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Abstract. We prove the global Markov property for the Euclidean measure
given by weak trigonometric interactions. To obtain this result we first prove a
uniqueness theorem concerning the set of regular Gibbs measures correspond-
ing to a given interaction.

1. Introduction

The interest in extending the theory of Markov processes to the case where the
time parameter is more than one dimensional, the so called Markov fields, arises in
several domains, in particular in connection with problems of statistical me-
chanics, information theory and quantum field theory. The two main problems in
the theory of Markov processes, the existence and uniqueness of the limit
distribution and the question of the global Markov property are also main
problems in the theory of Markov fields. For instance the question of the existence
of a limit distribution corresponds in statistical mechanics and quantum field
theory to the question of the existence of a Gibbs measure, while the uniqueness
corresponds to the question whether this Gibbs measure defines a pure physical
phase, non uniqueness indicating phase transitions.

The global Markov property on the other hand implies in statistical mechanics
the existence of the transfer operator, and in quantum field theory it implies that
the field theory is canonical and the zero time fields generate a maximal abelian
subalgebra.

In this work we first prove that in the case of .the Euclidean fields on IR2 with
weak trigonometric interaction one has uniqueness and also the global Markov
property.

Concerning uniqueness corresponding results were proved in certain lattice and
continuous models of statistical mechanics first by Dobrushin [13] (for further
discussions see [14] and [15]).
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Concerning the global Markov property this is proved for some lattice models
by us in cooperation with Olsen [24] utilizing the ideas of the present paper.

The global Markov property for the Euclidean quantum field ξ(x) in R2 is the
following. Let C be any piece wise C1 -curve such that 1R2 — C consists of two
components Ω+ and Ω~. Let /+ and /_ be any measurable functions of the field
ξ(x) which are measurable in Ω+ and Ω~ respectively, ς has the global Markov
property iff

E(f+f.\C) = E(f+\C)E(f_\C), (1.1)

where E(f\ C) is the conditional expectation of / with respect to the σ-algebra
generated by C ("given all observations on C, observations within Ω+ are
conditionally independent of those within Ω~"). By taking C from the family of
lines orthogonal to a fixed direction we see that (1.1) implies that ξ generates a
Markov process in this direction.

Nelson observed [1] that (1.1) holds for the free Euclidean field as well as the
nonhomogeneous random fields obtained by using multiplicative functionals of
the free field. These are the so-called space-time cut-off quantum fields with
polynomial [2], exponential [3] or trigonometric [4] interactions. The main
interest in quantum field theory is naturally in the corresponding homogeneous
(i.e. Euclidean invariant) random fields obtained as limits (the thermodynamical
limit) of the above models. That these limits are Markov fields in the sense that
(1.1) is satisfied whenever C is a bounded curve such that R2 — C has two
components, was first observed by Newman [8], who called this property the
"local Markov property" (see also e.g. [9], [25]). For other properties weaker than
the global Markov property see [6] and [10]-[12].

Let us now shortly describe the methods by which we prove our results,
starting with the one about the uniqueness of the Gibbs measures. The measures
we consider are of the type (E0( )= j dμ0)

dμΛ = E^(e~υ-Γle-υ-dμQ. (1.2)

where dμ0 is the free Euclidean field measure on S'(IR2) [mean zero and covariance
( — A H-w2)"1], and UΛ is a local space-time cut off interaction, so that Λ^UΛ is an
additive map from the bounded Borel subsets of 1R2 into I}(du0) with
e~UΛεl}(dμ0) and UΛ measurable with respect to the σ-algebra ^ Λ generated by
the fields with support within Λ. A Gibbs measure associated with UΛ is any
measure which is locally absolutely continuous with respect to μ0 and such that
the associated conditional expectation of functions measurable within A with
respect to the σ-algebra &dΛ, coincides with those computed with μΛ instead of μ,
shortly

) = E μ A ( f \ d Λ ) . (1.3)

Such measures are also said to satisfy the DLR-equations, see [13, 20, 16]. In
particular any weak limit point of measures of the form μΛ is a Gibbs measure and
one sees that any Gibbs measure has the local Markov property. A Gibbs measure
is defined to be pure if there is no other Gibbs measure absolutely continuous with
respect to it. We show, using the local Markov property and the reverse martingale



Uniqueness and Global Markov Property 97

theorem, that purity of μ is equivalent with Eμ(f\dΛ)-+E(f) μ-almost surely as
/I JIR2. These concepts and the results are given in Sect. 3. The actual proof of the
convergence

Eμ(f\dΛ)-+E(f)

uses the following basic idea. By (1.3) and the definition of μΛ we have

e (1.4)

On the other hand one obtains a more explicit expression for the right hand side in
the following way.

Let C = dΛ and let Pc(x, z) be the Poisson kernel associated with the Dirichlet
problem

(-J+m2)ι/£(x) = 0, xeIR2-C

and the boundary condition

τ/£(x) = 0(x), xeC.

Then for geC0(IR2) we have that ψ^(x)= j Pc(x,z)g(z)dz. On the other hand we
c

prove that, for xeIR 2 — C, ξ-*ψξ(x) is a μ0-measurable linear function and in
fact with the help of the Gaussian random field x-+ψ^(x\ where ξ is the free
Euclidean field, it is possible to give an explicit formula for E0( | C) by

EΌ(f\C)(η) = Eμc(f(ξ + ψ%) (1.5)

for μ0-almost all η, where μ^ is the free (Gaussian) measure with Dirichlet boundary
conditions on C. That is μ£ is tne Gaussian measure of mean zero and covariance
( — Λc + m2)'1, where Δc is the Laplacian with Dirichlet boundary conditions on
C.

Introducing then (1.5) into (1.4) we get

EμίιA(fi) (1.6)

with

dμ^(ξ) = Eμc(e-Ly)^e-u^dμζ(ξ)9 (1.7)

where for any function g(ξ) on 5'(1R2) we use the notation gη(ξ) = g(ξ + ψ6

η

Λ) For
the family of functions /(ξ)ΞΞeί<ξ'φ>,φeS(IR2), we have then

E^'^ldΛ) (η) = el< ̂ Λ'φ> j eί<ξ>φ> dμ^(ξ) . (1.8)

Thus the proof of Eμ(f\dΛ)-+E(f) as /L|IR2 amounts to the proof of
A) <φ^, φ>->0 for μ — a.e.ff,
B) μ^^μ, weakly as /IjlR2, for μ — a.e.η.
The proof of A) is obtained under the condition that μ be a Gibbs measure

satisfying a suitable regularity condition (second moments bounded by those of
some free Euclidean field : this condition is verified in all applications), by using
L2(<iμ)-estimates on the field ψη(x). This is done in Sect. 2, where we prove in fact
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that, for μ — a.Q.η, φ£(x) goes to zero uniformly in x exponentially fast as the
distance from x to C tends to infinity.

The proof of B) is obtained for the choice of interaction

UΛ(ξ) = λ$:cos(aξ(x) + θ ) : d x (1.9)
A

with λ, α, 0 real, α2 < 2π, 0 ̂  θ < 2π and λ sufficiently small (depending on α and m).
The method of the proof is an adaption of the cluster expansion method first
introduced by Glimm, Jaffe and Spencer [2] for the polynomial interaction and
developed by Frohlich and Seiler [4] for the trigonometric interaction (1.9). We
need, in order to prove B), to extend the method by Frohlich and Seiler to cover the
case of the interaction Uη

Λ(ξ) for μ-almost all η, rather then of the UΛ(ξ) interaction
(1.9), where we recall that U2(ξ)= UΛ(ξ + ψ^). The technical estimates required for
this extension are all given in Sect. 4, which is the most technical section of this
paper. For the reader's convenience we have tried to keep the notations in this
section and the proofs as close as possible to the corresponding one in [4].

In Sect. 5 we combine in the described way, the results of the Sect. 2, Sect. 3 and
Sect. 4 to yield the uniqueness result for a Gibbs measure associated with the
interactions (1.9).

In Sect. 6 we prove the global Markov property for the trigonometric
interactions. The ideas of this proof are the following. Let C be a fixed piecewise
C1 -curve and μ a Gibbs measure for the trigonometric interaction. We assume that
IR2 — C consists of two components Ω+ and Ω~ . Let A be a bounded subset and/±

be measurable in Λr\Ω± respectively. By the definition of a Gibbs measure we then
have

(1.10)Eμ(f+f_\CvdΛ) = EμA(f+f_\CvdΛ)

and by the global Markov property of μΛ we have that (1.10) is equal to

E(f+\CudΛ)E(f_\CudΛ)^E(f+\CudΛ)E(f^\CudΛ). (1.11)

If now μc

Ά is the measure μ conditioned by ξ = η on C then (1.11) is equal to

Eμc(f+\dΛ)Eμc(f_\dΛ). (1.12)

Now μc

n is in fact a Gibbs measure corresponding to the interaction UΛ(ξ -f φ£).
Hence we know that

(1.13)

if and only if μ^ is a pure Gibbs measure for the interaction UΛ(ξ + ψ^).

