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Abstract. In a previous work Hénon investigated a two-dimensional difference
equation which was motivated by a hydrodynamical system of Lorenz.
Numerically solving this equation indicated for certain parameter values the
existence of a “strange attractor”, i.e., a region in the plane which attracts
bounded solutions and in which solutions wander erratically. In the present
work it is shown that this behavior is related to the mathematical concept of
“chaos”. Using general methods previously developed, it is proven analytically
that for some parameter values the mapping has a transversal homoclinic orbit,
which implies the existence of the chaotic behavior observed by Hénon.

1. Introduction: The Hénon Mapping

In a recent work Hénon [2] investigated the dynamics of the mapping of the plane
into itself defined by the difference equation:

_ 2
Xep1 =yt 1—axg,

1

Vier1=bx;, W
where a, be R. Numerically solving (1) for a variety of initial values, he found this
system to exhibit a very complex type of behavior. In particular for certain values of
a and b Hénon found the existence of a “strange attractor” in (x,, y,) phase-space,
that is, a region in the plane which attracts bounded solutions from outside under
iteration of (1), and in which trajectories of (1) exhibit essentially random behavior.
The implications of such behavior are significant. Once a strange attractor is
observed, very unpredictable behavior of solutions will result. This is due to a lack of
global stability of any solution, and more importantly, an extreme sensitivity to
initial conditions. Ruelle and Takens [8] have suggested that such behavior is
related to turbulence in the flow of fluids.

The principal motivation for consideration of (1) was an analysis conducted by
Lorenz [4] upon a system of partial differential equations describing finite am-
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plitude convection in a fluid heated from below. In this work Lorenz converted
the problem into a system of three ordinary differential equations and then solved
this system numerically. For certain parameter values the resulting trajectories
appeared to oscillate seemingly at random around either of two equilibrium
points, alternating between them. The Lorenz system thus appeared to exhibit
a random type of behavior.

With Lorenz’s work in mind, Hénon attempted to develop a mathematical
model which exhibits the same qualitative features as the Lorenz system, but which
is more tractable to analysis. Such a model was constructed by consideration of a
Poincaré map which can reduce a three-dimensional continuous problem to a two-
dimensional discrete mapping. Hénon thus posed the model (1) as a qualitative
approximation to the Lorenz system.

It is important to note that Hénon’s observations concerning the complex
behavior of (1) were based upon numerical studies of the system, not upon exact
analytical methods. The purpose of this work is to provide just such a mathematical
proof of the behavior observed by Hénon. In particular, we shall show analytically
that (1) satisfies sufficient conditions for the system to be (what has been termed)
chaotic.

2. The Concept of Chaos

The phenomenon of chaos is relatively new and not very well understood. Although
chaotic forms of behavior had previously been observed in a variety of different
settings, the first to use the term “chaos” were Liand Yorke [3], who considered the
general scalar difference equation:

X =) [R-R. @)

A precise definition of chaos is presented in their work, but the essential
implications of chaos are the following: (i) there exist an infinite number of periodic
solutions of different periods; (ii) there exists an uncountably infinite set of points
which exhibit random behavior when iterated under (2) ; and (iii) there is an extreme
sensitivity to initial conditions. Hence there appears to be an intimate connection
between the concept of chaos and the type of behavior exhibited by (1). Indeed,
Ruelle and Takens have also proposed that chaos is the mathematical analogue of
turbulence in the flow of fluids. It is also interesting to note that studies of the Lorenz
system were the primary motivation for the investigations that led to the results of
Li and Yorke.

In addition to defining chaos, Li and Yorke present a theorem giving sufficient
conditions for its existence in problems of the form (2). Although this theorem has
proven useful in explaining the complex behavior exhibited by many scalar
equations, it is not extendable to multidimensional problems of the form:

Xpo1 =F(X) FR-R" 3)

(although the concept of chaos is extendable).
A theorem which does in fact provide conditions for chaos of (3) was previously
proven by Smale [9] (although he did not refer to it by that name). Suppose Z is a
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conditionally stable fixed point of (3) where F is a difftfomorphism. That is, F(Z)=Z
and some eigenvalues of the jacobian of F at Z exceed 1 in norm, and the rest are less
than 1 in norm. Under these conditions there exist stable and unstable manifolds of
F at Z. The stable manifold is comprized of those points X, whose positive limit set
is the point Z, ie, X,—Z as k—o0. Also, X, is in the unstable manifold if the
negative limit set of X ;is Z,i.e., X _,—Z as k—oco. [Note that X _, can be evaluated
by iterating the inverse of (3) since F is a one-to-one mapping.| Suppose these
manifolds intersect transversally (i.e., non-tangentially) at some point X, other than
Z. The resulting trajectory {X,},_* _ has the properties X,»Z and X _,>Z as
k— o0, and is called a transversal homoclinic orbit of F. If we let FM represent the
composition of F with itself M times, Smale has proven the following.

