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On the Cook-Kuroda Criterion in Scattering Theory^
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Abstract. A new criterion of the Cook-Kuroda type for the existence of the
wave operator in the two-space scattering theory is introduced. The condition
is quite simple, but it generalizes not only the original Cook-Kuroda condition
but also its generalization recently given by Schechter. Specialized to the one-
space case, it is actually equivalent to Schechter's condition for an optimal
choice of factorization. An application to potential scattering leads to a new
result.

1. Introduction

Recently Schechter [1] and Simon [2] generalized the 20-year-old Cook-Kuroda
criterion [3,4] for the existence of the wave operator in scattering theory. The
purpose of the present paper is to contribute another generalization in the context
of two-space scattering theory [5]. Our condition (Theorem I) has several
advantages. First, it is formally simpler than others [1-4], involving only bounded
operators. Second, it has a simple, purely time-dependent proof. Third, it is valid in
the two-space setting without any extra assumptions on the identification operator
J except that J is bounded. Fourth, Schechter's theorem can easily be reduced to
ours, so that our results contain a simplified proof of a two-space version of his
theorem. At the same time, this shows that our result is in general stronger than
Schechter's.

On the other hand, Schechter's condition is extremely flexible, involving a
(formal) factorization of the perturbation that can be chosen in many different
ways. In fact we shall show that some favorable choices of the factorization lead to
a result equivalent to ours (Theorem III).

Let us first state our theorems. In two-space scattering theory, one considers
two selfadjoint operators HJ9 7'= 1,2, each acting in its Hubert space $J9 and a
bounded linear operator J (the identification operator) on ξ)ί to §2. We denote by
Uj(t) = Gxp( — itHj) the unitary group generated by —iHj. The associated wave
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operator W+ = W+(H2,H1',J) will be defined by

W+f= lim W(t)f, W(t)=U2(-t)JU1(t), (1.1)
t—> OO

whenever the limit exists. Obviously the domain ΐ)(W+) of W+ is a (closed)
subspace of §x. In this paper we do not extend W+ beyond this domain. Another
wave operator W_ defined with — oo instead of oo in (1.1) can be handled in the
same way.

Denoting by Rj(z) = (Hj — z)~1 the resolvent, and by ρ(Hj) the resolvent set, of
HJ, we set

C(z) = R2(z)J-JR1(z), zeρ^άHJnάHJ. (1.2)

Our main result now reads

Theorem I. Let zeρ. If feξ>1 satisfies

]\\C(z)U1(t)f\\dt«x>, (1.3)

It is convenient to state Theorem I in a different form by introducing the set
SDl(z) of all /eS-L satisfying (1.3). SOΐ(z) is obviously a linear manifold in ξ>lm Let us
denote its closure by [SPΐ(z)]. Then Theorem I is equivalent to

Theorem Γ.

Regarding the dependence of 9tR(z) and [SDl(z)] on z, we have

Theorem I". For Imz > 0, 9K(z) - ΪR is independent of z, while 9K(z) C SR for Imz < 0.
[50l(z)] = [9K] is independent of zeρ.

We shall prove Theorem Γ in Sect. 2, and study its relationship to other criteria
of the Cook-Kuroda type, in particular Schechter's, in Sects. 3 and 4. Theorem I"
will be proved also in Sect. 4. These sections contain other results related to the
Schechter factorization. Sect. 5 contains an application to potential scattering in

2. Proof of Theorem I

First we note some obvious facts regarding SDΪ(z) and [SDΐ(z)]. Since / satisfies (1.3)
if and only if UΊ(s)/ does, where s is any real number, 9ϊl(z) is invariant under the
map t/1(s). Hence the same is true of [SOΪ(z)], which therefore reduces Hv. This
implies, in particular, that Rί(z')3Jl(z) is a dense subset of [SDΪ(z)] for any

A simple calculation gives (we write Rj(z) = Rj, C(z) = C for simplicity)

(d/dt)(R2 W(t)RJ9 g)=- ί(U2( -

for any feξ)1 and geξ>2- Hence for t' <t"

\\R2W(t")RJ-R2W(t')RJ\\ ^ ] \\CUMf\\dt. (2.1)
tr

Assume now that /e9Jl(z) so that (1.3) is true. Then (2.1) shows that
\\mR2W(t)RJ exists. (Here and in what follows lim refers to ί->oo.) Since R2W(t)
is uniformly bounded in t and ^ΪRίz) is dense in [9W(z)] as noted above, it follows



Cook-Kuroda Criterion in Scattering Theory 87

that s-\imR2W(ή exists on [SOΐfz)]. Then Lemma 2.1 given below shows that
s-limW(t)Rί exists on [9K(z)]. Since W(t) is uniformly bounded, a similar argument
shows that s-limW(t) exists on [9W(z)]. This means that

Lemma 2.1. s-]im\:R2(z)W(t)-W(t)R1(z)']=0 on [3W(z)].

