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Abstract. The construction of charged sectors in Quantum Electrodynamics
(QED) is analyzed within a framework of algebras of local observables. It is
argued that charged sectors arise by composing a vacuum state with charged *
morphisms of an algebra of (neutral) quasi-local observables. Charged *
morphisms, in turn, are obtained as weak limits of charge transfer cocycles.
These are non-local elements of the algebra of all quasi-local observables
obeying "topologicaΓ commutation relations with the local charge operators.
It is shown that in this framework, charged sectors are invariant under the time
evolution and satisfy the relativistic spectrum condition. The total charge
operator is well defined and time-independent (conserved) on all charged
sectors. Under an additional hypothesis the spectrum of the total charge
operator is shown to be a discrete subgroup of the real line. A generalized
Haag-Ruelle scattering theory for charged infra-particles is suggested, and
some comments on non-abelian gauge theories are described.

0. Introduction

This paper is a continuation of the analysis presented in [1], hereafter referred to
as I. In that paper we have investigated charged sectors in gauge theories with
unconfined, abelian charges, in particular QED, from the points of view of a local,
covariant formulation on an indefinite metric space and of collision theory, using
as one basic input Buchholz' results [2]. Moreover, the construction of charged
states in QED was analyzed heuristically, extrapolating procedures applicable in
lattice gauge theories to the continuum theory. In this paper that analysis is
replaced by a mathematically rigorous one, based on a few general, physical
principles.

The main results of Paper I are as follows:
Asymptotic charged fields (if they exist see Sect. 7 of this paper) are non-local

relative to the asymptotic, electromagnetic field and are not covariant under
Lorentz boosts.
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A rather complete characterization of "scattering representations" of the
algebra generated by bounded functions of the asymptotic, electromagnetic field,
in particular of its representations on charged sectors, was achieved.

Asymptotic, charged one-(infra)particle states were constructed.
Under reasonable hypotheses it was proven that the charged sectors of QED

are not invariant under Lorentz boosts (breaking of the boost symmetry on
charged sectors).

For detailed statements of these and other results we refer the reader to I.
This paper represents a preliminary attempt at extending the Doplicher-Haag-

Roberts (DHR) theory [3] of superselection sectors in standard quantum field
theories to QED - and other gauge theories with an unconfined, abelian charge -
taking into account the conclusions of Paper I and trying to substantiate some of
the hypotheses made there. Our approach is inspired by the general framework of
Haag and Kastler [4] and DHR [3]. Some of the technical details in this paper are
taken from [5] (where the main emphasis is placed on super-selection sectors
labelled by topological charges, i.e. quantum solitons). Some knowledge of [3, 5, 6]
might be helpful to understand the main concepts of the present paper.

The main physical hypotheses upon which the following analysis is based are :

A. Gauss' Law

where ρ is the 0-component (charge density) of the local, locally conserved, electric
current operator, and E(x) = (E1(x), E2(x\ E3(x)) are the components of the
quantized, electric field.

B. Covariance

Charged sectors are space-time translation invariant, i.e. a selfadjoint energy-
momentum operator exists on charged sectors.

C. Additivity of the Electric Charge

Charged sectors can be composed, i.e. the electric charge is an additive quantum
number.

D. Space-like Distant, Localized Charges are not Felt

Charges can be localized (in a sense explained in Sect. 5), and charged states arise
from neutral states (via taking w* limits) by removing a localized charge to space-
like infinity.

Among some of the consequences of these hypotheses are :
The physical mass gap of QED is 0 [7].
Any representation of the algebra of all quasi-local observables determined by

a charged state is disjoint from the vacuum representation, even when restricted to
space-like distant regions a consequence of Gauss' law. Technically, this implies
that charged states cannot be obtained from the vacuum by strictly local *
morphisms of the observable algebra. The DHR approach [3] must therefore be
modified for QED and any gauge theory with unconfined charges (Sect. 2).
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Charged fields (or field bundles) are non-local relative to the interpolating,
electromagnetic field (Sect. 2).

The space-time translation covariance of charged states implies that "charged
field bundles" (* morphisms of the observable algebra) uniquely determine unitary
operators on the vacuum sector, space-time translation cocycles, which describe
the transfer of a localized charge from, say, the origin to some point αeM4

(Sect. 3.1). "Topological" commutation relations between those cocycles and the
local charge operators are derived (Sects. 5 and 7).

