Communications in
Commun. Math. Phys. 66, 267-290 (1979) Mathematical
Physics

© by Springer-Verlag 1979

The Positive Action Conjecture
and Asymptotically Euclidean Metrics
in Quantum Gravity

G. W. Gibbons and C. N. Pope

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 9EW, England

Abstract. The Positive Action conjecture requires that the action of any
asymptotically Euclidean 4-dimensional Riemannian metric be positive,
vanishing if and only if the space is flat. Because any Ricci flat, asymptotically
Euclidean metric has zero action and is local extremum of the action which is a
local minimum at flat space, the conjecture requires that there are no Ricci flat
asymptotically Euclidean metrics other than flat space, which would establish
that flat space is the only local minimum. We prove this for metrics on R* and
a large class of more complicated topologies and for self-dual metrics. We show
that if R} =0 there are no bound states of the Dirac equation and discuss the
relevance to possible baryon non-conserving processes mediated by gravi-
tational instantons. We conclude that these are forbidden in the lowest
stationary phase approximation. We give a detailed discussion of instantons
invariant under an SU(2) or SO(3) isometry group. We find all regular
solutions, none of which is asymptotically Euclidean and all of which possess a
further Killing vector. In an appendix we construct an approximate self-dual
metric on K3 — the only simply connected compact manifold which admits a
self-dual metric.

1. Introduction

It has been expected for some time [1, 2, 3] that matter should be unstable when
quantum gravity is taken into account. That is one expects gravity at some non-
perturbative level to give rise to baryon and lepton number non-conservation.
This is most clearly indicated in the external field theory computations of black
hole evaporation [2]. One would like to compute processes of this sort using a
fully quantized theory of gravity. The version of Quantum Gravity which seems
most appropriate to us is the functional approach.

In the functional integral formulation of flat space quantum field theory
physical quantities are expressed formally as functional integrals of the form

zZ= gd[qo]O[(p] expil[¢]. (L.1)

0010-3616/79/0066/0267/$04.80



268 G. W. Gibbons and C. N. Pope

d[¢] is some measure on the space of field configurations. I[¢] is the classical
action functional and O[¢] is some classical functional of the field ¢ whose
quantum mechanical expectation one wishes to calculate. C denotes the class of
field configurations that enter the sum and is specified by giving suitable boundary
conditions for ¢. The freedom to choose C corresponds to choosing the states that
enter the matrix element. As a preliminary step to defining (1.1) one “Wick rotates”
to Euclidean 4-space, {IR*,4,,} thus making the argument of the exponential real
and negative. All fields are then supposed to die away at large spatial distances.
The vacuum persistence amplitude corresponds to fields which in addition die
away at large positive or negative imaginary times t. If instead one wishes to
compute the grand canonical partition function for a boson system at some
temperature T one includes in the sum only those fields which are periodic in
imaginary time with period §=T~!. This case is equivalent to working on a flat
space with the time coordinate identified - i.e. on {IRR* x §*,5,,}. In both cases one
can regard the manifold as the limit of a compact manifold with a boundary which
is moved to infinity.

To evaluate the functional integral one first looks for non-singular stationary
points of the action functional (classical solutions) and expands about them. Such
critical points are called “Instantons”.

In Quantum Gravity one might try to imitate this procedure by summing over
all 4-dimensional Riemannian spaces {M,g,,} with arbitrary topology for the
manifold M and arbitrary metric g,, except that M has a prescribed boundary oM
and g,, induces on M some prescribed geometry with metric k,; At finite
temperature the relevant instanton is the Schwarzschild solution [4]. Presumably
the appropriate boundary condition for the vacuum persistence amplitude
corresponds to metrics which are asymptotically Euclidean and whose boundary
at infinity can be regarded as a 3-sphere with its standard metric. That is, an
asymptotically Euclidean metric is one such that outside a compact set the
manifold is difftomorphic to R* with a closed ball removed and the metric tends to
the standard flat Euclidean metric at least as fast as r~ 2, where r is the asymptotic
proper radial distance. The condition that the metric tend to flatness as r~?2
guarantees that the action is finite.

In [5] it was argued that to evaluate the functional integral one should pick in
each conformal equivalence class a metric satisfying R%, =0. One can then explicitly
integrate over conformal deformations of that metric. One is then left with the task
of summing over all metrics satisfying R% =0. The action of these metrics is given
by a boundary term (the volume term vanishes). The path integral would be better
behaved if the action were positive, vanishing if and only if the metric were flat.
This is called the “Positive Action Conjecture” [5,6]. It is rather plausible since it
is the natural generalization to one higher dimension of the familiar Positive Mass
Conjecture — a proof of which has recently been announced [7]. If the Positive
Action Conjecture is true there can be no non-trivial asymptotically Euclidean
solution of the Einstein equations. This is because the action of such a solution
would be zero, which may be seen as follows. Under a constant rescaling of the
metric: g,,—2%g,,, 2 a constant, I - Q1. For a solution I must be stationary and
hence must vanish. Furthermore since flat space is a local minimum of the action
the non-existence of non-flat Ricci-flat asymptotically Euclidean metrics would
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establish that the action has a unique local minimum at flat space which is strong
evidence (but of course not conclusive proof) that it is always positive. Thus the
non-existence of non-flat asymptotically Euclidean solutions is necessary and
almost sufficient for the validity of the full Positive Action Conjecture.

This situation is in marked contrast with that in Yang-Mills theory where there
exist finite action topologically non-trivial classical solutions which it is believed
can be responsible for tunnelling between topologically inequivalent vacua
|0y, ) labelled by an integer n [8]. These classical solutions (instantons) have
self-dual field strengths. This implies the existence of bound states of the Dirac
equation. Because of these bound states the amplitude for a transition between the
state |Oy,, 1y and |Oy,,, n+1) whilst the Dirac field remains in the no particle
state |0, is zero [8].

’t Hooft has interpreted this as meaning that tunnelling between topologically
inequivalent vacua must be accompanied by a change in chirality of the fermions.
In fact he finds that the amplitude

Op|®<O0ypn0p) ROy pn+1)

is non-zero only if a suitable external source is provided to alter the chirality. This
can in turn lead to baryon and lepton non-conservation.