Proof. Let 0eC^(— oo, oo) and set

= J WU^fds, /eSDKz). (2.2)

The set of all such #'s is dense in $)ΐ(z), hence in [9Jl(z)] too, since (2.2) tends to / if
φ tends to the delta function. On the other hand, we have

\\CV,(f)g\\^ ] 10(5)1 I I CUά + sWlds (C = C(z)).
— oo

Since \\CU ^(t)f\\ is integrable in ίe(0, oo) and since φ has compact support, it
follows that limllCl/^φll =0. Since CU^i) is uniformly bounded and the 0's are
dense in [SOΐ(z)] as noted above, we conclude that s-limCC/1(ί) = 0 on [SDl(z)]. The
lemma then follows from the identity

3. Relation to Schechter's Theorem

We now compare our results with other criteria of the Cook-Kuroda type [1-4].
Since Schechter's theorem [1] is the strongest one among them, it suffices to
consider it.

Schechter's condition involves a "factorization" of the perturbation which, in
the context of two-space theory, takes the form

(Ju9 H2v) - (JH& υ) = (An, Bυ) , (3.1)

assumed to be true for every weDC^) and veΐ)(H2). Here A is a linear operator
from §! to a Banach space ft with lΣ^(A)'^<ΐ)(Hί)9 and B is a linear operator from
§2 to ft* (the adjoint space of ft) with ΐ>(B) D D(Jϊ2). B is assumed to be
f/2-bounded.

Any operator A that appears in this Schechter factorization (together with
some B) will be called a Schechter operator (for the triplet {H2,H19J}).

Schechter's theorem now reads, with a slight generalization,

Theorem II. Let A be a Schechter operator. If /eT)(H1) satisfies the condition

]\\AUl(t)f\\dt<co (3.2)
'/

for some real number tf, then feΐ)(W+).

Remark 3.1. (a) In [1] the condition fe^H^ is assumed, though not stated
explicitly.

(b) Even for /eT)^), HAU^ήfH may not be measurable in ί, since A is not
assumed to be /^-bounded or closable. Thus the integral in (3.2) should be taken
in the sense of an upper integral.
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(c) In [1] only the single-space case (§x =$2> «/= 1) is considered. In a lecture
at the Utah Conference (July 1978), Schechter generalized the theorem to the two-
space case under certain additional conditions on J. In Theorem II, however, we
need no extra conditions on J.

As before, it is convenient to rewrite Theorem II by introducing the set Wl(A) of
all /eTHΉ^) satisfying (3.2). Again it is obvious that ^Sl(A) is a linear manifold in
§1 invariant under U ±(t\ and its closure [9JΪ04)] reduces Hί. Theorem II is
equivalent to

Theorem II'. [Wl(AJ] C ΐ>(W+).

We shall show that Theorem IΓ can be reduced to Theorem Γ. We achieve this
by showing not Wl(A)cWl(z) (which is probably untrue) but [9K(A)]C[S0l(z)].
More precisely:

Theorem III. For any Schechter operator A, we have [501(̂ )1 C [SCR] (where [901] is
the common space [9K(z)], see Theorem Γ). On the other hand, for any triplet
{H^H^J} there are Schechter operators A with [501(̂ 4)] = [SOΪ].

Remark 3.2. Any triplet {H2, H^ J} has infinitely many Schechter factorizations. A
simple and useful one is given by

A = A(z) = C(z)(H1 - z) , B = B(z) = -(H2- z) (3.3)

where zερ and C(z) is as before (1.2). Here we take ft = <r>2, Ί)(A) = 1)(Hl) and, of
course, T)(£) = T)(ίf 2). We shall refer to A(z) as an optimal Schechter operator, since
it gives the optimal result stated in Theorem III.

4. Proof of Theorem III

Lemma 4.1. [9K(4)] C [2R(z)] for all zeρ.

Proof. As is easily seen, (3.1) implies

C = R2J-JRί = -(BR^AR, , (4.1)

where we have again written Rj = Rj(z), C = C(z). Here (BR*)* *s a bounded
operator on ft** to §2 because B is H2-bounded. Since A has range in ft, (4.1)
makes sense by the canonical embedding of ft in ft**.