We now proceed to prove that, for μ-almost all η, μ^ is pure by extending the
estimates and techniques for establishing uniqueness developed in Sect. 5 to cover
also this situation. Hence we have the convergence (1.13) which by the equality of
(1.10) and (1.12) proves that

Eμ(f+f.\Q = Eμ(f+\C)Eμ(f_\C) (1.14)

i.e. the global Markov property.
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Let us now add some remarks on our results and relations to other works.
Concerning the uniqueness we show that there is a unique Gibbs measure within
the class of regular random fields (i.e. fields with two point functions dominated by
some free two point functions). We also show for the same trigonometric
interaction that with boundary condition ξ = η on dΛ, where η is any fixed element
in S'(]R2) such that ψd

η

Λ(x) exists for xeIR2 - dΛ and converges locally uniformly to
zero as /LflR2, the corresponding measures converge weakly to this Gibbs
measure, which is thus independent of boundary conditions. Results on inde-
pendence of some particular boundary conditions were obtained for the poly-
nomial interactions in [26]-[28].

Concerning the global Markov property we remark that consequences of it
have been discussed in several papers, based on postulates i.e. assuming it to hold
together with some general properties, see e.g. [7, 16, 6a] ([5] contains further
references). In the present case all assumptions hold, hence all conclusions are now
proven for the trigonometric interactions. In particular we have that the corre-
sponding quantum fields are canonical ones and the time zero fields generate the
physical Hubert space, i.e. the weakly closed algebra generated by the time zero
fields is a maximal abelian algebra ("cyclicity of the time zero fields"). From the
global Markov property it follows also, as pointed out by us in previous work ([5,
17, 19], to which we refer for more details) that the physical Hamiltonian is a
second order elliptic variational operator, i.e. an infinite dimensional analog of the
Schrodinger operator of quantum mechanics. In fact the whole "Schrodinger
representation" of this theory holds, which completely justifies the ideas of the
canonical formalism [18] for this field theory. Let us finally remark that the
essential ideas for proving the global Markov property have been applied by us, in
collaboration with Olsen, to the case of the lattice model of statistical mechanics,
yielding the first proof of the existence of a transfer matrix in this case [24].

2. Regular Random Fields on IR2

d2 d2

Let A = -Γ-^ -f —"2 be the self-adjoint Laplacian on L2(IR2) and let Gm (x — y) be the
CX -I UXj

kernel of the operator ( — zl+m 2 )" 1 , where m>0. Let ρ be a positive bounded
Borel measure of bounded support in IR2 and set

£>H ί Gm(x-y)dQ(x)dQ(y). (2.1)

Since Gm(x) is a positive continuous function for X Φ O and Gw(x)-*Ό as |x|-»oc,
Gw(x — >•) is Borel-measurable and therefore Em(ρ) is well defined with values in the
extended positive half line. We say that ρ has bounded energy if Em(ρ) < oo. Since ρ
has bounded support, we see that if Emo(ρ) < oo for some positive number m0 than
Em(ρ) < GO for all m >0. We denote the set of positive bounded Borel measures on
IR2 with bounded support and bounded energy by Mb and we denote its linear
span by Mb. We see that Mb and hence Mb do not depend on the positive number
m.

Let S'(IR2) be the space of tempered distributions on IR2 and let S(IR2) be its
dual. Let μ be a Borel probability measure on S"(IR2), where S"(IR2) is given the
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Borel σ-algebra B generated by the open sets in S"(IR2). The corresponding S"(IR2)-
valued random variable ξ(x) is called a tempered random field on ERA We say that a
tempered random field ξ(x) is regular if there exist a number m > 0 and a constant c
such that for any φeS(IR2) we have

, (2.2)

where <φ, ζy is the dualization between S(IR2) and S'(IR2). Note that if m^m 0 >0

then Em(φ)^Emo(φ}^ — Em(φ], so that the condition (2.2) is independent of m.
\m 0 y

Let now ξ(x) be a fixed regular random field on IR2 and let μ be the
corresponding probability measure on S'(IR2). It follows then from (2.2) that
ξ-><ρ,O for ρeMfe(IR2) is in L2(μ) = L2(,S'(IR2),μ). Hence for any ρeMb(IR2) we
may take <ρ, ξy to be Borel measurable by modifying it at some set of μ-measure
zero. For any Borel set A C IR2 we define Mb(Λ) to be the subspace of Mb(IR2)
consisting of measures ρeMfe(IR2) with supp ρC/L Moreover let BΛ be the σ-
algebra of subsets of S'(IR2) generated by the linear functions ς—Kρ,ξ) with
ρeMb(A). The map A-*BΛ is then a monotone map from the σ-algebra of Borel
subsets of IR2 into the ordered set of σ-subalgebras of B = BR2. Therefore if E( \A)
is the conditional expectation with respect to the σ-algebra BΛ, then A-*EΛ is a
monotone map from Borel subsets of IR2 into the ordered set of orthogonal
projections on L2(μ). Hence if An is a monotone (increasing or decreasing)
sequence of Borel subsets of IR2, then E( \An) is a monotone hence strongly
convergent sequence of orthogonal projections in L2(μ). Since An is monotone we
have in fact that E(f\An) for /eL^μ) is a uniformly integrable martingale and
therefore by the martingale convergence theorem E(f\An) converges almost surely
and also strongly in L^μ). For the martingale convergence theorem see e.g. [29].
Hence we have the following Lemma.

Lemma 2.1. Let An be a monotone (increasing or decreasing) sequence of Borel
subsets o/IR2. Then for anyfeL^μ) we have that E(f\An) converges μ-almosΐ surely
and also strongly in L1(μ). D

Let now C be a piecewise C1-curve in IR2, and let 0eC0(IR2), where C0(IR2)
denotes the continuous functions with compact support on IR2. Let ιp^(x) be the
unique solution of

( — A +m2)ψ^(x) = Q for xelR2 — C , (2.3)

with

ψg(z) — g(z) for ZG C,

where m is the positive number occurring in (2.2).

It is well known, see for instance [30], that ψfa) exists and, for fixed xelR2 — C,
that g-*ip^(x) is a positive continuous linear function on C0(IR2). The correspond-
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ing measure is absolutely continuous with respect to the natural measure dz on C
i.e.

tf(x)=$Pc(x,z)g(z)dz, (2.4)
c

where the Poisson kernel Pc(x, z) is a measurable function on IR2 x C. For xφC we
call ψξ(x) the linear function ξ—>φ^(x)of the random field given by (2.4) i.e.

ψC(x)=$Pc(x,z)ξ(z)dz.
c

We then find

J ψc

ξ(x)ψc

ξ(y)dμ(ξ) = J JP^z^z^z^P^z^z^, (2.5)
S'(R2} c C

where

S2(x,y)=Jξ(x)ξ(y)dμ(ξ) (2.6)

is the second moment of μ. From (2.2) we have that, for /eS(IR2),

j j S2(x, y) f(x) f(y) dxdy ^ cEm(f). (2.7)

Therefore if ψc

ξ(φ)= Jφ£(x)φ(x)dx for φeS(IR2) and if supp</>ClR2-C, then by

(2.5) and (2.7) we have that

f |^(φ)|2rfμ(ξ)^c|JXc(x,j;)φ(x)φ(3;)^^ (2.8)
S'OR2)

with

Kc(x,y)= ί JPc(x,z1)GII1(z1-z2)PcO',z2)dzlίίZ2. (2.9)
C C

Since Gm(x —z), zeC is a solution of (2.3) with boundary condition g(w)
= Gm(w-z), we get from (2.4) that for x and 3; in IR2-C

Kc(x,y)= ί Gm(x-z)Pc(j;,z)dz. (2.10)
c

We have from (2.9) that Kc(x,y) = Kc(y,x) and (-Δx + m2)Kc(x,y) = Q on 1R2-C
— {y}. Moreover from (2.10) and (2.4) we see that if xeIR2 — C then
Kc(x,z) = Gm(x — z) for zeC. This however implies that

Kc(x,y) = Gm(X-y)-Gc

m(X,y) (2.11)

where G^(x, y) is the kernel of the operator (— Δc + m2)~ \ Δc being the Laplacian
with Dirichlet boundary conditions on the curve C. It is well known that Xc(x, y) is
a bounded continuous function of x an y in IR2 — C. This follows from the fact that

G (x — y) and G£(X, y) are both of the form — — In |x — y\ +/(x, y), where /(x, y) is a
2π

bounded continuous function. Especially we get from (2.8) that if xφC then

x,x), (2.12)



102 S. Albeverio and R. H0egh-Krohn

where E stands for the expectation with respect to the random field ξ. From the
known behavior of Gm(x — y) and G£(X, y) we have that there is a constant b such
that

where d(x, C) is the distance from x to C. Therefore

E(\ψ^(x)\2) ^a\lnd(x, C)\ .e~md(x'C) (2.14)

where a — b-c.
Let now A be a compact subset of R2 — C, such that d(A, C)^ 1. From (2.14) we

then get

El $ \ψc

ξ(x)\2dx\ ^ά\A\e~m'd(A>C} (2.15)u /
where \A\ is the volume of A and rri <m. Hence we have the following lemma.