These so-challed charge transfer cocycles are non local relative to the
interpolating, electromagnetic field (in a very strong sense) (Sect. 3.2).

On the basis of these results and assuming PCT-invariance we then propose a
tentative framework for the description of charged sectors in QED. Our frame-
work guarantees that charged states can be constructed as w* limits of neutral
states (vector states in the vacuum sector) by removing a localized charge to space-
like infinity (Sects. 4 and 5).

Moreover, in that framework charged states are space-time translation
covariant, and the relativistic spectrum condition holds on all sectors. We then
prove that the total charge operator exists and is conserved on all sectors of the
theory (it is zero on the vacuum sector). Under an additional hypothesis it is
shown that charge transfer cocycles transfer a definite electric charge, and charged
* morphisms carry a definite charge. Then the spectrum of the charge operator on
the total Hubert space is a discrete subgroup of the additive group of the real line
(see Sects. 5 and 6). Our main results are in Sects. 3, 5, 6.2, and 6.3. The main
purposes of a general framework for QED are:

I) To develop specific concepts and explicit procedures for the construction of
sectors labelled by an abelian, unconfined charge in a gauge theory, in particular
QED, the vacuum sector of which is supposed to be given, e.g. in the form of a
sequence of Wightman distributions of gauge-invariant fields satisfying a suitably
modified form of the Wightman axioms. This is attempted in Sect. 3-6.

II) To extend Buchholz' collision theory for massless bosons [2], in QED only
applicable on the vacuum sector, to the electromagnetic field on the charged
sectors of QED.

III) To complement and complete that analysis by constructing a collision
theory for charged infra-particles (see Sect. 7).

Some relevant results can also be found in Sect. 3.3 and 3.6 of Paper I.
IV) To derive the principal hypotheses in Sect. 3.4, 3.5 (or the weaker ones in

Sect. 3.3) of Paper I which would determine the structure of charged scattering
states (generalized coherent states!) quite explicitly, from a few basic, dynamical
hypotheses which are convenient to check in models.

A minimal result of this type is to show that charged sectors determine
representations of the algebra, 9ίas, generated by bounded functions of the
asymptotic, electromagnetic field which are disjoint from the Fock representation
(see Sect. 1 of Paper I). A somewhat stronger result containing that one would be
to prove that the electric charge operator, β, is affiliated with the von Neumann
algebra generated by 2ΓS in the physical representation.

The reader will find out that none of these goals is reached completely in this
paper. We hope it at least clarifies the conceptual basis and the main difficulties
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met in the construction of charged states and supplies some useful first steps
towards a more complete, general theory of the charge super-selection rule (see
also [8, 3]). Readers who think that theorems with short proofs are necessarily
trivial will find this paper trivial. Some of the experts in the field may share this
feeling. We hope some of the ideas developed in the following will be useful.

1. Local Observables and Covariant States

Here we recall some basic notions and concepts of the Haag-Kastler frame-work
[4], the basic theorem of Bisognano and Wichmann [9] and a result of [10]
concerning the existence of local algebras satisfying the Haag-Kastler axioms in a
Wightman field theory. Let & denote a double cone (the intersection of a forward
with a backward light cone) in M4, and let ~& denote its causal complement (all
space-time points which are space-like relative to 0).

Given a double cone 0, let 91(0) be a C* - or von Neumann algebra containing
at least all bounded functions of the interpolating, electromagnetic field, Fμv(/μv),
where the fμv are real- valued Schwartz space functions with support in 0, and
possibly other local observables which are local relative to the electromagnetic
field 1 (such observables have of necessity total charge 0; see [8] and Sect. 2). Let B
be some general, open region in M4. Let 23 denote the family of all bounded double
cones in M4. We define 9ί(£) to be the norm closure of

U W; (i i)
&e<&
&CB

in particular, 91 ΞΞ 9I(J3 = M4) is the algebra of all quasi-local observables of the
theory.