For gravity things are different. Firstly because of the scaling behaviour of the
gravitational action there is no barrier to topology change [9]. Secondly for non-
compact metrics with R4 =0 there will be no bound states of the Dirac equation.
This is because such solutions must be covariantly constant and hence not
normalizable [10]. Thirdly because of the Positive Action Conjecture we expect no
asymptotically Euclidean solutions. Certainly there are no self-dual solutions as
will be shown in Sect. 3. One way out of this situation is to consider spin 3 fields on
non-asymptotically Euclidean self-dual metrics [11].

A different way in which baryon non-conservation might arise is via metrics
with more than one asymptotically Euclidean region. These are the 4-dimensional
analogues of the 3-dimensional “wormholes” and Einstein-Rosen throats of black
hole physics [12, 13, 14, 15, 16]. Indeed if the Ricci scalar, R, vanishes they
provide initial data for time-symmetric spacetimes in 5-dimensional relativity. The
asymptotically Euclidean regions are connected by minimal 3-surfaces which are
the intersection of the initial 4-surface with the 4-dimensional apparent horizons in
the 5-dimensional Lorentzian manifold which we call, following traditional
literary usage, Hyperspace. One may generalize the usual Cosmic Censorship
Hypothesis [15, 16, 17, 18] to Hyperspace. If it is true it requires that an
asymptotically Euclidean region containing an outermost minimal 3-surface with
3 volume Vj should have an action I satisfying

27 \13
= (ﬂ) V2, 1.2)

Thus these wormholes should be far from stationary points and should require
large excursions in the action. They would therefore be damped in the functional
integral. Nevertheless they may be responsible for baryon and lepton non-
conservation. This might occur if for instance a baryon fell in imaginary time from
one asymptotic region to another through a hole while a lepton travelled in the
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opposite direction to replace it [9]. The fact that such configurations are far from
stationary points is presumably related to the observed great stability of matter.

In this paper we shall investigate asymptotically Euclidean classical solutions
with N asymptotic regions and show that if any do exist their Euler number y and
signature 7 must satisfy

2y —3|t|>2N. (L.3)
This inequality is sufficient for example to rule out asymptotically Euclidean
solutions on R* with N — 1 points removed or on S* x % with N points removed.
Thus manifolds with wormholes and bridges cannot be solutions.

We also give as an illustration of these ideas a detailed discussion of 4-metrics
invariant under the action of SO(3) or SU(2) acting on 3 surfaces (i.e. Bianchi IX
metrics). The equations for self-dual metrics can be reduced to first order ordinary
differential equations for which we find all non-singular solutions. We give a
qualitative discussion of the non-self-dual case and argue that the only non-
singular solutions must admit a further Killing vector and we find all solutions in
this class, relating them to various special cases in the literature.

The paper is in 6 sections. Section 2 contains definitions and examples of
asymptotically Euclidean metrics. In 3 we prove our main theorems and apply
them. In 4 we set up the Bianchi IX formalism and derive the equations for self-
dual solutions. In 5 we discuss the boundary conditions and relate them to the nuts
and bolts classification of gravitational instanton symmetries [19] and in Sect. 6
we give the qualitative discussion of the solutions. As an application of the
solutions we construct in an appendix an approximate metric on K3 — the only
simple connected compact manifold to admit a self-dual metric [20].

2. Examples of Asymptotically Euclidean Metrics

We define any asymptotically Euclidean region to be one admitting a chart {x*}
such that for (x,x*)!/>=r>r, the metric can be written as

a2 2
9= (1 + Zr—z) 0, +hy, 2.1)
where
1
h,,=0 (73) (2.2)
1
0P0%h,, =0 <r3—+") (2.3)

and 0, and 0, denote radial and transverse derivatives respectively.
The Gravitational Action is

__L 4 _i 3
I 6 fR]/g;d X g aj [K]l/Ed X 2.4)
where

kuvzguv—nunv (2.5)
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is the metric induced on the boundary M whose unit normal is n,. [K]=K — K,
is the difference between the trace of the second fundamental form of the boundary
OM in the metric g, and its value in the flat metric J,,. In fact

| K)/kd*x= s (2.6)
oM o¢

_ 0 o .
where V; is the 3-volume of 0M and % denotes derivation with respect to the
proper distance along the outward normal to dM. For flat space V;=2r2¢3.
V3 2/3
Therefore we take anu K, |/kd*x to be 672 (2_7z2> .

For metrices of the form (2.1)

R,,=0 (é) 2.7
r
but
1
Ri=0 (r_5) . (2.8)

The volume term in (2.4) will therefore converge. The boundary term in (2.4) for a
surface of the form r=R is

3na* 1
— = 29
g +0 ( R) (2.9)
This evidently converges as R— oo. The expression

/3

1= 16n§R1/d4x—— | K)/kd3x + 612 ( 1/d3 ) (2.10)

is manifestly coordinate independent but its llmltlng value could in principle
depend on the limiting sequence of boundaries chosen. If the surface is sufficiently
spherical this will not happen. The shear, X, of the surface M is defined by

uv

X, =n, gkikd — 1k K . (2.11)
If
1
2 =0 (]

then the action will be independent of the limiting sequence.
An example of an asymptotically flat metric with R4=0 is the Tolman
wormhole:

ds?=d&* +(a® + E2)dQ3. (2.12)

This may be obtained as an analytic continuation of the Friedmann-Robertson-
Walker cosmological model filled with a perfect fluid whose pressure is § its energy
density [21]. It contains two asymptotically Euclidean regions, located at large
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positive and negative values of £, connected by a minimal 3-sphere at £ =0 whose
volume is 2n%a®. The metric is therefore defined on a manifold of topology
§3 x RZR*— {0} with zero Euler number y and signature 7. The action evaluated
at each infinity is
3
I=""g2, (2.13)
8
The metric is conformally flat which is made manifest by introducing a radial
coordinate r by

a2

E=r— e (2.14)
This takes the metric (2.12) to
2 @\ 20
ds*= 1+W (dr*+7r%dQ3). (2.15)

The asymptotically Euclidean regions are now given by oo >r>% and g >r>0.