Theorem 1. If F is a diffeomorphism and has a transversal homoclinic orbit, then there
exists a Cantor set ACR" in which FM is topologically equivalent to the shift
automorphism for some M.

The existence of such a shift automorphism implies that within the set A there
exists a dense collection of periodic solutions of different periods of (3) and an
uncountably infinite collection of points which are asymptotically aperiodic. (There
is also a sensitivity to initial conditions.) Thus a transversal homoclinic orbit implies
a form of chaotic behavior similar to that defined by Li and Yorke and similar to
that described by Hénon for the problem (1). In the next section we shall in fact show
that (1) has a transversal homoclinic orbit for some parameter values, thus proving
analytically the behavior observed by Hénon.

Although Theorem 1 is of theoretical interest, it is extremely difficult to apply
directly to any particular problem. In order to check the hypotheses of this theorem,
the stable and unstable manifolds must first be computed, and then shown to
intersect transversally. In most cases these manifolds cannot be computed exactly.
At best the eigenspaces tangent to them at the fixed point Z can be used as an
approximation. In order to show a transversal intersection, these approximations to
the manifolds can be discretized and then iterated under (3) hopefully producing a
non-tangential intersection. This must usually be done visually with the aid of
computer graphing devices. This was the approach used by Curry [1] in numerical
studies of (1). In this work very careful numerical techniques were employed to
demonstrate what is apparently a transversal homoclinic orbit. It is clear, however,
that, although these findings strongly suggest the existence of such an orbit, they do
not constitute an analytic proof, which is what we desire.

Another theorem which provides conditions for chaos of multidimensional
problems of the form (3) was previously proven in [7]. Suppose Z is an unstable
fixed point of F such that all eigenvalues of the jacobian of F at Z exceed 1 in norm.
That is, no stable manifold exists. In this case the unstable manifold locally contains
all points inside B,(Z), the ball of radius r around Z, for some r>0. Also, suppose
there exists an initial point X of 3) with X e B(Z), X , £ Z,X ,,=Z for some M >0,
and non-zero jacobian of F at each X, for 0<k <M. Such a fixed point Z may be
called a snap-back repeller. Note that F cannot be one-to-one if a snap-back repeller
exists. In [7] the following is proven.

Theorem 2. If F is differentiable and has a snap-back repeller, then (3) is chaotic.
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Here the definition of chaos is the same as that characterized by Liand Yorke. In
fact, it is proven in [ 5] that Theorem 2 is (roughly) a generalization of their theorem.
Theorem 2 is also closely related to Smale’s conditions for chaos. That is, it is the
complementary result for the case when no stable manifold exists. This can be easily
seen by investigating the positive and negative limit sets of the point X in the
definition of a snap-back repeller. Since X ,, = Z and Z is a fixed point, we must have
X, =Zforall k=M. Also, since X ,€ B,(Z) and B,(Z) is in the unstable manifold, we
can find a sequence of X,’s for k <0 where X, —Z as k— — co. The orbit {X,}/ >~ is
analogous to a homoclinic orbit of F. In addition it is apparent that the jacobian of
F(X,) will be non-zero for all k. This is analogous to transversality. The existence of
such a sequence {X,};° _ may be taken as an equivalent characterization of a
snap-back repeller Z.

There are, however, important practical differences between transversal homo-
clinic orbits and snap-back repellers. The former, as we have seen, is extremely
difficult to compute. Snap-back repellers, on the other hand, are relatively easy to
find, often requiring only finite iteration processes. The investigations in [ 7] show
the simplicity with which snap-back repellers were computed for a number of
problems of the form (3). (In the following section a simple method of computing
them will be demonstrated.)

It would therefore be convenient if chaotic behavior could be proven with the
use of Theorem 2 rather than Theorem 1. Unfortunately in the problem at hand,
Theorem 2 is not applicable since both stable and unstable manifolds exist. We shall
therefore require another result previously developed in [6]. In certain circum-
stances the dynamics of a problem of the form (3) can be determined by reducing the
problem to one of lower dimension. This will be true when the higher dimensional
problem is a small perturbation of the reduced equation. In particular, the two-
dimensional problem:

Uiy =Sy, bvk) s

4)

Uyt = Uy
where f:IR* >R is differentiable, can be reduced to the one-dimensional equation :
Uy 1= f(u, 0) ®)
when b is close to 0. The following is proven in [6].

Theorem 3. Suppose (5) has a snap-back repeller. Then (4) has a transversal homoclinic
orbit for all |b|<e for some &> 0.

Since, for each fixed value of a, (1) can be written in the form (4), we can show the
existence of a transversal homoclinic orbit of (1) by first reducing it to a
corresponding one-dimensional problem of the form (5), and applying Theorem 3.
This is the method we shall use.

