare group with coefficients in the 1-particle space.

Representations with positive energy are obtained from cocycles with finite
energy which have particle-like properties and are interpreted as condensed
states of matter without a sharply defined mass.

The 1-cohomology groups of 0>X are calculated. These are trivial in 3- or 4-
dimensional space-time, or if the mass is non-zero. Non-trivial cocycles for
subgroups lead to representations in which ^-invariance is spontaneously
broken. We recover ^-invariance in a direct integral representation possessing
a gauge group, and a superselection structure labelled by the velocities of the
condensed states of matter which are the cocycles determining each irreducible
component of the representation. A model in 4-dimensional space-time is
constructed.

1. Cohomological Classification of Displaced Fock Representations

Let U be a representation of the Poincare group £P\ acting on a Hubert space JΓ
and satisfying the spectral condition:

where Pμ is the self-adjoint generator of space-time translations in the direction xμ,
μ = 0,1,..., s. If m is the mass of U, then Jf may be realised as a class of solutions of
a manifestly covariant family of wave equations and subsidiary conditions:

2 )φ α (x, ίH0 D"βφβ(x9t) = 0,

where D is a tensor of differential operators chosen to remove unwanted spin
components.
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Let M be a dense complex-linear subspace of j f invariant under 0>\ i.e.
U(a, Λ)Jig.Jί for all (α, Λ)e^\. Let 91 be the Weyl algebra over M\_\~\ and let W
be the Weyl map .^#-+91; thus for each ΨeJf, W(Ψ) is a unitary operator obeying

In order to interpret 91 as the algebra of observables of a theory, it is usual to
require M to be localised, in the sense that if φeJί then each component <pα(x, t)
has compact support in x for every t.

It may be that the field φ itself should not be regarded as observable; for
instance, in electromagnetism, F μ v but not Aμ is observable. In such cases we take
Jί to consist of observable fields only.

In Segal's work [1], where only the case Jί = Jf is discussed, it is shown that
the usual Fock representation is the only irreducible one with a Lorentz-invariant
vacuum and positive energy, which obeys a mild continuity condition. On the
other hand by considering Jί to be properly smaller than Jf, it is possible for the
phenomenon of spontaneously broken symmetry to occur [2] in this case,
infinitely many Lorentz invariant states on the Weyl algebra can be constructed,
all giving rise, through the Gelfand-Naimark-Segal construction, to represen-
tations with positive energy. It can be argued that there should be no physical
distinction between these vacua, as only one vacuum state occurs in Nature.
Therefore any observable operator in the Weyl algebra must have the same
expectation value in any of these vacua. In [3] this is achieved by restricting Jί
even more, so that M lies in the kernel of the Lorentz-invariant linear functionals
on the space of localized elements of jf. In this way, there is again a unique
representation of the Weyl algebra over Jί having positive energy and a vacuum,
and being of displaced Fock type.

However, other representations of 91 may be physically interesting, in that they
are covariant, and satisfy the spectral condition, although they do not possess a
vacuum state. Such representations correspond to the presence of condensed states
of the field whose behaviour is somewhat particle-like. It may be noted that
although we are discussing representations of a free field, obeying a linear
differential equation, the fiducial states giving rise to the non-vacuum repre-
sentations have considerable similarity of behaviour and physical interpretation to
the soliton states giving rise to superselection sectors in the theories discussed by
Frδhlich [4]. These latter states correspond to soliton solutions of the non-linear
differential equations satisfied by the fields in [4].

Roepstorff [5] has shown in a discussion of the free electromagnetic field that
the cohomology of the space-time translation group can be used to classify all
inequivalent displaced Fock representations in which that group is implemented.
We shall review this method of classification for the general case of a free field
outlined above, and using arbitrary subgroups of the Poincare group. In Sect. 2 we
shall discuss the cohomology of the full Poincare group in more detail.

Subsequent sections will be concerned with the induced representation con-
struction and its use to provide models carrying a representation of the Poincare
group, obtained as a direct integral over inequivalent displaced Fock repre-
sentations in which the Euclidean group and time-displacements are implemented.
The resulting covariant theory has an interesting interpretation.
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Let πF denote the Fock representation of 31. This representation is determined
using the GNS construction from the vacuum state ωF, which is defined uniquely
by the characteristic function

For Le&l let τL be the automorphism of 31 induced by the action U(L) of &>\ on

τL(W(Φ))=W{U(L)Φ).

