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Abstract. In this paper we study the time evolution of a regular class of states of
an infinite classical system of anharmonic oscillators. The conditional pro-
babilities are investigated and an explicit form for these is given.

1. Introduction

One of the main problem in non equilibrium Statistical Mechanics is to study the
time evolution of states (i.e. probability measures on the phase space) of infinite
interacting classical systems. A natural way is to consider the time evolution as
described by a flow on the phase space arising from the Newton law of the motion.

The problem of constructing such a flow was solved in a satisfactory way for
some classes of particle systems in [1], [2] and for anharmonic oscillators in [3].
Other results which are specifically related to the equilibrium situation were
obtained in [4-8].

The next step is to study the time evolution of states, implemented by the flow
on the phase space. An approach proposed in [9] and [10] is based on the
hypothesis that a class of physically interesting states, the Gibbs states with
respect to some Hamiltonian is preserved in the course of the evolution (the
equilibrium states are precisely those states which are Gibbs with respect to the
Hamiltonian governing the motion). The main advantage of this approach is that
the change in time of the Hamiltonian of a given Gibbs state is described in a
simple way, directly referred to finite-volume dynamics.

Such an approach was studied in [9] in the case of one dimensional hard core
system interacting via a two body, bounded, short range potential. One of the
main points in [9] is the use of the cluster dynamics that, roughly speaking, says
that such systems behave in time as if they were formed by non interacting groups
consisting of a finite number of particles.
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In this paper we study the time evolution of Gibbs states for a special class of
anharmonic lattices in which the self-energy dominates over the interacting part.
The interest of the anharmonic systems in the solid state physics is well known (see
e.g. [11]). The dynamical flow we study here was investigated in [3]. Even if the
dynamics of such systems is not, obviously, of cluster type, nevertheless it exhibits
for many respects a simpler behaviour than the dynamics of continuous particle
systems.

The plan of this work will be the following: in Sect. 2 we introduce the
notations and formulate the results in Sect. 3 the proofs are given the Appendix
is devoted in underlining some dynamical property we need.

2. Notation and Result

We consider the system of anharmonic oscillators on the v-dimensional cubic
lattice TD '. The phase space of a single oscillator is assumed to be IR1 xlR1.

Definition 2.1. The phase space of the system under consideration is
^-{(p/^WI^elR1, p eIR1}. Points of X are denoted x, y, etc. For every A C TL\ %Λ

denotes the phase associated with the region A\ 3iΛ = {(pi,qi)ieΛ\qiEW.ί,pie^1}.
Points of %Λ will be denoted by xΛ9 yA, etc. The space X and XΛ are equipped with
the natural Tychonov topologies. The corresponding Borel σ-algebras are denoted
by J* and J* A and are the σ-algebras generated by the variables (p^q^^ and

(PiΛi)ieΛ

Definition 2.2. A state μ of the system of oscillators on TΓ is a probability measure
on .̂ Since 3£ is a Polish space, (3E, J**, μ), where gβ* is the completion of $ w.t.r. μ.
is a Lebesgue space. [12].

Given a partition ξ of 3£, we say that ξ is measurable if there exists a countable
family {/x . . .fn . . .} of measurable functions, such that every atom αα of the partition
ξ is labelled by αeRN, and αα = {xe3E|/π(x) = απ . . .α = (αf . . . α M ...)}.

Given a measurable partition ξ, let us consider the factor space £/ξ whose
points are the atoms of the partition. The canonical map Π:X-+X/ξ which
associates at every point of 3Ξ its atom, determines the measurable sets on 3,/ξ as
the sets whose inverse image is measurable in 3t.

Let μξ be the measure on X/ξ defined by μξ(E) = μ(Π~l(B}}. There exists a
family {μ( \a\aeξ} of a measures on atoms aeξ such that each (α,μ( |α)) is a
Lebesgue space. Furthermore, for all Ae J**, Ana is μ( Immeasurable for μξ-a.a.
aeξ and:

l μξ(da)μ(Ana\a). (2.1)
3/ξ

Such a family {μ( |α)} is unique mod 0 (see [12]) and is called the system of
conditional probabilities of the state μ w.r.t. ξ.

