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Small Perturbations of C*-Dynamical Systems
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Abstract. It is shown that if § is the generator of a strongly continuous one-
parameter group of *-automorphisms of a C*-algebra A and ¢’ is an un-
bounded *-derivation of A4 with the same domain as §, then 6+ ad’ is also a
generator for all sufficiently small real numbers a.

The perturbation theory of strongly continuous one-parameter contraction semi-
groups {e'":t1=0} on Banach spaces shows that several features of these systems
are stable under relatively bounded perturbations [6,8]. For example if 7" is a
dissipative operator with the same domain & as T, then T+ T" is the generator of
some contraction semi-group, provided that

1T x| Sollx]| + Bl Tx|

for all x in &, for some constants o and f<1.

In the C*-algebraic model of a quantum dynamical system, the time evolution
is represented by a strongly continuous one-parameter group of *-automorphisms
{e":teR} of a C*-algebra A, where the generator § is a closed unbounded *-
derivation. Longo [7] has shown that in this case, any *-derivation ¢’ with the
same domain is automatically relatively bounded with respect to 6. In this note it
will be shown that ¢’ is also necessarily dissipative, and therefore §+ad’ is a
generator for all sufficiently small « (cf. [4, Sect. 5]).

Longo’s result also applies if ¢ is any closed *-derivation (not necessarily a
generator), and he asked whether ¢’ is then necessarily closable. For commutative
C*-algebras, an affirmative answer to this problem was given in [3, Theorem 5.3].
The proof there involved showing that any (maximal) closed ideal containing a
and d(a) also contains §'(a). Since the maximal ideals in a commutative C*-algebra
are of codimension 1 and have zero intersection, this enabled a very specific
description of d’ to be given in terms of §. For non-commutative C*-algebras, it
will be shown here that ¢'(a) again belongs to the closed ideal generated by a and
o(a), and a partial answer to Longo’s question will be given. All the results of this
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note are obtained as corollaries of Theorem 3, the proof of which makes use of
Longo’s theorem, functional calculus in the domain of § and the Hahn-Banach
separation theorem.

Let § be an (unbounded) *-derivation of a C*-algebra 4, defined on a dense *-
subalgebra 2 of 4. We recall the following definitions from [1, 10, 11]. An
operator a in the self-adjoint part 2° of & is 5-well-behaved (resp. strongly §-well-
behaved) if ¢p(6(a))=0 for some (resp. for all) states ¢ of A with |p(a)|=al||. The
derivation & is well-behaved if every operator in 2° is 6-well-behaved; J is quasi
well-behaved if there is a dense open subset of 2° (in the relative topology)
consisting of d-well-behaved operators. A closed ideal J in A is é-invariant if 6
maps ZnJ into J. Then ¢ induces a *-derivation J; of 4/J with dense domain
n,(2), given by

o,(my@)=m,(0(a)) (aeP)

where 7, is the quotient mapping of 4 onto A/J. The derivation ¢ is pseudo well-
behaved if for each non-zero a in A there is a d-invariant ideal J, not containing a,
such that ¢, is quasi well-behaved. Note that the generator of any one-parameter
*-automorphism group is well-behaved.

The following lemma is known, but since different authors have used different,
but equivalent, definitions and terminology, we state it here for convenience.

Lemma 1. Let 6 be a *-derivation of A with dense domain 9. The following are
equivalent :

(1) 6 is well-behaved.

(i) For any a in 9, there is a non-zero functional ¢ in A* such that
Pla)=al ¢l and Red(d(a))=0.

(i) Re@(o(a))=0 for any a in @ and ¢ in A* such that ¢p(a)= ||a|| ||¢] .

(iv) Every operator in 9° is strongly d-well-behaved.

v) lla+ad(a)|| =]lal for all o in R and a in 9.

Proof. The implications (i)=>(ii) and (ii)=-(iii) were proved in [ 11, Proposition 2.19]

and [2, Corollary 3] respectively, (iii)=>(iv) and (iv)=>(i) are trivial, and (ii)<(v)
follows from [5, Theorem V.9.5].

Lemma 2. Let J be a closed ideal in A and 9 be the dense domain of a closed *-
derivation of A. Then JND is dense in J.

Proof. Let a be a self-adjoint operator in J. For any ¢ >0, there exists b in Z° such
that ||a—b|| <¢&/3. Let f be a C2-function on IR such that

f-i< 2 (eR)
o= o (us3)
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Then f(b) belongs to & [11, Theorem 3.6]. Also [r,(b)||<e/3, so m,(f(b))
=f(n,(b))=0. Thus f(b) belongs to J. Furthermore

la—fB) =lla=bli+[b—f(b)] <.

Since J is self-adjoint [9, Corollary 1.17.3], the lemma follows.
In Theorem 3 and the subsequent corollaries, & will be a closed *-derivation of
A with dense domain %, and ¢ will be another *-derivation of 4 with domain 2.

Theorem 3. Let J be a closed ideal in A, a be an operator in @* and o be the smallest
point of the spectrum of wy(a). Suppose that ¢(5(a))=0 whenever ¢ is a state of A
annihilating J with ¢(a)=o. Then ¢(5'(a))=0 for all such states ¢.