Definition. A representation π of 51 on a Hilbert space Jfπ is said to be covariant if
1. For each Le^\, τL is spatial in π i.e. τL is implemented by a unitary

operator Vn(L);
2. Vπ(L) can be chosen to be continuous in L.

It is well known that the Fock representation is covariant. Denote by -Mx the
algebraic dual of Ji to each Ψx e Mx there is a displaced Fock representation
πΨ x it is determined by its characteristic function

ΦeJί.

Two such representations πΨx and πΞ* are equivalent if and only if the map
Φ-+Im(Ψ* — ΞX,Φ> is a continuous functional on M with respect to the
topology induced by the norm on Jd ([6, 7]). This holds if and only if
Ψx ~ΞX ey/ί* the topological dual of M. If Ψx eJ/ί*, ojψx is a vector state in
Fock space, called a coherent state. We shall denote πF(W(Φ)) by WF(Φ) and
πΨ*(W{Φ)) by WΨ*{Φ). Clearly

The action Ux (L) of &\ on .Mx is defined by duality:

for all ΦeJί, ΨxeJ

this action induces an action τ£ on the set of displaced vacuum states: τ^ ωΨ *
= ωux (L)ψ * a n < ^ t n i s coincides with the dual τ^ of the automorphism group {τL}
on 31.

Let Ψx eJί-x and define ψL=Ψx ~-Ux(L)Ψx. The action τ L is implemented in
πΨ* if and only if the representations πUX{L)ψx and π^x are unitarily equivalent.
This holds if and only if the map

Φ->lm(Ψx -Ux(L)Ψx,Φ} = lm{ψL,Φ}

is continuous, i.e. if and only if ψLe<Jf* = <ΉΓ.
Suppose Ψx is such that ψLe^*. Then the map L-*ψL obeys the cocycle

condition

A cocycle of the form ψL= Ψx - UX(L)ΨX may be called a topological cocycle
([8], Theorem 7.3). Araki shows that every cocycle is a sum of a topological
cocycle and an "algebraic" cocycle. The latter might arise if the representation
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space of U contains non-zero vectors invariant under space-time translations.
Such vectors do not arise for representations of mass m^O and spin s^tO.

Now suppose πΞ* and π φ * are unitarily equivalent representations. Then for
some ΛeJί*, (Ψ* -Ξx -A, Φ>=0 for all ΦeJί. Let ψL= Ψx - UX(L)ΨX

and γL = Ξx — UX(L)ΞX. Since Jt is &\-invariant, we obtain <\XL~XPL
— {A — U*(L)Λ), Φ> = 0 for all Φe./M. So as functionals on Ji, the cocycles χL and
ψL differ by a coboundary, and they are therefore cohomologous cocycles in the
group Zι{&\,J(*\ i.e. belong to the same element of H\@>l,Ji*). Let us find
conditions under which the converse result would hold. Suppose χL and ψL are
cohomologous cocycles. Then they differ by a coboundary i.e.

ψL-χL = A-U*{L)A for some AeJi*.

Suppose Ψx a n d £ x are such that ψL= Ψx - UX(L)ΨX and χL = Ξx - UX(L)ΞX

then the fact that they are cohomologous implies ψx — Ξx — A is ^.-invariant for
some ΛeJi*. If M has been restricted to lie in the kernel of ^-invariant
functionals, then

(Ψx -Ξx-A,Φ}=0

for all ΦeJi, and by Shale's criterion we find that πΞ* and πψx are unitarily
equivalent. We summarize these remarks as:

Theorem 1. // all ^-invariant functionals vanish on Jί, then there is a one-to-one
correspondence between the equivalence classes of displaced Fock representations in
which τ is implemented and the first cohomology group Hι{βP\,Ji*) with coefficients
in

Roepstorff [5] proves a special case, where Jt = Jf, the one-particle space of
the free electromagnetic field in this case there are no invariant functionals. We
now establish the form of the unitary operators VΨ*(L) which implement &\ in
Tίψ x .