In the sequel we shall use the following property of the conditional
probabilities.

Let us consider two partitions, ξ whose atoms we denote by α, and η whose
atoms we denote by b. Assume that ηisa refinement of ξ that means that every b is
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contained in some a. Then denoting by a(x) (or b(x)) the atom of type a (or b) which
contains the point xe3E, it is not hard to prove that for μ-a.a. xeϊ, the following
equality holds :

μ(A\a(x))= J μ(A\b(yMdy\a(x)). (2.2)
a(x)

Let us fix a bounded region Λ9 and consider the following atoms

Here (x)Ω denote the restriction of x to 3Eβ, ΩC2Γ. Let us consider ξA, the partition
given by the atoms aA(x). ξ is obviously measurable. Every atom aA(x) may be
thought as %A, hence μ( |α^(x)) induces a measure on 3̂  still denoted

μ(dxA\aA(x)) = μ(dxΛ\(x)ΛC) .

Then for any bounded measurable function /:3£-»IR (2.1) reads as

J μ(dx)f(x) = ί μ(dx) f μ(Jx J(xU/(^u(*U . (2.3)
* au

Definition 23. Let to be a real valued function on the set X(0}= [J %A (A finite)
ΛtZv

such that h\χΛ is ^-measurable for all finite ΛcΈ*. Given finite subsets A, A CTLV,

' = Φ and a pair (x^x^)* xΛe%Λ> xΛ'e%Λ"> we set

h(xΛ\x'A,) = h(xΛux'Λ,} - h(xΛ] - h(x'A,) . (2.4)

We say that μ is a Gϊfcfcs 5ίαί^ corresponding to the generating function h, if for any
finite ΛcZv

i) the limit

h(xΛ\(x)Ac)=liaιh(xA\(x)A^A)9 *ΛeXΛ, ^ceϊ (2.5)
«->• oo

exists in the sense of convergence in measure (λ x μ) over the cartesian product
HΛ x 3£, where /ln is the cube [ — n, π]v, ne IN, and λ denotes the Lebesgue measure
on 3^;

ii) the integral

ΞA(h x) = J dλ(x J exp [ - h(χ J - hίx^KxU] (2.6)

is finite for μ —a.a. xe£ and any finite
iii) For any AcΈv the conditional probability system for μ w.r.t. ξA is given by

μ(dxA\(x)ΛC) = ^~j~ exp [ - h(xA) - h(xA\(x)AJ] . (2.7)

Definition 2.4. The function H X^-^IR1 defined by

A T V^

ϊi ~J(li L

where M>0, JeR1, ι;. = {/eZv||i-;| = l}, |i-;Ί= Σ K-Jαi is called the

α = l
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Hamίltonίan. The Hamiltonian (2.8) describes a physical model of anharmonic
oscillators (with unitary mass). We choose a particular Hamiltonian for the sake of
simplicity, but all our considerations are straightforwardly valid in the case of all
Hamiltonians where the self-energy dominates the interacting part (see [3]).

Definition 2.5. By {St, ίGlR1} we denote the group of transformations X(0)-^3£(0)

representing the motion of a finite system of oscillators with Hamiltonian H.
Clearly, StXA = XA for every t and finite ΛcZv.

Definition 2.6. For every ne lNput Λn = [-n,n~]v and denote by {S(

(π), ίeR1} the
following group of transformation •£-»•£. Given xe£, (S(fi)x)Aci = xAci and (S^n)x)An

represents the solution of the Hamilton equations for the oscillators in An

interacting via the Hamiltonian H and moving in the external field generated by
the frozen oscillators outside Λn.

Definition 2.7. Let φ : N-»[l, oo) be an arbitrary increasing function such that φ(k)
>cφφ(k+l) for some constant cφ, 0<cφ<l.

We denote 5£φ : £-»[!, oo) the function given by

) (2.9)
/ceN φ ieΛk

where

£®(x) = pf/2 + kqf + λqf + l. (2.10)

We put !φ = {xeϊ|JS?φ(x)< + oo}.
All the dynamical properties we need in the sequel can be summarized in the

following

Theorem 1. i) For all xe£φ and ίeIR1 the limit

Stx= limS^bc (2.11)
n->oo

exists in the product topology on X. Stx is one parameter group of transformations on
3i and moreover

φ(Stx) v sup ̂ (S^x)} ^e°M^φ(x) (2.12)
» I

and for all bounded Ω C TLV.