The minimal 3-surface is located at r= g and the singularity at »r=0 corresponds

to the infinitely distant boundary. The metric is the 4-dimensional analogue of the
Finstein-Rosen throat of black hole physics. It may be regarded as a constant time
slice of a 5-dimensional hyperspherically symmetric black hole. Such a black hole
with vanishing Ricci tensor has the metric

ds?=— 1—£ (dx®)> + 1—32- _ldQZ+Q2dQ2 (2.16)
Qz Qz 3 '

where x5 is the 5-dimensional time coordinate and g is related to r by
2
a
=r+—. 2.17
e=r+ (2.17)
This example may be readily generalized to the case of a conformally flat 4-metric
with vanishing Ricci scalar and N asymptotically Euclidean regions. The metric is
N-1 2
ds?= (1 + Y af[(x* = x)(x*—x})d,,]” 1) 8, pdx*dx? . (2.18)
i=0
The N—1 points x*=x! correspond to N —1 asymptotic regions. The metric is
well defined on R* — {x}}. It has Euler number y=1— N and vanishing signature 7.
One may also readily generalize the Misner Wormhole [13]. This has the
metric

ds? = Q¥(dn?+d{? +sin? {dQ2) (2.19)

Q=a i (cosh (n+2nuy)—cos ()~ . (2.20)

n=—o
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If we let 0<¢{ <mand 0=<#<#, we obtain a metric on S* x §*. However the metric
is singular at #=0, {=0 which turns out to be an asymptotically Euclidean
infinity. The metric is thus well defined on S3 x S* — {0} which has Euler number
—1 and signature zero.

3. The Topology of Asymptotically Euclidean Spaces

It is convenient to think of an asymptotically Euclidean space M as being
topologically equivalent to a compact manifold M, with N points removed. A
triangulation of M, will serve as a triangulation of M provided one removes N
4-simplices. Thus the Euler number of an asymptotically Euclidean manifold with
N “infinities” is given by

AIM]=x[M]-N. ‘ . (3.1)
The signature will be unchanged, i.e.
[M]=1[M_]. (3.2)

Both y and 7 may be related to integrals over M of curvature invariants. The
Gauss-Bonnet Theorem states [22, 23]

1 1
(M) =25 Afl EupyoR* AR — W@i{ Eupys Q9P AR —29%8 A 97 A 90). (3.3)

R} are the curvature 2-forms in an orthonormal basis and 9 is the second
fundamental form of the boundary dM. That is if wj are the actual connection
1-forms and w§, are the connection 1-forms if the metric were locally a product
near the boundary

%= —wl,. (34)

The second fundamental form may also be defined by constructing a Gaussian
coordinate system about each connected component. If n* is the unit normal then

kyg=0.5— 1,15 (3.5
One now defines a symmetric tensor K,; by

K= Zhy. (3.6)
The boundary term in the action, K, is

K=K,k (3.7)
where

Kok, y =% (3.8)

In a basis of 1-forms (w°, w') such that

°® =ndx* (3.9)
and

3
ke, pdxdx? = --Zl (')? (3.10)
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we have
awi g i Ki j
Az — W = Q07 .
& ! (3.11)

The 9% are given by

;0w
\90= % =Kj6l)" (3.12)
9i=0. (3.13)

For asymptotically Euclidean metrics the second boundary term in (3.3)
vanishes and we have

HM]= 5 2§ (CraapC*? = 2R, R +3R?) |/ g d4x+— | det(k))/ka>s

(3.14)
= ?2? [ (CpyapC™* — 2R, R™ +2R?)|/gd*x + N . (3.15)
M
IfR,,=
(IM]=N (3.16)

equality being attained if and only if the metric is flat.
The signature may also be expressed in terms of integrals but one must include
a non-local boundary contribution [24]:

i[M]= j REARG—

48 — * ARE—1(0). (3.17)

n(s) is the n-function of a certain differential operator defined over oM. #(0)
vanishes if dM has an orientation reversing isometry, which S does. The other
boundary term vanishes for asymptotically Euclidean metrics and we obtain

[M]= 8 s j Cops*C*7° |/ gd*x. (3.18)

*#C,p,0 15 the dual of the Weyl tensor C,, ;. Using the fact that
CopysCP° 2|C 5% C*7 (3.19)

equality being attained if and only if the Weyl tensor is self-dual or anti-self-dual
we obtain the following inequality for vacuum Einstein solutions

2y[M]-3[z[M]|=22N (3.20)

2y[M_]—3[z7[M ]J|=4N. (3.21)

Similar inequalities have previously been obtained by Hitchin in the compact
case [20].

One might think that equality could be obtained in the half-flat case. However
complete self-dual asymptotically Euclidean metrics (at least with finite fundamen-
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tal group) do not exist. This can be seen as follows. The index of the Dirac operator
7"V, on a manifold with boundary is given by [24]

1 1
Index [,ya Va] = 1—9—2;2' A_g Rg AN Rol; — W 6“1;/[ 873 A Rg - [1’]D(O) + h]% . (3.22)

1p(s) is the  function of the Dirac operator restricted to the boundary 6M and h is
the dimension of its kernel. For S* these vanish. Now any simply connected half-
flat metric posseses spinor structure [25]. Thus on half flat asymptotically
Euclidean metric the index of the Dirac operator is

1
i‘ 4_§.7z:—21£R“ﬂ”VR Bu ]/g;d“x.

This is zero only if the metric is flat.