Theorem 2. Let ψL=Ψx -UX(L)ΨX be a cocycle for the action U of 9\ on Jt,
and let πψx be the corresponding displaced Fock representation of the Weyl algebra
over Jt. Define Vψ x (L) = VF(L) WF( — ψL), where VF(L) implements τL in the Fock
representation. Then

a) Vψx(L) implements τL in πψx i.e. for all ΦeJί and L^P^\

Vψ.(L)πψx(W(Φ))Vψx(LΓ1 =πψx(W(U(L)Φ)).

b) Vψx is a multiplier representation of Θ>\ with multiplier

>\ if and only if ψL is a continuous cocycle.

d) Vψx is infinitely divisible.
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Proof.

a) VΨ,(L)WΨ,(ΦWΨΛL)-1

= VF(L)WF(Φ - ψLWF{ψL)VF{LYι exp

= VF{L)WF{Φ)VF{LYι exp\~Im< - ψ L , Φ> + ίIm<Ψ x , Φ>

= WF(U(L)Φ) expί[Im< ψx - ψL, Φ>] = WF(U(L)Φ) expi[Im< Ux (L)Ψ

b) Vy»(L)VV,(M) = (-ψL)VF(M)WF(-ψM)

t ,ψ M }

= VF(LM)WF(-ψLM)exp\~lm(ψL, U(M)ψM)

Now, U{M)ψM= U*(M~v)ψM= — ψM-ι since ψe = 0, (e is the identity of
Hence

c) If L->ipL is continuous, then L-+VΨ(L)^ VF(L)WF( — ψL) is continuous, since
L->KF(L) is continuous. Conversely, if Vψx(L) is continuous, then
Relog<ΩF, VΨ*(L)ΩF}= — i l | φ L - i | | 2 is continuous in L (here, ΩF denotes the
Fock vacuum). Suppose L,Me&\. Then, from the cocycle condition,

ΨM\\ = I I = II U*(M)ΨL I = I I Ψ
LM-,i

as L-+M. Thus, !FL is a continuous cocycle.

d) The representation Vψx is already in the canonical form for an infinitely
divisible projective representation [9,10].

We may interpret ι F x as a generalised function we parametrise Jί by the
Cauchy data of the independent field components φαα = l,2,... and its canonical
conjugate field denoted πα. Let us define Φα

x, 77α

x e^*(IR3) as generalised functions
by the formula

We now define Φα

x (x, t) to be the solution to the wave equation with these Cauchy
data; they formally obey the same Hamiltonian equations as φy itself (and
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Im<Φ x,Φ> is the Poisson bracket), and transform covariantly under the dual
action Ux of 0*\ o n . l x . Thus, each cocycle may be identified with a solution Φ x

of the field equations and the (dual) subsidiary conditions. In Sect. 2, it is shown
that the cohomology class of such a solution is determined by its infrared
behaviour, i.e. by the behaviour of Φx(x, t) at spatial infinity.

Roepstorff [5] has remarked that not all representations of the form π φ x (for
the electromagnetic field) have positive energy. We can remark, as in [3,5], that if
the wave Φx(x, t) has finite classical energy, then the energy in π φ x is bounded
below. To see this, note that, in the representation π φ x, the field may be taken to be
φ^ + Φα

x where φζ is the relativistic Fock field. The energy operator is then the
formally positive quadratic Hamiltonian, acting on Fock space:

d3x+ [πF—rϊ
o

HF is self-adjoint; suppose H(ΦX,ΠX\ the classical energy of the wave Φ x is
finite then the total operator is self-adjoint on D(HF) provided the cross-term is
self-adjoint and Kato - small relative to HF. We now indicate the proof of this.

By Hamilton's equations:

and this is self-adjoint, and Kato small relative to HF, if — (Φα

x(x, ί))e Jf, which is

abstractly writtenXλΦ
x e.JΓ, whereXγ generates time-translations in Jf*. We shall

see in the next section that this, the infinitesimal form of the cocycle condition
(U(t)— 1)ΦX e Jf, can always be arranged if Φ x is a cocycle. Conversely, as in [5],
one shows that if the energy in π φ x is bounded below, then Φ x is cohomologous to
a cocycle of finite energy, that is, a soliton-like bose condensate.

2. On the Cohomology of the Poincare Group

Araki [8] has analysed the cohomology group Hι(G,Jf), where G is a Lie group
and Jf is the carrier space of a unitary representation U of G. A 1-coboundary is a
map ψ:G-*Jf of the form

ψg = Φ—U~ί{g)Φ for some ΦeJf*.