^[Sί(x)Ωu(x)ΩJ ge 'ΊjSf W (2.12')

where a does not depend on x, ί and Ω.
ii) // φ' : N-»[l, oo) is an increasing function such that

φ'(k) > cφ,φ'(k + 1) for some cφ,9 0 < cφ, < 1

and

φ'(k)/φ(k) -^+ 0 , then for all x e %φ,

\im^φ(S^x) = ̂ φ(Stx) (2.13)

and for every &>Q the convergence in (2.13) is uniform for such x that ££φ (x)^&.
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ίii) Given xeXφ, the following bounds hold. For any n and i
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n-

Here (gί"}(ί,x), pί"}(ί,x)) denotes the coordinate and the momentum of the
z-oscillator in S^x, (<^(£, x), ̂ (ί, x)) the coordinate and the momentum of the
z-oscillator either in S(

t

n'}x or in St(x)Λn,uxΛCn, with n'^n and a1 is constant for any
fixed t.

For any fc, s, neN with s<k<n and X x'Λse£Λs, ieAn\Ak:

l ' J

Here 5in)(^-^) a^d pjw)(ί,x) denote the coordinate and the momentum of the
z-oscillator either in Sx or in St(x}ΛnuxΛcn and α2 is constant for any fixed ί.

For any fc, n, n r eN such that fc<n, n' denotin p[m>yl)(ί,x)) the
coordinate and the momentum of the z'-oscillator in (StxΛrn\Λ)^j(x[Λ \Λ]C\ such that
ieAk\Ak_l and Ak^A, A' then:

where

d\

min(k — s, k-

min(k — s, k-

oo

if

if

if

if

nή=ri

n^ri

n' A = A.

(2.17)

α3 is constant for any fixed ί, and s9s' = min{lε'ί^AlDA,A'}, s, sf <k.
The ideas of the Theorem 1 are essentially contained in [3]. We outline the

proof in the Appendix.
In this paper we study the evolution

μt = S?μ = μ(S_t ) (2.18)

of a Gibbs μ w.r.t. a generating function h which satisfies the following conditions :
1) There exists a constant c>0 such that for every finite AcΈ* and xΛCXΛ

(2.19)
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2) There exists an integer r and a function ψ : [0, r)— »IR+ such that for any finite
Λ,Λ'CZV with Λr\Λ' = Φ and all x£% and x'>t%> one has:

(2.20)

χΛ')\^Σ Σ
ieΛ i'eΛ'

where 3/1 = {ieZVPjeyl : |z-/
Here ^f(ί)(xβ) is defined via (2.10) replacing x by XΩ.
3) Finally, we require that there exists a constant c such that :

A) ~ h(xf

Λ}\ = cμ| max
16/1

fc-tfίMft-pίl]. (2.21)
ieΛ

In the Appendix we prove :

Theorem 2. Let h satisfy the condition ί )-3) above. Then there exists at least one
Gibbs state μ corresponding to h such that

= l (2-22)

for <p'(fc) = (logic) v l .

Theorem 2 allows us to define the time evolved state μt via equality (2.18).
Now we can formulate the main result of this paper.

Theorem 3. Let μ be a Gibbs state corresponding to a generating function h
satisfying the condition ί)-3)9 and such that (2.22) holds. Then μt is a Gibbs state
corresponding to the generating function ht given by

ht(xΛ) = h(S_txΛ) (2.23)

where Λc%v is finite.

Remark. A natural question arising in the examination of Theorem 3 is if the
condition l)-3) on the initial μ are preserved during the motion. Condition 1 which
means superstability for h is obviously preserved by the conservation of energy,
with the same coefficient c. A sort of local Lipschitz condition as (2.21) can also
exhibited for ht, by the use of Theorem 1.