It follows that any simply connected asymptotically Euclidean half flat metric
would admit at least one normalizable solution of the Dirac equation. However by
Lichnerowicz’s Theorem [10] such a solution would have to be covariantly
constant and hence could not be normalizable. The only way out of this
contradiction is that there are no simply connected half-flat asymptotically
Euclidean solutions. If the manifold is not simply connected we can apply the
argument to the universal covering space provided this consists of only finitely
many copies of the original manifold. Thus the inequalities (3.20) and (3.21) are
saturated only in the trivial flat case. Using them it is easy to rule out (amongst
others) solutions with the following topologies:

1) R*—{Npoints} =S*— {N + I points}
r=1-N, =0
2) S x §*—{Npoints}
¥y=—N, =0
3) CP?—{Npoints}
r=3—-N, z1=1.
Thus we see that there are no asymptotically Euclidean solutions (other than

flat) on R* nor with the topology of the many bridge (2.18) or Misner Wormhole
(2.19).

4. Local Bianchi IX Solutions

In the next 3 sections we shall illustrate the ideas we have discussed above by
reference to a simple class of solutions of the Einstein Equations. This class we call
Bianchi IX metrics. They are defined to be metrics with an SU(2) or SO(3) isometry
group acting transitively on 3-surfaces. These are the Euclidean equivalent of a
well known class of cosmological models [26]. If R, =0 the metric may locally be
cast in the form

ds?=(abc)?dn? + a*c? +b*c% + c*o? (4.1)
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where g, b and c are functions solely of 4 and {g,} are 3 basis 1-forms with exterior

algebra
do.= —%gijkaj N 4.2)

1

and such that

a%ai =0. 4.3)

The vacuum Einstein equations reduce to the form:

24, =a*—(b*—c?)? (4.4)
plus the two equations obtained by cyclic permutation of (a, b, c) and

4et, B, + By 7,0 = 20207 +2b%¢? + 2¢*a® —a* —b* —c*. (4.5)

a=loga (4.6)

and cyclically.

(4.5) 1s a first integral of (4.4) and may be regarded as a constraint on the initial
values of (a,b, ¢) and (a,, b,, ¢,) which is preserved by the evolution Eq. (4.4). In fact
(4.4) are derivable as the Fuler Lagrange equations of the action I given by

8
= I=[20,B,+ By, v,)n
+3[(2a?b?+2b%c* +2c%a* —a* —b*—c*)dy . (4.7)

In fact I coincides with the gravitational action if the 3-volume of the surfaces of
constant 7 is taken to be 167*(abc). The constraint (4.5) may also be derived from
the action (4.7) if one imposes the condition that the integral is stationary under
the replacement dy— N(y)dy where N(n) is an arbitrary function of . The
constraint says that the “Hamiltonian” corresponding to the Lagrangian (4.7)
vanishes. Note that because the time is imaginary the roles of the physical
Lagrangian and minus the Hamiltonian are interchanged.

Equations (4.4) and (4.5) may be integrated completely if we impose the
condition that two of the invariant directions have equal magnitude. E.g. a=b.
This leads to the general Taub-NUT family which is invariant under a
4-parameter group with the Lie algebra of U(2):

a® =b? ={gsinh g(y —n,)cosech*3q(n —n,) (4.8)

c?=gqcosech g(n—n,). 4.9)
(g,1,,%,) are constants of integration. The more familiar form

ds? =(r? —n?)(r* —2mr +n?)~ tdr?

+4n%(r? —2mr +n?)(r* —n?) " to% +(r? —n?)(0? +02) (4.10)

is obtained using the transformation:

n*= —Xqcosech q(n, —n,) (4.11)

m=ncosh q(y,—n,) (4.12)

r= - (coth 3q(n —n,) —cothqn, ~n,)). (4.13)
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Two special cases are of note

A) Hy=1;. (4.14)

These are the Eguchi-Hanson metrics [27,28]. Real g corresponds to their type I1.
Imaginary g corresponds to their type 1. One can obtain their metric from (4.10) by

the following transformation
4

Q2
r=m+ — (4.16)
8n

where a is Eguchi and Hanson’s parameter. One now lets n—co. This gives the
metric
4

a*\7! a
w2 (1-%) de+ie?(1- G heie b

B) ¢=0.
This corresponds to the self-dual solution discussed by Hawking [29].

Both A) and B) have self-dual curvature.

All Bianchi IX solutions with self-dual curvature may be obtained systemati-
cally. The self-dual conditions leads, after a single integration to the following
equations

do
2%=b2+cz——a2—2ilbc (4.18)
together with the two others obtained by cyclically permuting (a,b,c¢) and
(A4, 45, 43). The {4} are constants obeying

4.17)

Ay =4,4; and cyclically. (4.19)
The possible solutions of (4.19) are

C) (44,45,45)=(0,0,0) (4.20)

D) (A4,4,,45)=(1,1,1) 4.21)

E) (A, 45, 45)=(—1,—-1,+1) 4.22)

and cyclic permutations. In fact case E is not distinct from case D since it may be
obtained by the substitution ¢c— —c¢. Both C and D yield in (4.18) first integrals of
the evolution Eq. (4.4) which are consistent with the constraint (4.5).

Case C may be obtained directly without integration by requiring that the
connection forms in the basis (abcdy, ac,, ba,, ca;) be self-dual, and the resulting
Eq. (4.18) may be solved completely to give a metric of the form [28]

2 a4 -1 a4 -1 a4 -1
omrvag i) e (1 8) e (1)
4 Q4 1 Q4 2 Q4 3
where

4 4 4
-

and (a,,a,,a;) are constants.

(4.23)
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We have been unable to integrate case D explicitly except when a=»b which
leads to the self-dual Taub-NUT metric obtained from (4.10) by setting m=n. We
shall give a qualitative treatment of the equation for case D in Sect. 6.