As usual, locality is expressed by the condition that, for arbitrary ,4 e 91(0) and
arbitrary £e9I(~0),

[A,B']=AB-BA = Q. (1.2)

We also assume that the Poincare group, ̂ , is represented on the algebra 91 by a
(strongly continuous) * automorphism group, {τξ:ξe^+}9 such that

τξ(9I(0)) = 9ί(0(ξ)), (1.3)

where &(ξ) is the image of the region 0 under a Poincare transformation ξ (see [4]).
Sufficient conditions - which are quite efficient in models - for the existence of

a net of local algebras {9I(0)}^eS with all the properties, (1.2) and (1.3), listed above
in a Wightman field theory are given in [10].

Given a state, ρ, on 91, the G.N.S. construction (see e.g. [11]) provides one with
a Hubert space, J-fρ, a representation, πρ, of 91 on Jfρ, and a cyclic unit vector

, such that

,

= (ΩQ9πβ(A)ΩQ)9 forβ Q

In an unambiguous context, A will henceforth denote both, the abstract element of
91 and the bounded operator πρ(A) on jjfQ in a given representation πρ of 91 on J4?ρ.

1 e.g., observables of the type of the "Wilson loops"
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Let G be an arbitrary, topological group represented on 21 by a (strongly
continuous) group of * automorphisms, {τg:geG} of 2ί.

Definition ί. A state, ρ, on 21 is said to be G-covariant iff there exists a continuous,
unitary representation, C7ρ, of G on fflQ such that, for all v4e2ί, geG,

πQ(τg(A))=UQ(g)*πe(A)UQ(g) on jfβ. (1.5)

A vacuum state, ω, is a state on 21 which is Poincare-invariant (hence
^ -co variant), so that

Uω(ξ)Ω = Ω, for all ξe<?i+9 (1.6)

where Ώ = Ωω is the physical vacuum, and the spectrum of the generators, (//, P),
the energy-momentum operator, of the translation subgroup {C/ω(α):αeM4},
Uω(a)=Uω(ξ = (l,a)), is contained in the forward light cone V+. D

Henceforth we may always assume that the physical vacuum is non-
degenerate, i.e. ω is a pure state on 91, without loss of generality. This is because of
Araki's theorem [12]. Then the von Neumann algebra, πω(9l)", generated by πω(9I)
on the vacuum sector, J>fω, coincides with the algebra of all bounded operators on
J>fω, B(3Ίfω). In the following we assume that we are given an arbitrary, but fixed,
pure vacuum state ω on 21 (but see [13, 12, 5]).

For the expert we now recall a basic theorem, due to Bisognano and
Wichmann [9] which, we believe, is at least implicitly important in the following
analysis. (The reader can skip this in first reading.) This theorem says that, under
certain technical assumptions (in particular PCT invariance, which are guaranteed
by the conditions of [10]), one can construct from the net {2l(0)}0e25 another net,
{2Ϊ(0)}0e53, of local von Neumann algebras on j^ω such that

91(0)291(0) an<i 21(0) = πω(2Ϊ( ~ 0))' (1.7)

(the famous duality condition; see e.g. [3]), for all 0eS.
In the following we shall imagine working with the net {2t(0)} 6̂S, but we write

again 21(0), instead of 91(0). We only consider states on 21 whose restriction to
21(0) is normal, for all 0e$.

DHR consider those states, ρ, on 21 as relevant for particle physics which have
the property that

||(ρ-ω)/2I(~0Π)HO, as w->oo, (1.8)

for each sequence {0n} C23 increasing to M4. Under suitable, technical conditions
this property is equivalent to

ρ - ω o σ , (ρ(A) = ω ° σ(A) = ω(σ(A}\ A e 2ί) , (1.9)

where σ is a * morphism of 2I2 with the property that, for some bounded double
cone 0, called the support of σ,

σ(A) = A, for all 4ε2I(~0). (1.10)

Such morphisms are called local (see [3]).

2 I.e. σ(AB} = σ(A)σ(B\ σ(A*) = σ(A)*, σ is linear and \\σ(A)\\ ^ \\A\\, for all A,B in
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Lemma 1. Let σ be a local * morphίsm ofΆ and ω a vacuum state. Then

Proof. Let 0e93 denote the support of σ. Then σ(A) = A, for Ae2I(~0). Thus

0)}. (1.11)

By the Reeh-Schlieder property [4, 10, 14], the closure of the r.s. of (1.11) is j^ω

when ω is a vacuum state. D

Remark. The Reeh-Schlieder property has been derived from the Reeh-Schlieder
theorem [14], under suitable conditions, in [10]. Lemma 1 is significant for the
discussion presented in Sect. 3.