The topological cocycles are maps ψ:G-+Jf of the form ψg = Φx — Ux(g)Φx

where Φ x lies in the space D+ constructed as follows.

Let {Xv ...,Xk} be a basis in the Lie Algebra of G and define

Kj=l- $U(exptXj)h(t)dt ; = l , . . . , / c ,

where /ze^(IR) is such that 0<>h(λ)<l for λφO and ί(0) = l and h"{0) + 0.
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k

~112 i sDefine K= ΣKr Each Kj and hence K is ^ 0 ; K~112 is possibly unbounded;
1

D+ is the image of Jf under K~ι'2. We define the norm \\φ\\ + = | | K 1 / 2 φ | | ^ and D +

is the completion of D+ in || | | + . Clearly D+Q3fxand Ux acts on D +.

Theorem 3. Any representation of £P\ with positive mass, in space-time of dimension
^ 1 , has trivial cohomology.

Note: This result has also been obtained by Pinczon [11].

Proof. Let Xί = ( p 2 + m 2 ) 1 / 2 § : m be the energy of the representation. Hence
so K~1/2 exists and is bounded (above and below). Hence

i.e. all norms are equivalent. Hence D+ =X* and any topological cocycle is a
coboundary. Since 0 is the only vector invariant under translations, the only
algebraic cocycles are trivial. •

Scholium [12]. a) Let U be a continuous representation of a connected Lie group
G on a Banach space Jf. Then Ήι(G^) = H1JG,X') where Hx

ω consists of 1-
cocycles which are analytic in the group parameters about the identity.

By the cocycle law, Ux (g)ψh = ψgh — ψg thus Ux (g)ψh is analytic in g for fixed h,
i.e. the cocycles in H^ are valued in the set Xω of analytic vectors for the group
representation.

b) If G is the Lie algebra of G, the map A, defined by

maps H^G, Jf) into H^G, X J . If G is simply connected, then H^(G, Jf)

= H 1 (G,Jf ω ).

The Scholium implies that each cocycle has a representative in the set of C00-
vectors for the Lie algebra G of G the cocycles of G are elements Φx e jfω

x such
that KJΦXEC/f* = C/f since in our case, j f is a Hubert space.

Theorem 4. /?? space-time of dimension ^ 3 , Z / 1 ^ ^ , j f ) = 0 /or £m_y representation
of 0>\ of mass m^O «w<i s

Proof. A cocycle for 0>\ is also a cocycle for the subgroups SO(2) and SO(3),...
respectively. These are compact groups, and so their cohomology is trivial [8].
This means that any cocycle for 0>\ must be cohomologous to one derived from a
Φx eD+ that is rotation invariant. This excludes representations of spin > 0 (see
Appendix). For the spin 0, mass 0 case, the one-particle space is

Jί = L2(IRS, p ~1 dsp), s = space-dimension.

We may take Φ x to be a generalized function, invariant under rotations :
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We describe Lorentz transformations on jf by Φx(pλ, ...,ps)-+Φx(chη-pι

+ shf/|p|, p 2, ...,ps) where η is the rapidity in the (0, l)-plane. The infinitesimal
generator J 0 1 is thus

2

on rotation-invariant vectors. A non-trivial cocycle is therefore a function
oo oo

φ x -(p) = w(|p|) such that J \u\2ps~2dp = oo but j \pu\2ps~2 dp <ao and

duJ(pcosθ)2 ps 2 dpdσ(Θ)< co where dσ(θ) is the surface element, and the
dp

angular coordinates are chosen so that px =pcosθ. The first condition expresses
Φxφ,yf and the second and third say that

P°Φxe,yf JoιΦ
xe.yf

whence PjΦx e .if.
By the Scholium, Φx may be chosen so that it is in the domain of all powers of

J 0 1 so that

j d \ x - 1 2

Thus, we may choose wec°°(0, oo) and the condition JOίΦ
x G^Γ is equivalent to

J (u')2psdp< oo. The inequality [13]
o

— fdp
dp

now implies that Φx e.yΓ. This proves the theorem.
Redheffer's inequality fails if s = l. The function (where — l < α < l ) Φx(p)

= [log(l/p)]~1 / 2 α provides a counterexample and also a cocycle for 0>\. Other
non-trivial (and inequivalent) cocycles are provided by functions of the form Φx(p)

s - 1

These cocycles provide new representations of the CCR with positive energy, not
corresponding to any previously known model.