An alternative way of obtaining self-dual metrics is to require that they be
vacuum-Kaehler metrics. This implies and is implied by self-duality of the
Riemann tensor [30]. This leads to a non-linear partial differential equation for
the Kaehler function K(¢*,¢2 (!, 7?) considered as a function of the two complex
variables ¢, i=1,2. This equation is

0’°K
) (ac'acf) @2
If one assumes that K is a function solely of R*=|(!|2+|{?|* (4.25) may
integrated to give

0 —a?
K=0%+3d*log (QZ-I-—CZZ) (4.26)
where
o*—a*=R*. (4.27)
This leads directly to the Eguchi-Hanson metric (4.17) where
R (07 +a3)=1dl" P +|dC?)P — R0 L + Al (4.28)
R’c3 = ('l + g - 1alt — a2y (4.29)

One may easily extend this class of solutions to include the effect of the
cosmological constant. In order to be an Einstein-Kaehler metric the Kaehler
function must satisfy

K 1
= | = - /ZAK. 4.30
det(aClaU) e (4.30)
The assumption that K depend only on |{!|?+|{?|?>=R? leads to the metric

4 -1 4
a7 (1= 50| det i (1= 5 gt teigdetead) @)

where {o,} are related to {{'} by Eq. (4.28) and (4.29). K is obtained by solving the
ordinary differential equation
dK d ( dK

dK d (R dK) _gRoe-1i2aK 432
dR dR RdR) 8R%e (432

5. Global Aspects of Bianchi IX Solutions

The discussion in Sect. 4 was purely local. In this section we shall discuss how
these local solutions may be patched together to form global solutions. The group
G may be SU(2) or SO(3). At a general point p of the manifold M, the stabilizer of
this point must be a discrete subgroup of G since G has 3 dimensional orbits. This
subgroup will also fix nearby points since we assume G acts continuously. The
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effective action of G will have this subgroup factored out so we may assume with
no loss of generality that G acts effectively and transitively on its orbits O,. This
implies that these orbits are generically S* if G=SU(2), or RP3 if G=50(3).

In both cases points on O, may be parametrized by the coordinates on G in
such a way that the Euler angles (i, ¢, 3) assigned to each point ¢ on the orbit
through p correspond to the group element g such that g=gp. Since the field
equations tell us that the action of G commutes with Lie transport along the
orthogonal trajectories this leads to the metric form (4.1) with {o,} given by

o, =cos pd3+sin ysin Id¢ (5.1)

0, = —sinpd3+cosypsin Id¢ (5.2)

oy=dyp+cosIdo. (5.3)
The dual basis of vectors {K,} is

K, =cosypd/03+ :E lg 0/0¢p — cot 3sin ypd/0y (5.4)

K, = —sinpd/o9+ %G/OQD — cot 8cos pd/dy (5.5)

K,=0/0yp (5.6)
where

0Z9=n

0<¢p=2n

Osyp=2r if G is SO(3)
Osyp=4n if G is SU(2).

The solutions discussed in Sect. 4 are valid so long as {a,b,c} are finite and
non-zero. If any of {a,b,c} cease to be finite and non-zero in a finite proper
distance interval &= j abcdy, the manifold will be incomplete. If G is SU(2) and all
three of {a,b,c} diverge as 4 (proper distance) we obviously have a Euclidean
infinity. Other infinities are also possible. For example the Taub-NUT infinity
corresponds to a—¢, b—~¢, c—constant (or any permutation of {a,b,c}) as the
proper distance ¢ tends to infinity. In the Eguchi-Hanson metric {a, b, ¢} diverge as
1¢ but G is SO(3), giving a sort of “conical” Euclidean infinity [28].

If one of {a, b, c} vanishes, for example c, at a point p, then the corresponding
vector will have zero length at p. This means that the orbit of G through p can no
longer be 3 dimensional. In fact the orbit through p corresponds to a subgroup H
of G and hence must be one dimensional or the entire group G. In the first case,
which we call a bolt, [19] B, only ¢ vanishes and the orbit through p corresponds
to G/G,. This is a homogeneous 2-space whose metric and second fundamental
form are spherically symmetric. In fact since G commutes with the exponential
map, B is a totally geodesic submanifold of M, and its second fundamental form
vanishes. This means that a tends to b on the bolt with vanishing derivative with
respect to & By considering the limiting form of the metric on a 2-surface
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orthogonal to the bolt —i.e. the (1, ) plane in our coordinates — one can readily see
that if p is to be an angular coordinate with range 47, ¢ must vanish as 3¢ whereas
if w has range 2%, ¢ must vanish as £. Strictly speaking the word bolt introduced in
[19] applies only when a=>»bV¢. In this case K, is an additional Killing vector (i.e.
the group is extended to U(2)) and ¢=0 is the locus of its fixed point set — i.e. its
“bolt”. If a= b the set at which ¢ =0 is a degenerate orbit but it may not necessarily
be the fixed point set of a one parameter subgroup. In what follows we shall extend
the term bolt to cover this slightly more general situation.

In the second case the orbit through p is just p itself and we refer to p as a nut
[19]. In this case all of {a, b, c} must vanish as ¢ as ¢—0, in order that the orbits
be a nested sequence of 3-spheres near p.

We summarize these boundary conditions as follows:

Euclidean Infinity.
a,b,c—>3, (-
0=y=dn;
Conical Infinity.
a,b,c>it, (-0
0=y=2rm;
Taubian Infinity.
a,b—¢, c—constant, ¢—o00;
Bolt.

1
a,b—constant, c¢—3¢,

da db
dg d¢
Osyp=4n

0, ¢&-0

or

a,b—constant, c¢—¢

0=syp=2n;
Nut.
a,b,c—%¢, &0
0<yp=4n.

There are of course other ways in which the solutions can break down but if we
insist on the group orbits being generically SU(2) or SO(3) these solutions will not
have regular extensions of the sort we describe. In principle “bolts” with y
identified modulo 47x/s, s >2 could arise. These would correspond to group orbits
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which were generically SU(2)/Z, where Z_ is the cyclic group of order s. However
these possibilities definitely do not occur in the symmetric (a =b) case nor the self
dual case. If our qualitative reasoning in Sect. 6 is correct they cannot occur at all
for Bianchi IX metrics. It will turn out that not all possibilities are allowed by the
differential Eqgs. (4.4) and (4.5). It is useful to think of the solutions as curves in the
configuration space {a, b, c}.