Furthermore one can prove, by the use of the same ideas of Lemma 3.2 below,
that condition (2.20') is preserved for ht with a function ιpt (of course no more with
compact support because dynamics destroys locality) more than exponentially
decreasing at infinity. This will imply that the superstable estimates (Ref. [3] and
A.Π below) hold for μr Obviously condition (2.20) is no more preserved.

3. Proofs

In order to prove Theorem 3 we have to give good estimates on the quantities
ht(xΛ\(x)ΛC) and ΞA(ht'9x) for a sufficiently large set of xe3E. While the first quantity
may be estimated by the use of Theorem 1, it seems hard to have a good control of
ΞA(ht x) in terms of x by brute force using the dynamical properties we know. We
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do not approach the problem directly, but we shall prove an analog of Theorem 3
(see Theorem 4 below) where the conditional probabilities are taken not w.r.t. ξΛ

but w.r.t. its refinement ξ™ whose atoms may be identificated with proper subsets
of HΛ of finite Lebesgue measure, which will allow us to avoid problems on the
convergence of the normalization factor. Once Theorem 4 is proved, it is not hard
to prove Theorem 3. We shall start by giving the new partition and a precise
formulation of Theorem 4. Then we shall show the passage from Theorem 4 to
Theorem 3. The rest of this section will be devoted to the proof of Theorem 4.

For all me N we define the partition ξ™ of 3tφ by giving its atoms :

if &φ(x)<m [J^O] = [^Φ(j>)] otherwise} (3.1)

where

φ(k) = ί v l o g 2 f e fceN (3.1')

where [̂ ] denotes the integer part of ̂ eR ξ™ is obviously measurable. Each atom
a™(x) induces the subset a%(x)cXΛ:

άm(x) = {yΛ\^φ(yΛ^(x)ΛC)<m if &φ(x)<m

[JS?Φ((yJu(xU] = [^φ(x)] otherwise} (3.2)

and for each state μ, the family {μ(-|α"(x))} induces the family of measures (still
denoted by μ( |α™(x)) supported in corresponding α™(x)).

The main point of the proof of Theorem 3 in the following :

Theorem 4. Let h be a function satisfying the condition ϊ)-3) and μ be a Gibbs state
corresponding to h and satisfying (2.20). Then for any m e N w e have:

f dλ(x) exp [ - ht(xA) - ht(xA\(x)Ae)']

(3'3)

where ACa™(x) is a Borel set and ht is defined by (2.21).

Proof of Theorem 3. Let us consider two bounded measurable sets A and B in £Λ

such that λ(A\ λ(B) are different from zero, and a sufficiently large m such that
A, Be aftx) for all xe 3Eφ with &φ(x) < m. Since ξ™ is a refinement of ξΛ, it results by
(2.2):

μt(A\a™(x})μt(ά™(x)\(x)ΛC) = ̂ U|(xU

and an analogous expression for B which hold for μt — a.a. x such that ^Cφ(
By (3.3), both μ^A^x)) and μt(B\a™(x)) are different from zero and:

μt(A\(x)Λc) ^(B\(x)Ae)
( ' }μt(A\a™(x}}

By the use of (3.3), we obtain :

μt(A\(x)ΛC) ί e-lW^ + MίΛlw.
B

= μ,(B\(x)ΛC) j e-tw^) +
A

for μt — a.a.
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Consider now an increasing countable family of B's invading HA. There exists a
μt full measure set Xφ such that (3.6) holds simultaneously for all elements of the
family. Fixed xe Xφ, it is possible to find a sufficiently large B for which the r.h.s. of
(3.6) is different from 0. This implies that μt(A\(x)Ae)^0. Finally, by taking the limit
B-+XΛ we obtain simultaneously:

j dλ(xA) exp [ - ht(xA) - ht(xΛ\(x}ΛC)~]

(37|

ΞA(ht x) = f dλ(xA) exp [ - ht(xA) - ht(xA\(x)Ae}] < +oo

that proves Theorem 3.

Proof of Theorem 4. We shall consider the following measure :

μΐ = Sγ»*μ = μ(SlLt ) (3.8)

where μ from now on is the same measure as in Theorem 3.
We denote by μ"( |α™(x)) its conditional probability w.r.t. ξn

Λ. Then:

Lemma 3.1. For every x£%φ and n such that Λn^>Λ, there exists the Radon- Nicodym
derivative :

IW.Wlx»-^®a ,3.9,
aλ(xA)

which is given by:

where r is the same as in condition 2).