Let feW(A). Then

f \\CUMH ,-z)f\\dt= f \\(BR*2)*AU1(t)f\\dt«v
*/ tf

by (4.1) and (3.2) because BR* is bounded. It follows that (Hl-z)fe^l(z); the tf

on the left is irrelevant since C is bounded. Since [̂ (z)] reduces JF/1? we conclude
that /e[2R(z)]. This proves that 2R(^)c[9K(z)], and hence [9W(>4)] C [5Dl(z)] for
any zeρ.

Lemma 4.2. 77z£ Schechter operator A(z) = C(z)(Hί — z) zs optimal in the sense that
] /or any z'eρ.

Corollary 4.3. [9JΪ(z)] is independent of zeρ.

Proof of Lemma 4.2. We have the identity

C(z') = (H2-z)K2(z')C(z)(H1-z)R1(z'), z./eρ. (4.2)
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Hence, writing A = A(z\

\\AU,(t)R,(z')f\\ = liαz)^ -z)R1(zf)U1(t)f\\

^\\(H2-z')R2(z)\\\\C(z')U,(f)f\\, /eV

Since \\(H2 — z')R2(z)\\ <00> this inequality shows that /eSff^z') implies
Rί(z')fe^R(A). Since [501(̂ 4)] reduces H1 as remarked above, it follows that
/e[SKμ)]. Thus aW(z')C[5Dl(yl)], hence [9W(z')]C[aW(^)]. Since the opposite
inclusion is known (Lemma 4.1), we have proved that [SDl(^4)] = [SDl(z/)].

It remains to complete the proof of Theorem Y. First we prove

Lemma 4.4. Let z,z'eρ, with Imz'>0. Then /e9K(z) implies R^z^fe^z).
00

Proof. Since Λ1(z') = i J exp^'z'sjl/^ds, we have for /eSOt(z)
o

00 00 00

' ds J HCωί
0 0

00

^le, f
0

where / = Imz'>0 and Kf is the finite number (1.3). Hence jR1(z/)/e50l(z).

Lemma 4.5. Let z,z' be as in Lemma 4.4. Then 9Jt(z) C 9K(z').

Proof. (4.2) gives

(4.3)

where fc= ||(H2-z)jR2(z/)|| < oo. Suppose now that /e2R(z). Then R^zO/eSKίz) by
Lemma 4.4, so that [1 +(z/-z)#1(z/)]/e9Jl(z) too. Hence the right member of (4.3)
is integrable in £e(0, oo), and the same is true of the left member. This means that

/eW)
Obviously Lemma 4.5 completes the proof of Theorem Γ.

5. An Application to Potential Scattering

Consider potential scattering in IR3 :

H^-A, H2=-A + V(x), xeIR3. (5.1)

For simplicitly we assume that

V=V, + V2, (5.2)

where the Vj are real- valued and

R3). (5.3)

Then Hί and H2 are selfadjoint in § = £2(R3). Here H2 should be taken as the
maximal realization in § of the formal differential operator — A + V or, equiva-
lently, as the form sum oίH1 + V2 and V19 both of which are semibounded (see [6]).
Note that V2 is H1 -bounded with Hx -bound 0.

We shall show that if in addition

£ί\(l + \x\Γkdx), 7 = 1,2, for some /c<l, (5.4)

then the wave operators W±(H2,Hί 1) exist on all of §.
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To this end we use the optimal Schechter operator (3.3), which should give the
same result as our theorem. In our case with J = 1, (3.3) becomes

A = R2(z)(H1 - z) - 1 , !>μ) - £(#!) . (5.5)

We choose z real and sufficiently negative that Hj — z^l for j— 1,2. One might
want to write A~ — R2(z)V, but this is hard to justify in general due to the
singularity of V. But it is not difficult to show that

Au = -(Vtl2R2(z))*VΪl2u-R2(z)V2u (5.6)

provided weD^) and V{ί2ueξ). Note that F1

1/2jR2(z)e &($) because H2 is the
form sum of Hl + V2 and F15 and that ue^H^) implies V2uεξ>. It follows that

HF^II). (5.7)

Now let /(x) = exp(-|x-α|2/2) with a constant αeIR3, and u(ί)=
— ί t H ί ) f . It is well known (see e.g. [7, pp. 536, 7]) that

In view of the assumption (5.4), it follows that \\V±/2u(t)\\ and ||F2tt(t)|| are
0(ί~(3~k)/2). Hence the same is true of \\Au(t)\\ by (5.7), verifying condition (3.2).

Since the set of / with varying αeIR3 spans a dense set in §, we have proved

that Φ(WP+) = §. τhe same is true of w-

Remark 5.1. (a) A more obvious "factorization" with A = \V\^12, £ = (signF)|F|1/2

does not work, since this violates the condition T)(^L)DD(ίί1) (except when k = 0).
(b) If F! =0, (5.4) reduces to Kuroda's condition [4].
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