The five regular boundary conditions can be combined in 15 ways to give
regular manifolds. Of these some can be ruled out on the grounds of our results in
Sect. 3. These are: Euclidean Infinity—bolt or Euclidean Infinity. One can modify
our results of Sect. 3 to take into account conical infinities. Each conical infinity,
for which v is identified modulo 2z and the boundary is RP?, contributes 3 rather
than unity to formula (3.14) for the Euler number. The formula (3.18) for the
signature 7 is unchanged. Then it is easy to rule out Conical Infinity— Euclidean
Infinity, Conical Infinity, or nut. For a Taubian Infinity the boundary terms
contribute zero to formula (3.14) for the Euler number and } to formula (3.17) for
the signature. This enables one to rule out Taubian Infinity—Taubian, Euclidean
or Conical Infinity.

There are three compact possibilities: nut—nut, bolt—bolt, and nut—bolt.
These have y=2,4 and 3, and t=0, 0 and 1 respectively. They can all be ruled out
because

1) If x=0 any Killing vector field must have at least one fixed point.

2) If R,,=0, K,**,=0 which in turn implies that K, is covariantly constant
and so if zero anywhere it must be zero everywhere.

It remains to investigate the cases

Nut —Euclidean Infinity

Nut —Taubian Infinity

Bolt— Taubian Infinity
Bolt— Conical Infinity.

The first case must be flat and the other three all occur as members of the
Taub-NUT family — ie. with two directions equal. One cannot determine by
topological means whether the last three cases can occur when all three directions
are unequal. To decide the issue we must turn to the detailed behaviour of the
differential Eqgs. (4.4) and (4.5). This we do in the next section. Before doing so we
list the known Taub-NUT examples:

1) Flat Space.

Osyp=4n

a=b=c=1¢.

This runs from a nut at £=0 to a Euclidean Infinity at &= co.
2) Self-Dual Taub-NUT [29].

Osy=4n

a=b=@F>—n?)Y2,  c=2n@r—n)*@r+n)" 12

&=narcosh (%) +(r*—n?H)l2,
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This runs from a nut at ¢=0 to a Taubian Infinity at &= oo.
3) Taub-NUT with m=%|n| [31]. (This is not half-flat.)

Osy=dn

a=b=(r2__n2)1/2, c=2n(r—2n)1/2(r~%n)l/z(rZ_nZ)—l/Z
£= j (x—2n)'1/2(x_ %n)" 1/2(x2__n2)1/2dx'
2n

This runs from a bolt at £=0 to a Taubian Infinity at &= oo.
4) Eguchi-Hanson [27, 28].

0syp=2n

a4 1/2
—ph—1 -1
a=b=3r, c—zr(l—r—4)

&= [(x*—a*~"2x%dx.

This runs from a bolt at £=0 to a Conical Infinity at &= co.

Examples (3) and (4) are best understood by comparison with the metric on
CP? which has a self-dual Weyl tensor and is an Einstein space [32]. This has

Osy=4n

ST INT
c=\/%cos(\/%€).

. l /3
This runs from a bolt at £=0 to a nut at {=n Ih Near ¢=0, ¢3¢ The
m=%|n| Taub-NUT metric has a similar behaviour near the bolt at £ =0. Thus we

must identify v modulo 4. Therefore the topology is that of CP?— {the point

E=m ‘ / %} We shall call this CP?—{0}. It has y=2 and t=1. This manifold is

simply-connected and does not admit spinor structure because the self-intersection
number [19] of the bolt is one, as in CP2.

The Eguchi-Hanson metric is also similar to CP? at ¢~ 0, except that c—¢ as
£—0. Thus we must identify v modulo 27, which implies that the Eguchi-Hanson
metric has a conical infinity at £=co. In fact the manifold on which the Eguchi-
Hanson metric is well-defined may be described as follows. Let (Z,,Z,,Z,) be
three homogeneous complex coordinates on CP?, not all of which vanish.
Consider the involution I:(Z,,Z,,Z,)>(—Z,,—Z,,— Z;). This leaves fixed both
the point in CP? given by (0,0, Z,) which corresponds to the nut, and the complex
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line or 2-sphere (Z,, Z ,,0) which corresponds to the bolt. If we delete the point and
factor CP?2—{0} by I we obtain the Eguchi-Hanson manifold. (Despite ap-
pearances this is still a manifold near the bolt, and is in fact diffefomorphic to the
tangent bundle of S2.)

Introducing coordinates

2,/2,=¢ =Reos(3)exp 5 -+ 0 57)

2,/2,= = Rsin(9)exp 50 —) (58)

where R2=|{Y|>+|(%?, it is evident that the involution I corresponds to
p-p+2m

(CP?—{0})/I has y=2, t=1 (the same as CP?— {0}) and is simply-connected.
The self-intersection number [19] of the bolt is 2 and the manifold admits spinor
structure. One may easily check the index theorems for the Hirzebruch and Dirac
complexes. The RP® boundary contributes zero for the Hirzebruch case and —%
for the Dirac case.

The remaining explicitly known solution, that of Belinskii, Gibbons, Page and
Pope [28], Eq. (4.23), in general runs from a Euclidean Infinity at g=o00 to a
curvature singularity at the largest value of (a,,a,, a,), except in the special case
where it coincides with the Eguchi-Hanson metric. In any event it is not complete
and asymptotically Euclidean. Since it is half-flat this is implied by our results in
Sect. 3.

6. Qualitative Treatment of Bianchi IX Solutions

The Egs. (4.4) and (4.5) are difficult to integrate exactly. Similar equations
(obtained by Wick rotation) occur in the study of cosmological models, and
various qualitative methods have been developed to deal with them. In this section
we shall adapt the approach of Misner [33] to our situation. We begin by
introducing the variables (2, ., f_) defined by

a=exp(Q+B,+1/36.) (6.1)
b=exp(Q+B, —/38.) 62)
c=exp(Q—-2f.) (6.3)

or
Q=1log(abc) (6.4)
B.=¢log (Z—f) (6.5)

B_= 51—310g (g) . (6.6)
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The action I in (4.7) is now
o dm L (BN (AR,
dn dn
where

BB, B_)=—5[2** cosh(4]/3B_)—2¢*+

dn (6.7)

—4e™ 2P+ cosh(2)/3f_) +e~%]. (6.8)
The constraint Eq. (4.6) becomes
dp.\*  (dB_\* [dQ\? 0
(dﬂ) +(W) _(df’l + Pe**=0. (6.9)

These equations can be thought of as those of a particle moving in the time-
dependent potential ®e*? For some purposes it is convenient to regard Q as the
time coordinate. At large negative values of Q the potential is flat. As Q increases
so does the potential, becoming infinitely steep as Q—oco. Care must be taken
however since Q is not always a monotonic function of n or £.