We now show that when ρ is a charged state on ϊt and the charge satisfies
Gauss' law (see condition A in the introduction) then properties (1.9) and (1.10)
cannot be fulfilled, hence (1.8) must fail, too. This result is widely known [8,3].

2. Consequences of Gauss' Law

We repeat here, in a more formal way, an argument showing why the DHR theory
of super-selection sectors is not applicable to the charged sectors of QED.

First, we recall the definition of the electric charge operator, Q : Let α(ί) ̂ 0 be a
test function on IR of compact support, with jα(ί)dί = l. Let Σ be a simply
connected, bounded region in IR3 with smooth boundary dΣ. Let fΣ(x) be a test
function on IR3 with the properties

ii) fΣ(x) = l, for all x with the property that (x, t) is in the causal shadow of Σ
(i.e. not space-like to Σ\ for all ίesuppα;

iii) supp/£ compact.
We then define

(2.1)

where ρ(x, t) is the charge density operator. Gauss' law is expressed in the form

(2.2)

where E is the electric field operator.
We assume that

E(F/2®α) is affiliated with 9I(~In0), (2.3)

for some sufficiently large $e93, in accordance with the fact that, for a sufficiently
large 0e23, supp(F/I®α)C^ΣInd?. Then the operator E(F/I(χ)α) is a densely
defined, selfadjoint operator in any locally normal representation of 91. (Property
(2.3) is true under the conditions of [10].)

If Σ is the ball {x : |x| ^R} we denote QΣ by QR, and fΣ by fR.
From locality, (1.2), and (2.3) we get

Lemma 2.

n-]imeisQ*Ae-i8Q* = A, for all ,4e9I, selR.
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We define the electric charge, β, as the generator of

w-limeisQR, seIR, (2.4)
Λ-*oo

in any representation π of 9Ϊ for which the limits (2.4) exist and are continuous in 5.
Then Q is affiliated with π(9l)". This and Lemma 2 show that the electric charge is a
super-selection rule. The analysis of this super-selection rule is the main purpose of
this paper (see also [8]).

It is common to assume that

Q = 0, on tfω9 (2.5)

but see Lemma 14 (Sect. 5).

Proposition 3. Let σ be a local * morphism 0/21. Then the sector 3?σ = 3?ωoσ has the
same electric charge as J^ω, i.e. if

w-lim QRΩ = QΩ = Q (2.6)
R-+OO

then

= 0, far all Ψe^ω and all

Proof. Let Ωσ = Ωωoσ. Then, for arbitrary A and B in (J 91(0),
0e23

(AΩa,QBΩσ)=lim(AΩσ,QRBΩa),
R-+CC

and by (3.8),

- (AΩσ, QRBΩσ) = (ΛΩσ, E(F/Λ ® α)BΩσ) .

For # sufficiently large, E(F/Λ®α) is affiliated with 9l(~suppσ), moreover

E(F/Λ(g)α) and β commute, since Be (J 91(0). Thus, using (1.9), we conclude that,
0e93

for sufficiently large R,

= (σ(A)Ω;σ(B)σ(E(rfR®σ))Ω)

= (σ(B*A)Ω9 E(FfR ® α)β) . (2.7)

As #-»oo, the r.h.s. of (2.7) tends to

(σ(B*A)Ω, QΩ) = 0 [see (2.2) and (2.6)] .

Therefore

(AΩσ, QBΩσ) = lim (AΩ^ QRBΩσ) = 0. D
R-+CQ

Thus, in QED charged states do not arise by composing the vacuum state ω
with local morphisms. Should we give up the idea that charged states can be
constructed by composing the vacuum state with * morphisms of 91? Not only
would such a radical proposal contradict the requirement that charged sectors can
be composed (charged fields can be multiplied) and the electric charge is additive,
but it would also make a general analysis too vague.
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3. Translation Covariant Sectors and * Morphisms of 91

We propose to regard those states ρ on 9Ϊ as relevant for QED which have the
properties

PI) ρ is space-time translation co variant;
P2) ρ = ω°σ, where ω is the vacuum state, and σ is a * morphism of 91.