Further cocycles in 2-dimensional space-time can be parametrized by two real
numbers q, q5, where Φx{p)-^q + iq5 as |p| ->0+ . These cocycles were discovered
in [3] to give covariant strongly locally Fock representations of the C*-algebra
generated by the field gradient dμφ. It can be shown that the Thirring model takes
place in the direct sum of representations labelled by q, q5 [14]. It can be shown
that a cocycle Φx gives rise to a "local" cocycle in the sense of [15] if and only if
Φ-+q + iq5 as |p| -»0, for some real q, q5. This may provide grounds for rejecting the
strange examples above.
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3. Kinetic Charge

The absence of cocycles for £P\ in space-time dimensions of 3 and 4 suggests that a
more general construction should be tried. In fact it is easy to construct cocycles
for smaller groups than 0>\ such as IR x E3,1R being time-evolution. In this case we
can proceed to construct a co variant representation of the field, albeit a reducible
one. We now indicate the general procedure.

Let 51 be a C*-algebra and π 0 an irreducible representation of 91 acting on a
Hubert space Jf0. Let G be a Lie group of automorphisms of 91 and let Go be the
subgroup of automorphisms implemented in π 0 . We assume Go to be closed. Then
G/G0 = V is a G-space, with a natural quasi-invariant measure, μ say. For
simplicity, we assume μ is invariant. Let Uo be the multiplier representation on J^o

implementing Go in π 0 . Let ω be the multiplier of Uo. For the present, ω does
not need to be the restriction to Go of a multiplier for G.

Let VOEΨ=G/GO be chosen, and for each veΨchoose a boost b(v)eG such that
b{v)v = v0. Let πv be the representation (on J f ^ J ^ 0 ) given by πv(A) = π0(b(υ)A),
AeSll. Let

π = J dμ(v)πv

acting on

JT= J dμ{vWΏ.
ΘV

It is known [16] that if ω is the restriction of a multiplier for G, then the
representation of G induced by the representation Uo of Go, is equivalent1 to
on j f defined by

(C/(gf)φ)(ϋ) = U0{b{v)gb-\g- ιυ))ψ{g' ιυ).

More generally, for any multiplier ω of Go, we have:

Theorem 5. U(g)U(h) = ωί(g,h)U(gh) for all g,heG where ωιeπ((iίy is unitary.

Proof. Let ψeJf. Then

where λ{g,h9v) = ω(b{v)gb~1{g~1v\ b{g'ιv)hb~1{h'ιg~ιv)). Thus, {U{g)U{h)ψ)(v)
= [λ(g,h,υ)U(gh)ψ'](v), where |A| = 1. Clearly, λ defines a unitary in π(9iy.

Lemma. Let V denote the operator on Jf defined by

The V=U~i{gy

Proof. A straightforward calculation.

1 Up to a gauge transformation in π(A)1
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Theorem 6. For each g, U(g) implements 0:51—•$! in π.

Proof. Let ψeJP. Then, for any

= U0(b(υ)gb- Kg-'

= U0(b(υ)gb- \g- ιv))π0{b{g' 1v)A)λ~ \g,g~\

= λ~ ̂ g-^υ^moAW^gb- \g~ ιv))U0(b(Q~ ^g'1^ ι(v))ψ(v)

= πo(b(v)gA)ψ(υ) = π(gΛ)ψ(v). Π

Remark. The special case where ω = l and Jf̂  contains a G0-invariant state, is
similar to Theorem III, 2.1ii) of [17].

In this way we can construct a ^-covariant representation even in the
absence of cocycles for 0>\.

If ω is not a multiplier for 0>\, we obtain a representation with multiplier in
π(9iy. This would appear to be satisfactory from a physical point of view, since it
means that manifest covariance is achieved only if a Lorentz transformation is
accompanied by a gauge transformation of the second kind, i.e. a unitary element
in π(2I)r. This possibility is omitted from the usual analysis of Lorentz invariance in
quantum mechanics [18].