The self-dual first integrals may be written in the form

=0lo0E ™ (. ) (6.10)
g _ 20
i —0/0B (e**¥(f 1. B-)) (6.11)
dp_ 20
gy = VBB B (6.12)
where for case C (the BGP? solutions) i=1 and
— 526+ cosh(2])/3B_) +e™*+) (6.13)
and for case D (which we cannot integrate exactly) i=2 and
By B-
= Lty el .14
v,=-o(52 (6.4

Both ¥, and ¥, are invariant under rotations of the (8., f_) plane through +3n,
and reflections in the 8, axis. This is the action of the permutation group on 3
objects and corresponds to interchanging the roles of (a, b, ¢).

The potential &(f_, f_) has the following further properties. Near the origin it
has the form

P=1_2(8% +p*)+0(). (6.15)

(0,0) is a local maximum. For large negative f§, such that 2|f_|< ]/glﬁ +| it falls
rapidly to — oo and

P — 5Pl (6.16)
For large positive §, and small §_+0,
D~ —4B% et (6.17)
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®=Y,

Fig. 1. A sketch of the potential (8., f_). The level curves are shown dotted. The potential may be
envisaged as 3 gently sloping ridges which meet at the highest point of the potential in the centre.
To either side of the ridges the potential falls rapidly down three steep cliffs to — co. @ is positive
near the centre and passes through zero on the level curve indicated with a solid line

while for f_ =0,
D le 2Pl (6.18)

The equipotential curves are circular near the origin and become more triangular
as one moves outward, until at the equipotential @ =0 they become three disjoint
open curves, asymptotic to the positive f, and symmetry-related axes. Outside
& =0 they become straighter and straighter. Thus the potential landscape may be
envisaged as three vertical cliffs meeting at three ridges which slope downwards
rather gently (see Fig. 1). This potential is the negative of the usual one
encountered in Bianchi IX cosmological models because we are working in
imaginary time.

The various boundary conditions and specializations we have described
previously may be translated in terms of this simple model. Clearly the trajectories
for which a=b are those which have f_ =0 and move straight down the cliffs or
along the ridges. The volume of the group orbits is 167%e3? or 8n2e3? depending
upon whether the orbits are S* or RP3. Thus an asymptotically flat region
corresponds to large positive values of Q2 and a nut or bolt to large negative values.
One can easily see that the various possibilities are given by

Euclidean or Conical Infinity.

Q- o0, @—»0,
dn
g, dp_
g0, (G200,

n—n, (finite).
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Taubian Infinity.

Q- 00, gig—mo,
dn
ap
B+—’w’ d"]+ — 0,
B0, %»o,
n—n, (finite).
Bolt.
2
0o, 2 nag
dn 6
dp na?
ﬂ+'—)00, d’;—’—TO,
ﬂ_—)O, %1—-) ,
where
n=1 for S3
n=2 for RP3.
Nut.
aQ
Q- — N "Jﬁ—’o,
ag, dp_
0 Rl
(ﬁ+’ﬁ—)_) i (dﬂ > dﬂ) 5
n—00.

The trajectory of the fictitious particle moving in the potential ®e*? can begin
or end at one of three points (modulo permutations of (a,b,c)) in the (8,,5_)
plane. They are the Summit (f, =f_ =0), the End of the Ridge (f, =0, f_=0),

and the Bottom of the CIliff (f, = — o0, 2|f_| < [/glﬂ +|)- These correspond to the
possible ways in which (a, b, c) can cease to be finite and non-zero. Provided the
velocity of the particle is also appropriate, the Summit corresponds to a nut if
Q= — o0, and a Euclidean or Conical Infinity if Q= + co. Similarly the End of the
Ridge corresponds to a bolt if Q= — oo and a Taubian Infinity if Q= + co. The
Bottom of the CIliff is singular and the curvature diverges there.

The self-dual class C metrics correspond to the set of all trajectories which just
reach the origin as Q—+4oco. The regular Eguchi-Hanson metric (type II)
corresponds to such a trajectory that starts from the End of the Ridge at Q= — oo.
The incomplete Eguchi-Hanson metric (type I) corresponds to a trajectory which
starts from the Bottom the Cliff on the f, axis at Q= — co. The general class C
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metrics (i.e. the BGP? solutions, Eq. (4.23)) correspond to the remaining “generic”
trajectories — i.e. those which start at the Bottom of the CIliff at Q= — co and for
which a, b and c are all unequal.

The self-dual Taub-NUT solution (Eq. (4.10) with m= +|n|) corresponds to
trajectories which start with zero velocity at the Summit at Q= — oo and fall along
the f axis reaching either the End of the Ridge (if m= +|n|) or the Bottom of the
Cliff (if m= —|n|) as @— + co. The former corresponds to the complete non-
singular manifold for which 0 <m <r < oo. The general two parameter Taub-NUT
solution (Eq. (4.10)) is represented by the set of all trajectories along the f, axis
which start at Q= — oo from either the End of the Ridge or the Bottom of the Cliff
and which do not arrive at the Summit with zero velocity at Q= + co. That is they
have insufficient energy to reach the Summit and so fall back again, or else they
overshoot. The first of these possibilities corresponds to the usual outer region of
Taub-NUT space (m+ (m* —n?)!/? <r < o0). In the special case m= 3 |n| the particle
sets out as a bolt at Q= — oo, travels some way up the ridge and falls down again
to arrive at the end as a Taubian Infinity at Q= + co.