Lemma 2.2. Let ξ(x) be a regular random field on R2 so that

for any ρeMb. Let C be a piecewise C1-curve in R2 and let ψ^(x) be the solution of
the Dirichlet problem (2.3). Then, for any xeR2 — C, ς—»ι/^(x) is in L2(μ), where μ is
the probability measure on S'(R2) given by ς, and there is a constant a such that

E(\ψc

ξ(x)\2) ^ a\\n(d(x, C))| e~mdM.

Moreover if A is a compact subset o/ R2 — C such that d(A, C) ̂  1 then

D

Let now ψ satisfy the equation (— Δ+m2)ψ = Q for |x|<R. Let \p0 be the
function obtained from ψ by averaging with respect to rotations i.e.

Ψo(x)= ί ψ(σx)dσ. (2.16)
S0(2)

Since —A+m2 is invariant with respect to SO(2) we have that ( —Δ +m2)ψ0 = 0.
By rotational invariance we have ψ0(x) = φ(\x\) and ( — A 4-m2)φ0=0 gives us the
equation

φ"(r) + - φ'(r) = m2φ(r). (2.17)

(2.17) has a regular singularity at r = 0 and there is therefore a unique solution
φ0(r) of (2.17) defined for r^O such that φ0(0) = l. But then we have that

φ0(0) φ0(|x|) i.e., by the definition of φ0,

-— J ψΌ(x)dx = φ0(r).ψΌ(0). (2.18)
zπr |X| = r
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Now we observe that φ0(r)>0 for all r^O. (This is so because if we would like
φ0(a) = Q for α>0 then this would imply that ιp0(x) = φQ(\x\) is a solution of
(— A -f m2)ψo — 0 such that ψ0 = 0 for |x| = a. By partial integration we then would
get that

j \Vψ0

2dx=-m2 j |v>o! 2 dx, (2.19)

which is a contradiction.) Using now the translational invariance of — A -\-m2 we
have the following lemma

Lemma 2.3. Let ocm(r} = φ0(r}~1 where φQ(r) is the unique solution for r^O of the

equation <£>o(r)+ ~(PΌ(r} = m2(Po(r} sucn tnat <Po(0) = l Then if ψ is a solution of the

equation ( — Δ + m2)ψ = Q for \y — x\<R then

°~~*- ί ψ(y)dy
πr | X , = ,

forr^R. D

It follows from the fact that φ0(r) is a solution of

<PSW+ -<P'o(r) = ™2<Po(r) (2 20)

which remains bounded at r = 0 that ^;

0(0) = 0. From (2.20) we then get φ'ό(0) = ra2

hence φ'0(r)>0 for re(0, ε) for some ε>0. Now since φ0(r)>0 for all r^O we see
that at any point r0 where <pΌOb) = 0 one nas φ'ό(ro)>^ so ^na^ ̂ e function φQ(r)
has no local maximum and is therefore monotone increasing i.e. φ'0(r)^0 for all
r^O. Therefore αm(r) is monotone decreasing and thus from Lemma 2.3 we get,
with Q^r:

\Ψ(x}\2^°^- J \ψ(y)\2dy^^- J \ψ(y)\2dy.

Now since j dx = π(ρ + l ) 2 — πρ2 = 2π(ρ + ̂ )>2πρ we get by integrating
ρ^\x\^Q+ 1

the right hand side with respect to r, between ρ and ρ + 1 :

. (2.21)
πρ

From this we have the following lemma.

Lemma 2.4. Let αm(r) foe as in Lemma 2.3

T/zen if φ(x) is a solution of the equation ( — A +m2)ιp = Q in some open set
then for any xeΛ such that d(x,dΛ)>l we have
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Moreover βm(r) is a monotone decreasing function of r such that

as r— »oo. D

Let now ξ(x) be a regular random field on IR2, and let Cn be a sequence of
piecewise C1 -curves in IR2 which tends to infinity in the sense that

d(0,Cn)->oo. (2.22)

Then d(Λ, CJ-»oo for any bounded /IClR2. Let Λn be a sequence of bounded
subsets of IR2 such that Λn is contained in the interior of Cn. From Lemma 2.2 we
have for any α < m that

n

as n-»oo if d(./lM, Cπ)->oo. Thus the sequence of functions

converges to zero in L2(μ) and therefore there is a subsequence that converges to
zero μ-almost everywhere. Let ri be this subsequence, then

\2dχ__+Q (2.25)

as n'->oo, μ-almost everywhere. Let Λn^Λn such that d(Λn,dΛn)^2 and /ln is
contained in the interior of Cn.

By Lemma 2.4 we then have for xeΛn that

^)!2^. (2.26)

We may obviously take Λn so that τ, /' -»1 and from (2.25) and (2.26) we then
d(ΛΛ9 Cn)

have that

^/2d(^,cno sup i^Cn^i^o (2.27)
xeΛn'

for μ-almost all ξ.
We have proved the following theorem.

Theorem 2.1. Lei ξ(x) foe α regular random field on IR2, 50 ί/zαί there is a constant c
such that for all φeS(IR2)

If C is a piecewise C 1 -curve let \pc

g(x) be the solution of(—A+ m2) = 0 in IR2 — C with
the boundary condition \pc(z) = g(z) for zeC. Then for xφC, g-*ιpc

q(x) is a linear
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functional on C0(IR2) which extends to a μ-measurable linear function ξ-*\pc

ξ(x)
which is in L2(μ), where μ is the probability measure on S'(IR2) given by the regular
random field ξ(x).

Moreover if Cn is any sequence of piecewise C1 -curves in IR2 which tends to
infinity in the sense that d(0, Cπ)-» oo, and Λn any sequence of bounded sets in IR2 such
that Λn is contained in IR2 — Cn and d(Λnί Cn)—> oo as n-+co, then for any a<m there
is a subsequence ri such that

for almost all ξ. D

Let us now consider two piecewise C1 -curves C0 and C such that C0nC = 0.
Then for #eC(IR2)

is a solution of the equation

ψ = 0 (2.29)

in IR2-CuC0 such that

ψfc°(z) = 0 for zεC0,ψ
c

g>
c°(z) = g(z)-ψc

g°(z) for zeC. (2.30)

Thus

ψc

g'
c»(x) = J PCuCo(x, z) (g(z) - ψc

g°(z)}dz . (2.31)
c

Therefore for x^CuC0

Ψc

ξ'
c°(x)= \Pc<jCo(x,z)ξ(z)dz- $Pc^Co(x,z)ψc

ξ°(z)dz, (2.32)
C C

and by (2.2) and (2.8)

j Ivf Co(x)|2 dμ(ξ) ^ 2c J f PCuCo(x, z) Gm(z - z) FCuCo(x? z)^z Jz
c c

+ 2c Π PCuCo(x, z)KCo(z, 2)PCuCo(x, 2)ώd2 . (2.33)
C C

It follows from (2.33) that if d(x9 C)^ 1 then

£(|φ^Co(x)|2)^αe~m/d(x'C), m ; < m 5 (2.34)

for some constant a.
Hence we get the following lemma.

Lemma 2.5. Let ξ(x) be a regular random field on IR2 so that

for φeS(IR2). Let C0 and C be two piecewise ^-curves in IR2 and let

ψC c°(χ) = ψc

ξ^
c°(x) - ψc

ξ°(x)
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for x<£CuC0, where ιp^(x) is the solution of ( — Δ+m2)ιp = Q in IR2 — C andψ = g on
C. Then there is a constant a depending only on c and m such that for xelR2 — CuC0

with d(x, C) g: 1 we have

) ̂ ae' m/d(x<c\ mf<m

and if A is a compact subset o/IR2 — CuC0 such that d(Λ,C)^l then

Π

Now in the same way as Theorem 2.1 follows from Lemma 2.2 we get the
following theorem from Lemma 2.5.