4. A Model in Four Dimensions

Let J^o be the Fock space of the free field of mass zero (obeying Π φ = 0), and φF

the Fock representation of the field. Let Φ x be the real solution of [JΦx(x, t) = 0
such that Φx(x,0) = 0 and Φx(x,0) = ρ(|x|). We choose ρ(|x|) to be a C°°-function,
such that ρ(r) = q/r, r^r0. Let π 0 be the displaced Fock representation: φo(x,t)
=~-φF(x,t) + Φx(x,t); we note that, from the wave-equation, Φx(x,0) = 0 and
Φ x (x,0)= P 2Φ x(x,0) = 0if |χ| > r 0 . Thus, the wave is stationary outside |x| = r 0 at
t = 0. The displaced Fock representation thus describes a localized state.

The function ρ(k), near k = 0, behaves as q/k2. We can easily check that φ0 is
not the Fock representation. Indeed,

+ i$(ΨΨ'-ΨΨr)d3x.

In our case

ψ=r-Φ x , φx=ψ=ψ' = 0.

Hence

behaving like
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Hence Φ x is not in JΓ, and φ0 is not equivalent to φF. Clearly one (or two) more
powers of (— V2)112 would ensure convergence; therefore <P°ΦX,P°ΦX) < oo and
< Φ x , P ° Φ x > < o o . Thus, Φ x is a wave of finite energy. Similarly, one or two
powers of fc1? fc2, or fc3 ensure convergence. Thus PΦ X e Jf. Hence Φ x is a cocycle
of finite energy for IR4. Since Φ x is rotation invariant, it defines a cocycle
ψg = Φx-UgΦ* for IRxE 3 . One checks that Φ x -U{λ)Φxφjf for any pure
Lorentz transformation, so we are in the situation of Sect. 5, with G = £?\,
G0 = IRxIE3.

Let π 0 be the representation of the CCR defined by Φ x (denoted π φ x in
Sect. 1). Scale automorphisms generated by (x, ί)->(2x, λt\ are not implemented in
π 0, and so scale invariance is spontaneously broken in π 0, leading to the possibility
that non-zero mass may appear. The scale of mass is fixed by the parameter
m = {Φx,P°Φx}, a reasonable notation since < Φ x , P Φ x > = 0 .

We can now proceed with the construction in Sect. 3. Here G/G0=Ψ is
isomorphic to the mass-shell parametrized by p = mv/(l —1;2)1/2, with
(p0)2 — p 2 =m 2 . Choose ι;o = (l,0,0,0) and boosts ft, pure Lorentz transformations.
In this model, ω = 1.

The Hubert space of the covariant representation is Jf = J J^vdμ(v). The

invariant measure is (l — v2y2d3v = m~2(^2 + m2)'1/2d3^. There is a natural
isomorphism between 2tf and L 2(R 3,d 3p(p 2 + m 2)~ 1 / 2)® J^F = § where J^F is the
Fock space on which π 0 acts, and to which each J ^ is isomorphic. The
isomorphism maps ψ{v)® Ψeξ> to ψ(υ)ΨeJ^. We recognise § as the natural space
for describing a particle of mass m in interaction with a massless Boson field.

We might hope that this theory gives a good description of asymptotically free
particles of mass m in interaction with massless Bosons.

Many other cocycles for IR x IE3 exist the one we have chosen, behaving as q/r,
Γ-H> oo, has the virtue that the field is stationary even if not zero, outside a compact
set.
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Appendix

Lemma. Let G be a group with a compact subgroup K and let its 1-cocycles be of the
formΩ— U(g)Ω; then the function Ω may be assumed to invariant under the action of
K.

Proof. Suppose ψ is a 1-cocycle of G. Then ψ' defined by

where φ = j ψ(k)dki is a cohomologous 1 -cocycle which vanishes on K. Since ψ' is
K

also of the form Ω — U(g)Ω we may assume that Ω is invariant under the action of
K.
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Proposition. For mass m = 0 and spin sφO Ή 1 ^ , L2(IR3,d3p/|p|)) = 0.

Proof. Lomont and Moses [19] give the following realisation of the Lie algebra of
the compact subgroup SO(3):

J1=s-z(px V\,

J' ('xeh

where p = |p|
The lemma allows us to assume that the cocycle function Ω is invariant under

the action of SO(3). Therefore Jfi = 0 i - 1,2,3. Then it follows that

Pi J - Pl J
2 P + Pi ' p + p /1

from which we can deduce
dp3 dp2

sΩ = 0 so that Ω = 0 as

δ d
p 2 ~ P-\~

dp

Ω = 0. This implies that
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