Proof. By adjoining a unit 1 to A4, extending § and &' by putting §(1)=5'(1)=0 if
necessary, and replacing a by a— a1, we may assume that 4 has a unit lying in 2,
and that =0, so m,(a)20. Let p be the spectral projection of a in the W*-algebra
A** corresponding to the interval (— 00,07 and let g be the central projection of
A** such that A*1—q) is the weak™ closure of J in A** [9, Proposition 1.10.5].

Then papg=0, since pap <0 and ag = 0. For any state y of A4 with y(pq)>0, let {
be the state defined by

Pb)=yw(pg)~ ' yw(pbpg)  (be A).

Then {§ annihilates J and {p(a)=0, so {(6(a))=0. Thus pd(a)pg=0.
Let g,, g, and h be real-valued C*-functions on R such that
91(0)=g,(0)=0
9,(0g,()=t  (t]=1)
h()=0 (t=1)
=1 (=22)
and put f(t)=t—g,(t)g,(t). Then f is a C*-function of compact support, and
S (nth(rt)=0for t in R and integers n and r with n=r=0. Let a,=n""! f(na), so that

la,]—0asn—oco.Itis shownin [11, Sect. 3] that a,, g,(na), gz(na) and h(ra) belong
to 9, and if f is the Fourier transform of f and

y=02m)"*(a)] f Is(s)]ds

then y is finite, and

oC

6(@ (27'6 I S msta 5((1) ins(1 —1t)a dt dS

-

so that [|6(a,)|| £y. Since gpe™* = ¢™pq = pq for all real numbers u, and pd(a)pg =0,
it follows that pd(a,)pg=0.

Let x be a weak* limit point of the bounded sequence §(a,) in A**, so that
pxpq=0. Since 6(a,h(ra))=0 (n=r) and |a,|—0, xh(ra)=0. But, as r— oo, h(ra)
converges ultrastrongly to 1 —p, so x=xp=pxp. Thus xq=0.



42 C.J. K. Batty

By Lemma 2 and the Kaplansky Density Theorem, the unit ball of JnD
contains a net {y,:leA} converging ultrastrongly to 1—g. For any triple
u=(m,n, 1) in Nx Nx A, let

bu =an(1 - y).)
b, =da,)(1=;)
bi=a,6(y,).

Take ¢>0, and let
A'={u=(m,n, )e Nx Nx A: bl £27", a,6'(y,)] Se}.

In the product ordering, A" is directed upwards, the nets b, and b (u€ A) are norm-
convergent to 0, while {b), : ue A’} has xq=0 as a weak* limit point in A**. Since
o(b,)=b,—b,(0,0) belongs to the weak closure of {(b,, o(b,)) : ue A’} in the Banach
space A@ A. By the Hahn-Banach separation theorem [5. Corollary V.2.14], there
is a sequence a, in the convex hull of {b, : e A’} such that | a,|| -0 and [|6(a,)| —0.
Since ¢’ is relatively bounded with respect to ¢ [7, Corollary 2], ||6'(a,)|| —0.

Let ¢ be a state annihilating J with ¢(a)=0. Since ¢ induces a state of 4/J, the
spectral  theory of m,(a) shows that ¢(g,(na)*)=¢(g,(na)®>)=0. But
a,=a—n - lgl(na)gz(na)a SO

§a=b,)=n""15g,(na)g,(na)+n""g,(na)d'(g,(na)) +0'(a,)y; +a,0'(y;).

Hence

lp(0'(a—b ) =1d(a,d(y)) =¢

for all pin A', so |¢p(8'(a—a)))| Se¢. Letting first r tend to oo and then ¢ tend to 0, it
follows that ¢(5'(a))=0.

Corollary 4. Let a be an operator in 9, and J be a closed ideal in A containing a and
o(a). Then o6'(a) belongs to J.

Proof. Since J is self-adjoint, it suffices to assume that a=a*. The hypotheses of
Theorem 3 are satisfied (with «=0), so ¢(6'(a))=0 for any state ¢ annihilating J.
Hence ¢'(a) belongs to J.

Corollary 5. Let J be a d-invariant ideal in A. Then J is ¢'invariant and any strongly
o0-well-behaved operator in n(2°) is strongly 6';-well-behaved.

Proof. The first assertion is immediate from Corollary 4. The second follows easily
from Theorem 3 using the correspondence between states of 4 annihilating J and
states of A/J.

Corollary 6. If 0 is (quasi, resp. pseudo) well-behaved, then &' is (quasi, resp.
pseudo ) well-behaved and closable.

Proof. Since any open set of 6,-well-behaved operators in 7,(%°) consists of
strongly o,-well-behaved operators [2, Proposition 7] and any pseudo well-
behaved derivation is closable [1, Proposition 6], the assertion follows from
Corollary 5.
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Corollary 7. If 6 is the generator of a strongly continuous one-parameter group of *-
automorphisms of A, then for all real numbers o with |o| sufficiently small, 6+ ad’ is
also a generator.

Proof. This follows immediately from Corollary 6, Lemma 1, 7, Corollary 2] and
[8, p.244].

In view of Corollary 6 and the closability problem raised by Longo [7], it
would be of interest to find examples of closed *-derivations which are not pseudo
well-behaved (cf. [1, p.266]).
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