Theorem 2.2. Let the notations be as in Theorem 2Λ. Let C0 be any fixed C1-curve
and let Cn be any sequence of piecewise C1-curves in R2 which tends to infinity in the
sense that d(0, Cn)-»oo. Let Λn be any sequence of bounded sets in IR2 such that
ylnClR2 —C0uCn and d(Λnί Cn)->oo as n-»αo. Then for any α<m there is a
subsequence n' such that

xeΛn>

for μ-almost all ξ. D

3. Euclidean Markov Fields

The free Euclidean quantum field of mass m >0 in IR2 ([!]) is the tempered random
field ξ given by

E(el<φ ξ>) = e~ll2Em(φ\ (3.1)

Hence ξ is Gaussian and since

>|2)^£m(φ) (3.2)

we have that ξ is a regular random field. Let now C be a piecewise C1 -curve and let
ψc

g(x) be as defined in (2.3). Then ξ-*\pc

ξ(x) is μ0-measurable, where μ0 is the
probability measure corresponding to the free Euclidean quantum field of mass m.
It is easily seen that the σ-algebra Bc is generated by the functions ξ-»t/^(x) for

Q have

E(ιpc

ξ(x)ιpc

ξ(y)) = J j Pc(χ, zJGJz, - z2)Pc(y, z2)dzldz2 . (3.3)
c c

Now from (2.4) we have that

fPcfoz^G^-z^ (3.4)
c

for zleC is the solution of (2.3), but this however is equal to Gm(x — z2\ hence

E(ψc

ξ(x)ψc

ξ(y)) - j Gm(x - z)Pc(y, z}dz (3.5)
c
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and we get

E(ιpc

ξ(x}ψc

ξ(y)) = E(ξ(x)ιpc

ξ(y)) . (3.6)

Therefore if we set ξc(x) = ξ(x) - φ£(x) then

E(ξc(x)ψc

ξ(y)) = 0 (3.7)

for all x and y in IR2-C. By definition ψ^(x) = ξ(x) for xεC so that ξc(z) = 0 for
ze C. Since both ξc(x} and ιpc

ξ(y] are Gaussian random fields with zero expectation
we see that ξc(x) and φ? (y) are stochastically independent. An easy computation
gives

(x9y) (3.8)

where G£(x,y) is the kernel of the operator ( — zlc + m2)-1, Jc being the Laplacian
with Dirichlet boundary conditions on C, while

E(ιpc

ξ(x)ιpc

ξ(y)) = Gm(x -y}- Gc

m(x, y) . (3.9)

Therefore

x) (3.10)

is the splitting of the random field ξ(x) into two mutually independent random
fields. From this we get that if £0( | C) is the conditional expectation with respect
to the measure μ0 and the σ-algebra Bc then for any /eLt(μ0)

E0(f\Q(η) = E<>(f(ξc + ψC))9 (3.11)

where EC

Q is the expectation with respect to the random field ξc(x). Let now C be a
piece wise C1 -curve such that IR2 — C consists of two components Ω+ and Ώ _ . In
this case it is well known that if xeΩ+ ana ye£2_ then G£(x,j;) = 0 which implies
that ξc(x) for xeΩ+ is stochastically independent of ξc(y) for yeΩ_. But this
together with (3.11) gives that if/± are BΩ± -measurable respectively and bounded
then

E(f+f-\Q(η) = E ( f + \ Q ( η ) . E ( f _ \ Q ( η ) . (3.12)

If (3.12) holds whenever C is a piecewise C1 -curve such that IR2 — C has two
components Ω+ and Ώ_ and /+ and /_ are bounded BΩ+ -respectively BΩ -
measurable functions we say that the corresponding random field has the global
Markov property. If (3.12) holds whenever C is a bounded piecewise C^-curve such
that IR2 — C has two components Ω+ and Ω_ we say that the corresponding
random field has the local Markov property. Thus the free Euclidean quantum field
of positive mass in IR2 has the global Markov property.

Let now, for each bounded Borel set A ClR2, aΛ(ξ) be a μ0-measurable function.
We say that aA is an additive functional of the free Euclidean quantum field ξ iff
aΛ(ξ) is β^-measurable and

"Λl^2 = aΛl(ξ) + aΛ2(ξ) (3.13)

whenever ΛπΛ = Q.
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Let μ%(ξ\η) be the probability measure on S"(IR2) corresponding to the random
field ξc(x) + tf(x) for fixed ηεS'ilR2}. Then by (3.11)

Eo(f\Q(η)= I f(ξ)dμc

Q(ξ\η). (3.14)
S'(R2)

It follows easily that μ^( \η] also has the global Markov property. Let us now
assume that αyl(ξ) = 0 for μ-almost all ξ if |Λ| =0, where Λ\ is the Lebesgue measure
of Λ. Let C be any curve such that IR2 — C has two components Ω+ and Ω_ and let
A be a fixed open bounded subset of IR2 and set Λ+ = AnΩ + . Since

e-aΛ==e-aΛ, ,e-aΛ_ (3 j 5)

we have, assuming that δ/t is piece wise C1, that

dμ |̂̂ ) = (JB0(β-^|3^)(ιj))-1β-β^μS^I^) (3.16)

again has the global Markov property, i.e. if Ed

a

Λ

η is the expectation with respect to
the measure μc

a

Λ( \η) and E^Λ

η( \C) is the corresponding conditional expectation
with respect to the σ-algebra Bc, then

E™η(f+ /- 1 C) = E^f+ 1 QE™(f, |C), (3.17)

where /+ and/_ are BΩ - and BΩ -measurable respectively. From (3.14) and (3.16)
we also get that if Λ0 CA and dA0 as well as dλ are piecewise C1 -curves and / is
5ylo-measurable then

E^(f). (3.18)

If / is jBylo-measurable and A0 C A we have that

0)) = E^η(f) (3.19)

by the property of the conditional expectation. From (3.19) and (3.18) we get that if
/ is jBylo-measurable then if Λ0CΛ such that dΛ0 as well as dΛ are piecewise C1

then

(3.20)

or

(3.21)

Remark now that if Λ0 is compactly contained in Λ then μδ

0

Λ( - \η) restricted to BΛo

is absolutely continuous with respect to the restriction of μ0 to BΛo, hence also the
restriction to BΛo of μd

a

Λ( \η) is absolutely continuous with respect to μ0. Let now
PΛQ(Λ) be the set of probability measures on BΛo of the form

$μβ

a

Λ(ξ\η)Q(η)dμ0(η) (3.22)

where ρ(^) is an arbitrary positive normalized function in L^0). From (3.21) it
follows that P a

Λ ( Λ ) is a decreasing function of A and set

PaA = Γ}PaΛ(Λ). (3.23)
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It follows from the definition of Pa

ΛQ that if Λ0cΛl then the elements in PAo are
restrictions to BΛo of elements in P^. Hence there is a unique set of measures Ga

such that the restriction to BΛo of the elements in Ga are the elements in PAo. The
elements in Ga are called the Gibbsmeasures given by the additive functional α.

It is easily seen that the elements in PΛ

Ao(A) have the Markov property with
respect to curves CcΛ0 such that 1R2 — C consists of two components Ω+ and Ω_,
where Ω_ is the bounded component. The Markov property (3.12) may also be
written in the form

(3.24)

whenever / is BΩ -measurable, where now Eμ is the expectation with expect to a
measure μ of the form (3.22). In fact (3.24) follows immediately from the Markov
property of μ^Vl^) and (3.22). This proves the following theorem

Theorem 3.1. The Gibbsmeasures given by an additive functional aΛ of the free
Euclidean field of positive mass in IR2 have the local Markov property.

Remark 1. This theorem was first proved by Newman [8].

Remark 2. Assume now that the additive functional aΛ(ξ) is Euclidean invariant
i.e. agΛ(ξ} = aΛ(g~1ξ) for any Euclidean transformation g. There are then two
interesting questions concerning the Gibbsmeasures Gα given by the additive
functional α.

1. When is there exactly one element in Gα?
2. When are the elements in Gfl globally Markov?

We say that μεGa is an extreme phase if there are no other elements in Ga which
are absolutely continuous with respect to μ. It is easily seen that if veGα and v is
absolutely continuous with respect to μ then dv = ρdμ where ρ is B^2-A-
measurable for any open bounded set A, where B^2-Λ is the σ-algebra generated

by B]R2^Λ and the μ-null sets. Hence ρ is β^ -measurable with B^= Π^fc-Λ So
A

that μ is an extreme phase if and only if μ t B^ is a trivial probability measure.
Since

Eμ('\B^^Λ)^Eμ(-\B^ (3.25)

monotonously as /t/IR2 and strongly as projections in L2(μ) we have that μ ϊ B^ is
trivial if and only if Eμ( \Bfc2-Λ)-+Eμ( ) as Λ/IR2. We therefore have the following
theorem

Theorem 3.2. μeGa is an extreme phase if and only if

as yl/IR2, where A ranges through the filter of bounded open subsets of IR2. Π
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4. The Trigonometric Interaction

The trigonometric interaction [21,4, 22, 23] is obtained by considering the additive
functional UΛ(ξ) of the form

UΛ(ξ)= j :cos(aξ(x) + θ0}:dx (4.1)
A

with α2 <4π. Frohlich proved [22] that e~WAeL^0) for all λ and moreover that
Gλu is non empty, where Gλu is the set of Gibbsmeasures given by the Euclidean
invariant additive functional λUΛ(ξ). Frohlich and Seiler [4] proved that there is a
μλεGλU such that μλ is weakly analytic in λ for \λ\ <Ί0, where λ0 depends only on α
and on m0, the mass of the free field. This result is proven by using the cluster
expansion which was first introduced by Glimm et al. [2] to prove the existence of
the infinite volume limit for the weak polynomial interaction.