The general self-dual class D metrics (Egs. (6.10), (6.11), (6.12) with i=2) can be
studied qualitatively in the same way. The trajectories in the (f ., f_) plane are
lines of steepest ascent or descent of the potential e*?®(B_ /2, f_/2). This follows
directly from Eqgs. (6.11) and (6.12). Therefore unless the trajectories start out along
one of the ridges they will inevitably end up at the Bottom of the Cliff. Thus the
self-dual Taub-NUT metric is the only complete non-singular solution in this
class. In fact it follows directly from our results in Sect. 3 that any self-dual
trajectory which end on the Euclidean Infinity must have started from the bottom
of a cliff.

The most general Bianchi IX case (Egs. (4.4), (4.5)) is rather complicated. It is
clear that solutions cannot leave the Summit and return later. This therefore rules
out non-flat Bianchi IX metrics on R* (nut—Infinity), S x R (Infinity — Infinity) or
S* (nut—nut). These are ruled out anyway by our results in Sects. 3 and 5. It also
seems clear that a trajectory which leaves the Summit not directed along a ridge
cannot subsequently return to a ridge to become a bolt or Taubian Infinity.

It is not obvious to us whether trajectories can start out from the end of one
ridge as a bolt or Taubian Infinity and finish up at the end of another ridge as a
Taubian Infinity or bolt respectively, but we regard this as unlikely. The other two
possibilities (bolt—bolt or Taubian Infinity— Taubian Infinity) are ruled out by
our results in Sects. 5. Thus it seems rather likely that the only regular Bianchi IX
solutions have the additional symmetry that two of the directions are equal.

7. Conclusion

An asymptotically Euclidean metric with N asymptotic regions is a complete non-
singular metric on a manifold region diffeomorphic to the union of a compact set K
and N complements of the open ball in R* on each of which the metric has the form

I\ 1
9= 1+W 5#‘,-}-0 r—3 .
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If RZ=0 the action of this region is I =1I. The Strong Positive Action Conjecture is
that R7=0 implies 1 20, with I =0 iff g, is flat. This implies the Weak Positive
Action Conjecture i.e. R,,=0 implies g,, is flat.

In this paper we prove

1) There are no half flat asymptotically Euclidean metrics with finite funda-
mental group other than flat space.

2) Any non-flat asymptotically Euclidean solution with Euler number y and
signature t must satisfy 2y — 3|t[>2N. In particular there are no non-flat solutions
on R*.

We have illustrated these results by studying a class of Bianchi IX solutions
with SU(2) or SO(3) as isometry group. We have shown (modulo one possible but
unlikely case) that the only instantons of this class must possess a further
symmetry and we have given the explicit solutions. In an appendix we use these
results to give an approximate construction for the only self-dual compact
instanton.

Asymptotically Euclidean instantons, if they existed, would contribute to the
vacuum-vacuum amplitude for gravity. Instantons with more than one asymptoti-
cally Euclidean region may lead to baryon non-conservation. The fact that any
such configuration is (by the Cosmic Censorship Hypothesis) far from an
extremum of the gravitational action presumably means that such processes are
forbidden in the semi-classical approximation.

Another mechanism, due to 't Hooft, for baryon non-conservation requires the
existence of bound states of the Dirac equation. These cannot occur on non-
compact gravitational backgrounds with R} =0.

These two facts tend to suggest that for pure gravity coupled to ordinary
matter the baryon non-conserving processes are forbidden to lowest order in the
stationary phase approximation. This situation changes if one includes spin 3/2 fields
as part of a supersymmetric theory of gravity.

Appendix. An Approximate Metric on K3

In this appendix we shall describe how 16 Eguchi-Hanson spaces may be “glued”
together to give a self-dual metric on a K3 surface. Hitchin [207] has shown that all
compact half-flat spaces are homeomorphic to a K3 surface or an identification
there of. All K3 surfaces are diffeomorphic to any quartic surface in CP3. A
particular such surface is a Kummer Surface. This is holomorphically equivalent
to the following space [34]: Consider a lattice L in C? obtained by identifying the
points (Z,,Z,) with (Z,, Z,) + A(1,0) + u(i, 0) + (0, 1) + 6(0, i), where (4, p, v, o) are 4
arbitrary integers. This is a compact complex manifold with topology
S' % S x S x S*. The involution (Z,,Z,)—(—Z,, — Z,) has 16 fixed points in L,
ie. the points whose real and imaginary parts are zero or 1/2. If one identifies
points in L which are equivalent under the involution these 16 points will not be
regular points. One must, in the language of algebraic geometers, “blow them up”.
Roughly, this means replacing these 16 points by 16 copies of CP! — the complex
projective line or Riemann sphere. This may be done as follows. Surround each of
the 16 points by small 3-spheres and remove the interiors. The boundary of the
manifold so obtained is 16 disjoint copies of RP3. It is RP? and not S* because the
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involution connects antipodal points on S Each RP*® boundary must now be
filled in with an Eguchi-Hanson manifold (i.e. (CP?—{0})/I). To construct the
metric one has to match carefully across these 16 boundaries. This can be done
approximately by putting the flat metric on C? and the Eguchi-Hanson metric on
the Eguchi-Hanson manifold. As their parameter a—0 this will become a better
and better fit. It is easy to check that the Euler number y and signature t of the
resulting space are 24 and 16 respectively and that this is consistent with the
Gauss-Bonnet and signature theorems. Page [35] has established that the number
of free parameters or moduli obtained from this construction corresponds exactly
with the 58 expected ones. If one could find a “multi-Eguchi-Hanson” solution
analogous to the multi Taub-NUT solution [29] one might hope that by judicious
choice of the parameters one could construct exactly the general self-dual metric
on K3.

In fact a minor modification of the multi-taub-NUT ansatz produces a
sequence of solutions which are asymptotically conical [19]. The first of the
sequence in flat space which is of course asymptotically Euclidean and the second
is Eguchi-Hanson with boundary RP3. As one proceeds along the sequence the
metrics are all asymptotically flat in all 4 directions but with lens space
boundaries. However each of the solutions has at least a one parameter isometry
group and so superposing will not lead directly to the desired metric on K3.
Further work on this topic is continuing.
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