Note that Theorem 3 does not provide an explicit range of b values for which a
transversal homoclinic orbit exists, i.e., no estimate for ¢ is given. This is of minor
consequence to our analysis of (1) since we are primarily interested in the qualitative
features of the model. The precise parameter values for which Hénon investigated
the problem were chosen arbitrarily — to aid in a visual investigation of the strange
attractor.
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3. A Proof of Chaos for the Hénon Mapping

In order to apply Theorem 3 first note that (1) can be equivalently written:
Upy =bv,+1—au}, ©)
Uy = Uy
where x, =u, and y, =bv,. The dynamics of (6) must be identical to those of (1), i.e., if
(6) has a transversal homoclinic orbit so does (1). For each fixed value of a, (6) is now
of the form (4) where f(u,v)=v+1—au®. According to Theorem 3, (6) will have a
transversal homoclinic orbit for all |b] <e¢ for some ¢>0, if the problem:

Uy =1—aug =g(u,) (7

has a snap-back repeller. We shall show this for appropriate values of a, in particular
for a>1.55.

First observe that u* =[ — 1 +(1 4+4a)'/?]/2a is an unstable fixed point of (7), i.e.,
gu*)=u* and ¢'(u*)=1—(1+4a)"?< —1 for all a>0.75. Now if we can find a
solution {u, }, _ with notall u, =u* satisfying: (i) u, =u* for all k = M for some M ;
(i) u,—u* as k— —oo; and (iii) g'(u,) %0 for all k, then u* is a snap-back repeller.
[The condition g'(u,)=%0 is the jacobian condition required of the X,’s in the
definition of a snap-back repeller.] Such a sequence can be generated in the
following manner. If we let u, =u* then, since u* is a fixed point of (3), u, = u* for all
k=0. In addition u, for k<0 can be constructed by iterating the multi-valued
inverse of (7):

uk~1=i[(l‘_“k)/a]lu:g;l(uk) (8)

provided u, <1. With uy=u* we have two choices for u_, according to (8).
Choosing the plus sign in (8), however, will not yield an appropriate sequence, since
we would have u_, =g (uy)=¢; ' (u*)=u*. Therefore define u_, =g~ '(u,). Note
that u_, = —u*. Thereafter let u, _, =g "'(u,) in (8) for all k< —1.

We shall show that this sequence {u,}7_ _ satisfies u,—u* as k—— oo (for
appropriate values of a). Note that since u_, = —u* <u*:

u_y=g;"'(w_)egy [(—o,u*]C*, +x).

Let us find those values of a for which u_,<1. Since u_,=—-u*=[1-(1
+4a)'?]/2a, then by (8) u_,=g; (u_)=[1+u*)/a]V? So, u_,<1 implies
w*<a—1, or [—14(1+4a)V?]/2a<a—1. This is equivalent to a®—2a*+2a
—2>0. It can be shown that all values of a> 1.55 satisfy this equation, and thus
u_,e(u*, 1) for these values of a. We restrict the remainder of the discussion to the
problem when a> 1.55.

Now because u_,e(u*, 1) for these a values:

u_y=g3"w_)egy [w*, H]CO,u¥)
and consequently u_,€(0, u*). Also:
u_y=g7 " (u_3)eg LOuMICo Tu_, u*)]Clu*,u_,)
and so u_,e(u*,u_,). This implies:

u_s=g5 (u_egi [w* u_)]Cu_s u*)
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Fig. 1. Inverse iterates of u, , , =1 —auf for a>1.55

and hence u_se(u_,,u*). Continuing in this manner, it is apparent that the
sequence {u,}y_ _, thus constructed satisfies the following: u_,, is a decreasing
sequence bounded below by u* and u_,,_, is an increasing sequence bounded
above by u* (Fig. 1). There must therefore exist a point «.e (0, u*] which is the limit of
U_,,_,,and a point felu* 1) which is the limit of u_,, as k—oo.

We shall show o=f =u*. Since g(u_,, ,)=u_,,and gu_,,)=u_,, ,, it must
be that g(a)=f and g(ff) = o. Consequently, g(g(«)) =0, and o is thus a fixed point of
the function geg. But for a> 1.55 there are precisely four fixed points of g=g (since
this function is a quartic polynomial) each of which can be computed exactly:

[—1+(1+4a)"?]2a and [1+(4a—23)'2]/2a.

It is clear that, for a>1.55, [~ 1 —(1 +4a)*/?]/2a and [1 —(4a—3)}/?]/2a are both
negative, and thus neither of these can equal ae(0, u*]. Also, suppose

[1+@a—3)"*]2asu*=[-1+(1+4a)""?]/2a.