It follows from the result of Frohlich and Seiler that for |Λ |<Λ 0 we have

£λ(|<φ,OI2)^CΈm(φ) (4.2)

for some positive m>0, hence by the remark following (2.2), also for any m. Thus
we have

Eλ(\(φ9ξy\2)£CEmo(φ) (4.3)

for any ^eS(IR2), where Eλ is the expectation with respect to μλ and mQ is the mass
of the free Euclidean field corresponding to the probability distribution μ0 on
S'(R2). From (4.3) we have

Lemma 4.1. Let μλ be the Gibbsmeasure corresponding to the additive functional

with α 2<4π which is analytic in λ for \λ\<λ0. Then μλ defines a regular tempered
random field on 1R2. D

Following Frohlich and Seiler [4] we introduce for 0e[0, 2π) the random
fields

cfl(x)=:cos(αξ(x) + θ): (4.4)

and set

cθ(f)=$c0(x)f(x)dx

for /eC0(IR2). Then cθ(f)eL2(μ0) where μ0 is the probability measure on S'(IR2)
corresponding to the free field of mass m0. Set {x, 0}N = {x1, . . . ,X N ; Θ1 ? ...,ΘN}
and

j (4.5)
\ j = ι /

Set also

(4.6)
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and set

(4.7)

then an integration by parts with respect to the normal measure μ0 (see [4])
shows that 5^(xl5 ...,xn) may be expressed by S^({x, 0}N). Thus the convergence of
SΛ({X,Θ}N) to SΛ({x, Θ}N) implies the weak convergence

ξ)-+dμλ(ξ)9 (4.8)

as

The convergence of (4.6) to (4.5) is proven by Frohlich and Seiler [4] by
showing that the cluster expansion converges. The cluster expansion is obtained in
the following way as described in [4]. We keep concepts and notation as close as
possible to those used in [4].

First one covers IR2 by a square lattice L with lattice constant 1. Let B denote
the set of all bonds i.e. square sides in L. Let CB be the operator ( — ΔB + m2)~1,
where ΔB is the Laplacian with Dirichlet boundary conditions on B. The Gaussian
measure on S'(IR2) with mean zero and covariance CB is denoted by μB and let
< >CB be the expectation with respect to μB. The measure μB decouples regions
that are separated by bonds of B completely in the sense that if φ and ψ in S(IR2)
are such that suppφ is separated from suppφ by a closed line of bonds in B then
<ιp, ξy and <φ, ς> are independent with respect to the probability measure μB. Let
now

j (4.9)
;=ι

It is obvious that (4.9) is independent of A as soon as A contains the smallest union
of lattice squares of L containing {x}N. Therefore the limit of (4.9) as /L/IR2 exists
trivially.

The cluster expansion is obtained by removing the Dirichlet condition on the
bonds of B step by step and estimating after a partial resummation the terms in the
final series. Now removing the Dirichlet condition on a bond beB introduces a
convergence factor proportional to niQη(η>0) or, in a term localized near x, a
convergence factor proportional to e~

m°d(b'x\ These factors yield the convergence
of the expansion. For details on the procedure see [2] and [4]. Following [4] we
introduce the following notations.

A collection of bonds b in B is denoted by Γ and let ΓC = B — Γ (the
completement of Γ in B). Let w{x}N) be a function of compact support in Lp(IR2jV)
with p(p— I)~ 1α 2<4π. Set AT0 = suppw. Let X range over finite unions of closed
lattice squares and let Γ range over the set of finite collections of bonds in B such
that

(i) each connected component of X — Γc meets X0

(ii) ΓdnUΓ. (4.10)
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Set

ΓCB beΓ

where CΓC is the operator (- /dj-c + wio)"1 and ΔΓC is the Laplacian with Dirichlet
boundary conditions on Γc. [Clearly C(l, ί,...) = (-Δ+m^)'1.'] Let

{s(Γ)b}bεB with

0 5 1 )
(412)

Expectations with respect to the Gaussianmeasure on S'(1R2) with mean 0 and
covariance C( ) are denoted < >c( ) anc^ we set

Zλ

Γ(Λ) = (e-λϋ-yCr. (4.13)

The cluster expansion is summarized in the equation

s>,{0}*)= Σ ί ί Tldsb-l
X,Γ 0 0 beΓ ^b \ 7 = 1

Z^Gd-JSOZ^ΛΓ1. (4.14)
C(s(Γ))

The cluster expansion (4.14) is derived in [2, Sect. 3, Eq. (3.15)]. Now the
important property of (4.14) utilized by Frohlich and Seiler is that it is model
independent. The basic result of [2] is the following theorem.

Theorem 4.1 [2, Sect. 4]. The convergence of the cluster expansion (4.14) implies the
convergence (4.8) and also the exponential cluster property.

For the proof of this theorem for P(φ)2-models see [2]. D
The convergence of the cluster expansion follows from three essential estimates

which are given here as the three following lemmas and which correspond to
Proposition 5.1, 5.2 and 5.3 of [2].

Lemma 4.2 [2] (Proposition 5.1). The number of terms in the cluster expansion
(4.14) with a fixed value of \X\ is bounded by Cle

κ^x\Kl = 19).

This lemma is entirely model independent and is therefore proved in [2]. Π

Lemma 4.3 [2] (Proposition 5.2). There is a K2 independent of λ, A as long as
W^A^α) such that \Zλ

dX(Λ-X)Zλ(ΛΓ1\^eκ^x(

Proof. This follows from the proof of Proposition 5.2 [2] and the basic estimate

l-^\Zλ(Δ}\^~ (4.15)

which is given in (2.4) of [2]. D
The third basic estimate is
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Lemma 4.4 [2] (Proposition 5.3), [4] (Proposition 2.2). There is a constant K3 and
a norm \w\ on test functions such that for any K>0, for any A and for any λ with
\λ\<λί(oΐ) we have for all rn0>μκ that

Moreover if w is of compact support X then we may take \w\ = CN x \\w\\ ^.

This lemma is [2] (Proposition 2.2) and for the proof we refer the reader to the
original paper [2]. D

Let us now write the cluster expansion (4.14) in the form

S>',{0}*)= Σϊτλ({χ}N,{θ}N,Λ9X,Γ)w({x}N)d{x}N9 (4.16)
X,Γ

with

N

{x}N = (xί,...,xN),d{xN} = Y[dXj.
J = l

We have then the following lemma which corresponds to Theorem 4.1 of [2].

Lemma 4.5. Let K>Q be given. Then there is a constant μκ depending on K such
that for \ λ \ < λ l ( x ) and for m0>μκ there is an S-norm | | such that

£ \$Tλ({x}N,{θ}N,A,X,Γ)W({x}N)d{x}N\ί\W e-™-*.
X,Γ

\X\ZD

Moreover if w is of compact support then we may take \w =CN ^IM]^ where
X = supp w.

Proof. The proof is the proof of [2] (Theorem 4.1) and goes as follows. We replace

A by Λr\X in Lemma 4.4. For X in (4.16) we have X= \Jχ. with r^N and X.

connected. Moreover

ΓC 0 IntZ , (4.17)
ΐ = 1

andXί-Γc=Xί. Thus

^.|-1^2|ΓnIntX | and \X\-N^2\Γ\. (4.18)

Hence we replace the upper bound in Lemma 4.4 by

with a new choice of K and |w|. Lemma (4.5) follows directly by combining (4.19)
with Lemma 4.2, Lemma 4.3. Π

We shall need the following two lemmas which are a special case of a result due
to Guerra, Rosen and Simon [16] called uconditioning".
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Lemma 4.6. Let χ1 and χ2 be bounded positive functions on 1R2 and let C(χt.)