Remark. The results of Sects. 3.4 and 3.5 in Paper I have cautioned us not to
assume that ρ is Lorentz-covariant in case ρ is a charged state. We may, however,
assume that ρ is also rotation covariant, but this is quite unimportant in the
following. Translation covariance is crucial, because it guarantees the existence of
an energy-momentum operator.

3.i. Transportable and Covariant Morphisms and Cocycles

Definition 2. Let G be a topological group, and {τg :gε G} a representation of G by

a strongly continuous * automorphism group of 9ί. Let ω be a G-co variant state on
91. A mapping Γ:geG-»Γ(g), where Γ(g) is a unitary operator on Jjfω, is called a
G-cocycle on 2tfω iff Γ(g) is (weakly or strongly) continuous in g on 3^ω, and

Uω(g1)*. (3.1)

A * morphism σ on 91 is called G-transportable on 34?ω iff

*ω(V 1 °σ°τβ(A)) = Γfo)*π>μ))Γfo) , (3.2)

where Γ(g) is a G-cocycle on ̂ ω.

Remark. If πω°σ is an irreducible representation of 91 then Eq. (3.2) alone implies
that Γ is a G cocycle, unique up to a phase. This is not so if πω°σ is not irreducible.
For simplicity, we require in general that Γ in (3.2) be a G-cocycle.

A * morphism σ on 91 is called G-covariant iff ω°σ is a G-co variant state.
We define

jίfω(σ) = {σ(A)Ω:Aeyi}-. (3.3)

Clearly Jtfω(σ) £ J^ω. If σ is a local * morphism and ω the vacuum then by
Lemma 1, 3^ω(σ) = ̂ ω, but this is not so in general. D

Lemma 4. If Γ is a G-cocycle on J^ω then V(g) = Γ(g)Uω(g) is a continuous, unitary
representation of G on J^ω.

Proof. By the definition of G-cocycles, V(g) is clearly unitary and continuous in g
on $eω. By (3.1)

= Γ(g1)Uω(g1)Γ(g2)Uω(g1)*Uω(g1 g2)

= Γ(g1)Uω(g1)Γ(g2)Uω(g2)

^ for all gl9g2 in G. D

Theorem 5. Let ω be a G-coυariant state on 91, and σ a G-covariant * morphism on
21.
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Then there exists a G-cocyde Γσ(g) on J^ω with the property that
Vσ(g) = Γσ(g)Uω(g) leaves j f j σ ) invariant, and

where πω σ is the representation of σ($ί) on J^ω(σ). Conversely, suppose that ω is
G-covariant and σ G-transpor table on &ω, and assume that fflω(β) is invariant under

) = Γσ(g)Uω(g\for all geG. Then σ is G-covariant.

Proof. We define an isometric isomorphism T:J^ω(σ)-+Jjfσ, by

AΩσ, for 4e2I. (3.4)

One verifies immediately that T is isometric. Moreover, since Ω is cyclic in «^ω(σ)
for σ(2I), T extends by continuity to all of $fω(σ). By (3.4) and the cyclicity of Ωσ for
91 in j^σ, the range of Tis Jfσ. Thus T" 1 = T* exists and is an isometry from Jfσ to

•#»-
If ω°σ is G-covariant there exists a continuous, unitary representation Uσ of G

on Jf such that

). (3.5)

Using (3.4) we conclude

Uσ{g)AΩσ=Uσ(g)Tσ(A)ΩeJlfσ9 for all geG,

so that

T* Uσ(g)AΩσ = T* t/σ

for all geG. Since Tand T* are isometric isomorphisms, and Uσ is a continuous,
unitary representation,

Vσ(g) = T*Uσ(g)T (3.6)

can be extended by continuity to all of J^ω(σ) and is a continuous, unitary
representation of G on 3tfω(σ). We can extend Vσ(g) to all of J"fω by setting e.g.

= , on

We then define

Since Fσ and Uω are continuous, unitary representations of G on J^ω, Γσ(gf) is
clearly a G-cocycle on 3tfω [in particular, (3.1) follows directly from (3.7)].
That

follows easily from

on *». (3.8)

This proves the first part of Theorem 5. To prove the second part, notice that,
given Vσ,