Then, (da+1)"*=2+(4a—3)"'2. Squaring each side of this inequality implies
4(4a—3)"*<0 which is a contradiction for @>1.55 This implies
[1+(4a—3)"*]/2a>u*, Therefore it must be that a=[ — 1 +(1 +4a)'/?]/2a=u*,
and f=g()=u* Hence u,—u* as k— — co.

So far we have shown that the sequence {u, }," = satisfies (i) and (ii) from above.
[t can easily be shown that (iii) is also satisfied. Since g'(u) = — 2au, the only possible
way for g'(u,) =0 is if u, =0 for some k. But from the manner in which the sequence
was constructed: u,=u* for k=0; u_,=—u*<0; u_,>u*>0; u_,>0; and
ue(u_s, u_,)C(0,1) for all k< —3. Thus the sequence also satisfies (iii), and u* is
therefore a snap-back repeller of (7). Now applying Theorem 3, we see that for each
a>1.55 Eq. (6), and hence Eq. (1), have transversal homoclinic orbits for all |b] <& for
some ¢>0.

4. Extending the Analysis

For each a>1.55 we have proven the existence of a transversal homoclinic orbit,
and hence chaotic behavior, of (1) for all |b| <e. The region of a values for which this
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Fig. 2. For b=0and 1.44 <a < 1.55 the strange attractor of (6) is broken into two pieces around the fixed
point (u*,u*). Each is a segment of u, =1—av}?

type of behavior can be proven, however, can be extended below 1.55 in the
following manner. A point ZeR" is a periodic point of period p if FP(Z)=Z but
FXZ)# Z for 1 <k <p, where F* represents the composition of F : IR"—R" with itself
k times. Since such a Z may be viewed as a fixed point of F”, we may have the exis-
tence of stable and unstable manifolds that intersect transversally at some point
other than Z. This also implies the existence of the type of chaotic behavior de-
scribed in Theorem 1. This is precisely what occurs for Egs. (6) and (1) for smaller
values of a (and some b >0). We can show this by proving that the fixed points of g7,
where ¢ is defined in (7), are snap-back repellers. In particular this can be done
for the fixed points of g>=g-g which were computed in the previous section:
[14+(4a—23)"*]/2a. Following the analysis in Sect. 3, it can be shown that each of
these is a snap-back repeller of g-g for all a>1.44. Thus by Theorem 3 we can
conclude the existence of a transversal homoclinic orbit (for a periodic point) of
(6) or (1) for some b>0. For each such a value this proves the existence of chaotic
behavior of (1) for all |b| <¢ for some ¢>0. Continuing in this manner, the same
can be shown for even smaller values of a.

5. Conclusions

In the previous analysis we have analytically proven the existence of a transversal
homoclinic orbit of (1) for small values of b and appropriate values of a, by treating
this equation as a small perturbation of the simplified problem with b=0. Although
this verifies the existence of a chaotic Cantor set A described by Theorem 1, this does
not prove that A attracts points under (1). It may be possible, however, to conclude
such behavior by again reducing the analysis to the problem with h=0. For
example, for 0=a<2 and b=0, the set of initial points (ug, vy)e I x I, where
I=[—1, 1], leads to solutions contained within the one-dimensional invarient
curve: u, =1 —av} for v,el. In fact (x,, y,) lies on this curve. Hence the region
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Ix1 is a “trapping region”. We should thus expect the phase-plane portrait of
solutions to be “close” to this curve for all |b| <e. Hénon’s numerical studies seem
to corroborate this conjecture.

It is also possible to show that for those values of a for which (7) has a fixed point
which is a snap-back repeller, the chaotic set of attraction contains the fixed point.
For the problem (6) with b =0 the same must be true of the chaotic attracting set
within the invarient curve: u, = 1 —av;. We may therefore expect this to be the case
when b is close to 0 as well. On the other hand, for those a values for which chaos
occurs but for which the fixed point is not a snap-back repeller, the chaotic
attracting set of (7) appears to be broken into pieces around the fixed point. In
particular for 1.44 <a < 1.55 the two periodic points of period 2 are each snap-back
repellers, but the fixed point is not. In this case the chaotic set of attraction for (7) is
broken into at least two pieces each of which contains one of the periodic points, and
neither of which contains the fixed point. Here points are mapped in a chaotic
manner alternating from one piece to the other. This must again be the case for the
two-dimensional problem (6) with b=0 inside the chaotic attracting curve: u,
=1—av} (Fig. 2). It is therefore likely that the strange attractor of (1) for these
values of the parameter a and for small values of the parameter b is also broken into
at least two pieces. Numerical studies of (1) seem to indicate that this does in fact
occur. This behavior has also been observed in several other numerical in-
vestigations of discrete mappings modelling a variety of natural phenomena, but
few analytical results have been obtained,
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