= ( — Δ +w?o~t~&)~ 1 ' then tf %ι = %2 = ~ W0-f ε, ε>0 we ftαi e, /or arbitrary f and g
in C(R2)nL1(R2), that

^ <exp { j (/(x) : cos ocξ(x) : + g(x) : sin αξ(x) :

Proof. Let α^Qj^) and b = C(χ2) — C^) and let £fl(x) and £b(x) be Gaussian
random fields with mean zero and covariance a and b respectively. Then ξ(x)
= ξa(x) + ξb(x) has covariance C(χ2). Thus by Jensen's inequality we have

<exp { j (/(x) : cos α£(x) : + g(x) : sin aξ(x) :

- <exp { J (/(x) : cos α(£β(x) + ξb(x)) : + g(x)

^ <exp {f (/(x)< : cos α(ξfl(x) -f ξfc(x)) :>, + g(x)

- <exp { j (/(x) : cos αξα(x) : + g(x) : sin αξα(x) :)^x}>α

(where < >α b means integration with respect to ξa and ξb, and < >α, < >b means
integration with respect to ξa resp. ξb alone), since

α + ξb):= :cosαξ f l: :

and

and

<:cosα^:>b-l, while

This proves the lemma. D

Lemma 4.7. Let y1 and y2 fee two piecewise smooth curves in R2 and let C(yt)
= ( — zl^. + ra2))"1, wtere zly. zs ί/zβ Laplacian with Dirichlet boundary conditions on
γt. Then if y1 D y 2 we have that, for arbitrary f and g in

Proof. We may approximate in the strong operator sense ( — Δyι + mfy~l by
( — Δ -hm2, + χ. π)~ \ where χf n, z = 1, 2 are smooth positive functions going to 0 as
n-+ oo. Since y1 3 72 it is easy to see that this approximation may be done in such a
way that χ1 n^χ2 n From the strong convergence of the covariances follows weak
convergence of the corresponding Gaussian measures. Hence the inequality of this
lemma follows from that of Lemma 4.6. D

For our purpose we need a stronger version of Theorem 4.1 and to get this we
shall need a stronger version of Lemma 4.3, 4.4, and 4.5. Let us first introduce the
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notation

<£(/•) =K(x)/(x)dx (4.20)
A

for /eL2(IR2), where cφ(x) = :cosα£(x) + φ;. Then

I l<(/)!2dμ0= ί I ̂ o^/

which is finite since A is bounded and α2<4π, Gmo(x — y)~ — |ln(x — y)\, so that—

^α2Gmou-y) s a boundecι integral kernel in L2(IR2). For this reason we have that
f-*Cφ(f) is a bounded map from L2(IR2) into L2(dμ0). Let now fteC(A) such that

l2KfΛ(x^ (4.21)

where Ka/1(x, y) is given by (2.10). We have that

\KdA(x9 x)\ ̂  |lnφc, dA)\e-mod(x'6Λ} (4.22)

so that |/.(x)|2 ^4|d(x, <3/l)Γ(α2)/2π) and hence for α2 <2π we have that (4.21) implies
that/ feL2(lR2).

Let now f.e C(A\ A open and bounded, satisfy (4.21), φ e [0, 2π), i = 1, . . . , fc for
some fixed /c. Then by Lemma 4.7 we have

where < >0 is the expectation with respect to μ0.

Thus, with ζ, = C7Λ+ Σ<C/i)
ί=l

/p-λUΛ\-l/ p-λUΛ-x^ </ -λΰx\-l
\e /o \e /c(ax) = \e /c(ex)

Let now Γ(X) be all the lattice bounds in X, then again by Lemma 4.7 we have

/-λux\ </-WX\ — τ~r /-λvΔi\
—

where Δi are the unit squares of the lattice. Since k is fixed and fj satisfies (4.21) we
see that the L2-norm of χΔι(x) fj(x) is bounded with a bound that is independent of
x. Hence we get in the same way as the basic estimate (4.15) is proved in [4]
(formula (2.4)) that for α2 <2π and |λ| ̂  ̂ (α) [possibly with a smaller bound /^(α)]
we have

i < / V - * t / 4 , \ <!
2 =\e /dAτ= 2 '

Thus we have

Lemma 4.8. Let k be a fixed integer and

(^e[0;27r), fteC(Λ) with |/.(x)| ̂
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Then for α2 <2π and W^λ^a) there is a constant K4 independent of λ, A and X
such that

/ -λUΛ\-l /e-λUΛ-X\ <pK4\X\
\V /O \e /C(cX)^e

where

This was the strengthened version of Lemma 4.3 we needed. The following is
the strengthened version of Lemma 4.4:

Lemma 4.9. Let the assumptions be as in Lemma 4.8, then there is a constant K5 and
a norm \w\ on test functions continuous on S(]R2N) such that for any K >0, for any A
and any λ with \λ\<λί(a) we have that

N

Moreover if w is of compact support in X then we may take w = CN x\\w\\x.

Proof. The only change in the proof of Proposition 2.2 of [4] we have to make in
order to prove this lemma is in the Lemma 2.3 of [4]. Instead of that lemma we
need to establish the following estimate directly

where K0 is a constant which only depends on \λ\ and α.
However by Lemma 4.7 we have

If follows from Theorem 3.4 of [22] and its proof that if α2 <2π and / eL2(lR2)
then

where A and B are constants independent of A and A. By the uniform bound (4.21)
we get that if \dΛ\ ^ \Λ\ where \dΛ\ is the length of dΛ and \A\ is the area of A then
there is a constant C such that

This proves (4.24) and now the proof of Lemma 4.9 follows from the proof of
Proposition 2.2 of [4]. D

Let now Sλ

Λ(w,{θ}N) and fλ({x}N, {Θ}N, A,X,Γ) be defined as Sλ

Λ and Tλ

k
respectively, but with UΛ = UΛ+ Σ c^t(/i) instead of UΛ.

i == 1
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Lemma 4.10. Let the assumptions be as in Lemma 4.8 and let us in addition assume
that \dΛ\ ^ \Λ\. Then for any K >0 given, there is a constant μκ depending on K such
that for \λ\<λl(oc) and for m0>μκ there is an S-norm \ | such that

x,r

where Tλ is defined as Tλ in (4.16) but with UΛ instead of UΛ. Moreover if w has a
fixed compact support inside X then we may take \w\ = CNfX\\w\\ao.

Proof. The inequality of the lemma follows by combining the combinatorial
estimate (4.18) with Lemma 4.2, Lemma 4.8, and Lemma 4.9. D

Now if suppw=X0 andX0 is a product of unit squares in 1R2 we set CN>Xo = CN

since CN Xo obviously is independent of X0 as long as X0 is a product of unit
squares. Now if d(X) is the diameter of X ClR2N then X is contained in the union of
d(X)2N unit squares. From this it follows that the constant CN Xo of Lemma 4.10
satisfies the following inequality

. (4.25)

From Lemma 4.10 and (4.25) we now have the following theorem

Theorem 4.2. Let α2<2π, k a fixed integer and

φ t E [ 0 9 2 π ) 9 /;(x)eC(Int/L) and

and set

Then for l^l^/ί^α) andm0^μκ and \\w\\00^Cd(suppw)~2N we have that the cluster
expansion

,)=Σ
x,r

f f FT ds — I \ f Π c (x )J ••• J 11 asb ^ \ J 11 cθj\xj)

X,Γ

1 1

C(s(Γ))

converges absolutely and uniformly in λ, A, m0, φ , /. and w for |λ|^A1(α), m0^μκ,
1/ )̂1 ̂  2 e*2/2*^*'^, |^yi|^|/t| and (J(suppw))2 ] V | |w||0 0^C5 where d(suppw) is the
diameter of the support of w. Π

Let now

'~ ~ (4.26)
j = l /C(dΛ)
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where C(8Λ) = ( — A^ + mfy'1, Δ£Λ is the Laplacian with Dirichlet boundary
conditions on dΛ and

Let < >C(S(Γ) dΛ) be constructed from < >C(δ/1) in the same way as < >C(S(Γ)) was
constructed from < >0. The following theorem then follows from the proof of
Theorem 4.2.

Theorem 4.3. Let the assumptions be as in Theorem 4.2. Then for |/l|^/l1(α) and
mo = uκ and d(suppw)2N\\\v\\00^C we have that the cluster expansion

ϊλ (w lft\ ϊ — V /p-WΛ\-l /p-ΪVΛ-χ\ύ Λ,0ΛV w > WΛM — L \β /c(dΛ)\e /c(dXudA)
x,r

ί - ί Π d*»ί ((l Π cej(Xj)dx^{x
0 O & e Γ OSb \\ j=1 C ( S ( Γ ) , d Λ )

converges absolutely and uniformly in λ, A, m0, φί? f{ and w for l/l^/^α), m0^μκ,
|/;.(x)|^2βα2/2K^(x'x) and \dΛ\< Λ\9 (^(suppw^llwll^C where ^(suppw) is the
diameter of the support of w. Π

Now exactly the same way as the convergence of the cluster expansion (4.14)
implies the exponential cluster property for 5^(w, {$}) (see [4], p. 901 and also
[2], Sect. 4) we get that Theorem 4.3 implies the following lemma

Lemma 4.11. Let the assumptions be as in Theorem 4.2. Let w({x}N) and w'({x}N>)
have compact support X and X' respectively and let d(X) and d(X') be the
corresponding diameters and d(X,X') the distance between X andX'. Then there are
positive constants α, A I } μί and CN N, such that

\Sλ

Λ,eA(w®W', {9}Nx{θ}N.)-Sλ

ΛtdΛ(w, {θ}N) Sλ

λjA(w', {Θ}N,)\

for \λ\^λlt m0^μι, \dΛ\<, Λ\ and |/i(x)|^2e5t2/2K'"(x'x), i=l,...,k. D

k

Let now 17* =l/Λ + α £ c^f,), and set

(4.27)
Y / = l / C(cΛ)

Then

d , £ ao/t,α ((v Ω\ \ 2 \ fC^> α / / Λ ^ /3\ /<7\ ί Λ/ -Γ ^Λ 1\
~—' LJ A f ι Λ \ \ . ^"> ™ j N)— —^ / v V*^/< ^ / i V i ^? " j N^-s \ Λ / 1 J '5 τ^'J /

α ", , ί=1 ' (4-28)
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where χΛ is the characteristic function for the set A. By integrating (4.28) over α
from zero to one and using Lemma 4.11 we get:

Lemma 4.12. With the notations of Lemma 4.11 there is a constant CN depending
only on N and k such that

if |/.(x)|^ε for xeY and X = suppw, with W = W(X I } . . . ,X N ) ; for

m0^μί9\dA\^\Λ\ and \fi(x)\^2e^K*A(x'x\ i=l,. . . ,k. D

Let now Bn = {xeR2 |x| ̂ n} and Cn = dBn. Let /. π, i = l , . . . , f c be in C(lntBn)2

with \ft n(x)\^2e2 ίΛ ' such that for m^n— 1 we have

2 l (4.29)

where b and α'are positive constants independent of n and m. From Lemma 4.12

and (4.29) we then get with m— -, Y=Bnj2 and ε =

'ML- (4.30)

Now the convergence of the cluster expansion for S\ £A(w, (Θ}N) uniformly in A is
of course a consequence of Theorem 4.3. From this it follows in the same way as in
Theorem 4.1 that

as /1ΛR2. From (4.30) we then get the main theorem of this section.

Theorem 4.4. Let α2<2π, fc a fixed integer and (pfe[0,2π). L<?f f^neC(Bn

Bn = {xeR2 \x\<n} such that |/ ί>n(x)|^2eτXflϊ"(λ>x) αnJ /or m^n-l

α'αre positive constants independent of n and m. Let

n+ Σ c j f j ,
i — 1

k)ί Π c ^ ί x j ) e - ^ ϊ . w ( { x } N ) d { x } N .
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as n->GG, whenever w = w(x l s . . .,xN) is bounded measurable and of bounded
support. Π

5. Uniqueness for the Trigonometric Interaction

Let £0 respectively Eλ be the expectations with respect to the measure μ0 given by
the free Euclidean field of mass m and respectively a measure μλeGλU such that μλ

is a regular random field. Let now Bn = {xelR2 |x <n] and Cn = dBn. From (3.11)
we have

where EQ is the expectation with respect to the Gaussian measure of mean zero
and covariance ( — Δc + ml)~l, Δc being the Laplacian with Dirichlet boundary
conditions on C. Then

EQ(f\Q(η) = I f(ξ)dμc

Q(ξ\η) (5.2)
S'(R2)

where μ^(ξ\ή) ιs the Gaussian measure with mean φ£(x) and covariance
( — Δc + ml)"1. Since μλeGλϋ, where Λ-+U Λ is the additive functional given by
(4.1), we have by (3.16) that

E λ ( f \ C ) ( η ) = ί f(ξ)dμc

λ(ξ\η) (53)
SW2)

with

(5.4)

where β is a bounded domain and dB — C.
Hence by (5.1)

(5.5)

Let now/(ξ) = eί<φ'° for some φeS(R2l and set t/B(ξ + ψc

η] = Uη

B, then we get

W^^ (5.6)

We shall prove that Eλ(eί<φ'ξ>\Cn)(η)->Eλ(ei<φ'ξ>) μralmost surely as π-^oo. From
Theorem 2.1 we have that if ΛnCBn such that d(Λn,Cn)-+ao then for any α'<m0

there is a subsequence n' such that

Λ sup v,W'(x)|^o5 (5j)
xe/ln '

for μA-almost every ς, because μ^ is a regular Markov field. (5.7) implies that

ei«P,^»>^ι (5.8)

for μ;-almost all η.
From the fact that ς(x) and ψ^(x) are independent Gaussian fields with

covariance Gc(x,y) and Kc(x,};) respectively [see (2.11) and (3.10)] we have by
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using the trigonometric formula for cosinus

Uη

B(ξ) = ί : cos (αξ(x) + θ + α^(x)) : dx
B

= J : cos(αί(x) + θ) : : cosαφ^(x) : dx
B

- J : sin (ocξ(x) + 0) : : sin αφ^(x) : dx . (5.9)

Hence in the notation of (4.4)

Ul(ξ) = UB(ξ] + cθ(fη) + cθ _ (π/2)(^) (5. 10)

with

/„ = !- -.cosa^Wi-l-e^^^'^cosa^x) (5.11)

and

gη(x) = — : sin αφ£(x) : = — βα2/2 Kc(*'x) sin αφ^(x) .

From (5.7) and Theorem 4.4 we get that

Π (cβj(Xj)dXj)W(Xl, ...,xN)e-w

7 = 1

(5.12)
7= 1

for some subsequence n' of natural numbers.
Since μλ is locally equivalent to μ0 and cθ(x) generates the σ-algebra of

/^-measurable sets the convergence (5.12) implies that

E^^e-^^'Γ^E^^e^^e-'^^^E^e1^^) (5.13)

for φeS^IR2) with compact support, for μ; -almost all
Since the functions of compact support are dense in S(1R2) and μ0 and μλ are

measures on S'(1R2) we see that the convergence (5.13) holds for any φeSOR2). Now
(5.13) together with (5.8) give that for any φeS(IR2)

E^^lC^η^E^^) (5.14)

for μ; -almost all /7eS7(lR2), where n' is some subsequence of the sequence n of
natural numbers. From (3.25) we have that

Eλ( \R2-Λ)-*Eλ( \BJ (5.15)

monotonously as /l/IR2 in the ordered family of bounded open sets and the
convergence is monotone and strong in the sense of operators on L2(dμλ). If φ has
bounded support we have that

Eλ(eί<φ> ° I Q - Eλ(e{^ ξ> \ R2 - Bn) (5.16)

as soon as suppφC#π. Therefore (5.15) together with (5.14) implies that

Eλ(eί<φ'ξ>\R2-Λ)-+Eλ(eί<φ ξ>) (5.17)

as A converges to IR2 in the ordered family of bounded open subsets of R2.
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By Theorem 3.2 we have proved that μλ is an extreme phase. Now the only
condition on μλ was that μλeGλυ, i.e. that μλ is a Gibbs measure for the
trigonometric interaction (4.1) and that μλ is a regular random field. If there are
two regular random fields μ\ and μ2 in Gλu then μ\ ~\μ\ + iμ2 *s a^so a regu^ar

random field in Gλυ and since μ] and μ] both are extreme phases μ\ is not an
extreme phase.

Hence we have the following theorem.

Theorem 5.1. Let α2 <2π and m0 >0, ί/zen there is a λ± >0 depending only on α
m0 swc/i that for —λ^λ^λ^ there is one and only one measure μλ corresponding to
a regular random field ξ(x) with μλeGλu, where Gλu is the set of all Gibbs measures
corresponding to the additive functional

λUΛ(ξ) = A j : cos(αξ(x) + θ) : dx .
A

We recall that ξ(x) is said to be a regular random field if the corresponding
probability measure is supported by S'(IR2) and there is a constant c such that

E(\(φ,ξy\2)<c$Gm(x-y}φ(x)φ(y}dxdy

for any φeS(IR), for some fixed positive m.
For — λi ^λ^λ^ we have especially that μλeGλv is an extreme phase. Π

From the proof of Theorem 5.1 we also have

Theorem 5.2. Let α2 <2π and m0 >0 then there is a λί >0 depending only on α and
m0 such that for —λl<λ<λ1 we have that if ηeS'(]R2) such that φ^(x)-»0 locally
uniformly as /L/IR2 then

converge weakly to the unique limit μ given in Theorem 5Λ, where U Λ is the
trigonometric interaction of Theorem 5.1 and μd

0

Λ(ξ\η) is the free Euclidean field with
boundary condition ζ = η on dA defined in Sect. 2 by

lf(ξ)dμd

0

Λ(ξ\η)= \f(ξ + ψlΛ)dμ^(ξ)

where μ£

0

Λ is the free field with Dirichlet boundary conditions on dΛ.

6. The Global Markov Property for the Trigonometric Interactions

Let now C0 be an unbounded connected piecewise C1-curve such that 1R2 —C0

consists of two components Ω+ and Ω_. Let Bn = {xelR2; \x\<n}, neN and
Cn — dBn — C0, where dBn = {\x\ = n} is the boundary of Bn. We also assume that, for
any rceJV, δ£nnC0 consists of at most a finite number of points. From (5.3) we then
have that if / is jB^-measurable then

CΠ)fa)= f f(ξ)dμc

λ°"
c»(ξ\η), (6.1)

S'(IR2)
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with

(6.2)

Thus by (5.5), with Un = UBn,

Set now ψη(x) = ψηΌ"Cn(x)-ψη°(x),f(ξ) = ei<φ'ξ>, then (6.3) takes the form

Eλ(eί<φ^ I C0uCJ (η) = eί<φ ψ f 0 > eί<φ>^

t Γ C 0 U Cn( - λUn(ξ + ψ£θ + ψ « ) ι - 1

From Theorem 2.1 we have that if ΛnCBn such that d(Λn,Cn)-+co as n-^oo, then
we have for any β<m0 that there is a subsequence N' CN such that if n'eN' then

MScno sup |φj'(x)|_>o (6.5)
xeΛn'

as n'^oo, for ^-almost all η in S"(IR2). Thus

for //^-almost all ^, as ri
Let n o w f o r

-£g°υc"(( Π ĉ .) ^^ + <0 + ̂  (6.6)
\ \ j = ι

and

(6.7)
=ι / /

We remark now that one has

Un(t + ΨC

η° + V^) - t/Λ(£ + V^,Co) + cθ(fη) + cθ_(π/2)(gη) , (6.8)

with

/^(x) = 1 - e*212 Kc(x>x) cos α^(x) and ^(x) - - βα2/2 Kc(x x) sin otψfa) . (6.9)

Using (6.8) and (6.9) together with Lemma 4.11 we get, by making the obvious
changes in the proof of Lemma 4.12, the following

Lemma 6.1. There exists a constant a independent of k and a constant C'k depending
only on k such thai, for \λ\ ̂ λί and m0^μί:

if \\p"η(x]\^E for all xeY and X = suppw, with w = w(x1,...,xk). D
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Take now Y = Bn/2 and ε = e(~(β}l4]n, then we get from Lemma 6.1

\\W\\fβ (6.10)

whenever

sup \ιpn

η(X)\^e(-(β}/4)n (6.11)
xeBn/2

(and λ r g/ l l 5 m^μ^. From (6.5) we have that there exists a subsequence N' CN
such that (taking Λn = Bn/2)

eβ/4n' sup |i/#(x)|->0 (6.12)
xeBnΊ2

as n'eΛΓ, H'-»OO, for μλ-almost all η. But this implies that

sup \ψn

η(x)\^e(~(β)l4 )n' (6.13)
xεBnΊ2

for n' ̂  n0(?/), where n0(^) is finite for μ;-almost all η. Hence there is a subsequence
N'cN such that if n'eN' and ri^n0(η) then (6.10) holds. Hence we have the
following

Lemma 6.2. Let w = w(x l 9 ...,xk) = w({x}fc) foe m C(IR2^) wiί/ί compact support. Let

Sl0vcn(w>(e}k)= J SJouCM({x,θ}k)
R2k

k

{x}^^ ]~j ^x^ αwj dβ/ίwβ accordingly Sη

CQ{jCn(w, {θ}k), with Sη

Co^Cn({x,θ}k)
7 = 1

SCOUCM({X> ^}/c) ^^^w fc}7 (6-6) resp. (6.7). 77zen ί/z^r^ exists a subsequence N' CN
such that for rieN'

as n'-^ oo, whenever \λ ^λ^ and m^μ^. The subsequence N' C N does not depend on

k or w. Π

From (6.7) we see that 5'cϋuCn depends on η only through the random field
ψη°(x). From (2.4) we have that φ^°(x) is £Co-measurable, where BCo is the σ-
algebra generated by the functions η^>(η,ρ\ where ρ is a measure of finite

support, suppρCC0, and with finite energy. Hence the functions

f->S£oUc>,{0}*) (6.14)

are all J3Co-measurable. On the other hand by (6.6) we have

•). (6.15)
V j = i /

But

f (γ \ [ /* 7/1 0 7/1^ I — ΓΌ'ϊi Ύl 1/ ^1 Ύ\ 1 / T ^ ι V 1 1 1 ί° ( V I Γr" i
Uo^Λ^ yL, ψ„ ψn)—V^vJJ^'-Λ,^li/j, V^v τn\ ))) O v / \^/

+ sin(α(φ^°(x) - φ^(x))) c _ π(x) (ς). (6.16)
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Hence Sη

CouCn/({x,θ}k) may be expressed as a finite sum of terms of the form

7 )))] Π [sinίαίtp^
ί = l

(6.17)
;=1 '' " Γ=l y '~2 * - - /

The second line in (6.17) is by the local Markov property of μλ equal to

i I m \

\j=l θj J i=l θ*~~2 * ° /

for n' so large that x^ and yt are all contained in Bn,. However (6.18) is obviously a
martingale in n' and thus (6.18) converges as n'-+ao for μA-almost all η. From (6,5)
we also have that (6.17) converges for /^-almost all η. Hence we have proved that
^c0ucnXw> Wk) converges as n'-> oo for μλ-almost all η. By Lemma 6.2 we then have

that S%QuCn,(w, {0}k) also converges to the same limit. Since Sη

CQ^Cn,(w, {θ}k} is BCQ-
measurable we get that the common limit is also β^-measurable. By (6.15), (6.16)
and (6.18) we have that this common limit is

/ k \
Eλ\ YICΘ (*/) (ζ~Ψη°)\Bc fa), (6 19)

\j=ί ' /

where B^0= Π ^c0u(iR2-βM) Hence we have proven that the functions (6.19) are

£Co-measurable. Making use of (6.16) and of the fact that ip^°(x) is £Co-measurable
we get that

k ] \

(6.20)

is £Co-measurable. From the fact that the fields cθ(x) generate the whole σ-algebra
of μ;-measurable sets we get that, for any bounded continuous function / on

Eλ(f\B?0)(η)

is 5Co-measurable. Since BCo C B^o we may express this in the form

Eλ(f\BCo)(η) = Eλ(f\B^)(η)9 (6.21)

for μ .-almost all η, because

Eλ(f\B?0)(η)= I™ Eλ(f\C0^
2 -Bn))(η), (6.22)

for μλ-almost all η. We have thus proven the following Theorem, which is actually
a stronger version of the uniqueness Theorem 5.1.

Theorem 6.1 Let α 2<2π and m0>0, then there exists a number λ1 >0, depending
only on α and m0, such that, for —λ1^λ^λί and for any piecewise C1-curve C0 and
any bounded continuous function f on -S'(IR2), we have Eλ(f\C0) (η)

= lim £λ(/|C0u(IR2 -Bn)) (ηlfor μλ-almost all η, where Bn = {xeIR2 x\^n} and μλ

is the unique regular random field of Theorem 5.1. D
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Let now C0 be a piecewise C1 -curve such that IR2 — C0 consists of two
components Ω+ and Ω_. Let, for some fixed w0, /+ and /_ be bounded continuous
functions which are BΩ+Γ}Bno respectively J3β_nJ3Πo-measurable.

By Theorem 6.1 we then have for μA-almost all η

E λ ( f + f _ |C0) (η) = im Eλ(f+f_ |C0u(IR2 - £!„)) (η) . (6.23)

By the local Markov property (Theorem 3.1) we have that, for n^n0 and μλ-
almost all ,

= Eλ(f+ |C0u(IR2 - Bn)) (η)Eλ(f_ |C0u(IR2 - Bn)) (η}

with Cn = dBn. From Theorem 6.1 we then get

Eλ(f+f- |C0) (η) = Eλ(f+\C0) (η)Eλ(f_\C0) (η).

Hence we have proven the following Theorem, giving the global Markov property
for trigonometric interactions:

Theorem 6.2. Let α 2<2π and m0>0, then there exists a number λ} >0 depending
only on α and m0 such that,for — λl^λ^λl, the measure μ; given by Theorem 5.1
has the global Markov property. This is to say that for any piecewise C1-curve C0

such that IR2 —C0 has two components Ω+ and Ω_ and for any bounded continuous
functions f+ and f_ which are BΩ+-respectively BΩ -measurable one has

£,(/+/_ |C0) (η) = Eλ(f+\C0) (η)Eλ(f_\C0) (η}

for μλ-almost all η. We recall that, for any Borel-measurable set A ClR2, BΛ denotes
the σ-algebra generated by μλ-null sets and the linear functions ξ-»<(ρ, O? where ρ is
any measure of bounded support with suppρC/t and finite energy, i.e. such that
JGm(x — y)dρ(x)dρ(y)<co, for some m>0. Moreover Eλ(f\C0) stands for the con-
ditional expectation Eλ(f\BCo).
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