Proof. The estimate (2.19) and the conservation of energy

H[(S<:>t(xκu(x^ (3.H)

imply that the integral in r.h.s. of (3.10) is uniformly bounded on m. Furthermore,
by condition 2) one can prove that :

e - h((SLn2(xΛttυ(x)Λcn))Λn) - h((S^(xΛn^(x)Λcn))Λa\XΛc)

Pn(x \(χ] } — _Λ Λn^ )ΛCJ normalization factor

dμ«(xΛ\(x)Λ?)

J dλ(xAn)exp[ -
*Λn

where P"(^yίni(x)yίc) is the Radon-Nikodym derivative
dλ(xΛ)

Since ξA is a refinement of ξΛn, we apply (2.2) and deduce that the density
P"(XΛ\(X)ΛC) has the same form as P"(xΛn\(x)A?) with the normalization factor,
obtained by integrating the coordinates in £Λ. Still using (2.2), we obtain that the
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density P"t(xΛ\d%x)) and momenta has the same form as P"(XΛ\(X)ΛC) with the
normalization factor obtained by integrating on α™(x). So (3.10) is proved.

Lemma 3.2. For any xe£φ and xΛea™(x) there exists the limit:

P^(xΛ rfftc)) = lim P?(x Jα2(x)) . (3.13)
n— > oo

Moreover there exists functions ym, ym : NX 3£— »IR with

lim ym(n x) - lim ym(n x) = 0 (3.14)
n->oo tt->oo

such that for all n'^n

(3.15)

Proof. We check that

P?(x>-(x))
FϊΓΪΛ^"1' ( ' 6)

Π-+CG Γt V^yll^ylWJ
n' > n

Suppose n'>tt, x^5 x^eϊ^ are fixed, and consider the ratio:

exp[ - h((S^\(xΛu(x)ΛC))ΛnJ-] exp [ -

-/ί((S^^
l ' j

It is convenient to consider a sublattίce of TLV constructed by cells of side r. We
denote these cells /ί? ίeZv. We put:

(^U)^^^ (3.18)

where ft = n, n'.
In virtue of Condition 2), (3.17) become:

(3.19)

where Σ' means the sum on the nearest neighbours.

Now we compare:

a) h(ΫJ with Mt,;) and

Mt,, ) with Λ(y .ί) f°r UA./2
b) Mt,;) with h(ΎJ and

t,;) with Mt.i) for /,CA,/2
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Then, by condition 3) (see (2.19)) and Theorem 1, iii) (see (2.15)), we have for

gc'max

n + 2r)J
- + d ( / L ) - ι + 1

where c'>0 is a constant and d(Λ) = mm{k\ΛkDΛ}.
Analogously, by Theorem 1 iii) (see (2.14), we have for

Furthermore, Theorem 1, i) (see (2.12)) gives:

and similar bounds on the other cSf^'s comparing in (3.20) and (3.21).
Hence, there exists a function 71(n,xyl,x/

yl,x) such that:

and, because of the definition of φ (see (3.Γ)),

• &φ(xAv(x)Ae)υ&φ(x'Av(x)Ae)

verifies :

lim y1(n,iz;) = 0.
n-> oo

A similar estimate may be obtained for :

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Hence, ratio (3.17) is bounded from above by e2y^(n^] and from below by
e-2yι(n,π) wjιere x^ %Λ anc[ x are chosen so that:
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Now if XΛ, x'Λeά(™\x), then there exists a function ym(n;x) satisfying (3.14) and
such that e

±ym(n;x) bounds the ratio (3.17).
Integrating these estimate on dλ(x'Λ) over a^(x\ one finally gets :

p(wVγ \am(xΐ\
exp [-^;*)] ̂  pf'MxO -6XP Cy>;X)3 (3'27)

and hence (3.13) and (3.15). The existence of ym(n x) easily follows by Theorem 1, i).

Lemma 3.3. The function P(

t

x)( K(x)) defined by (3.13) satisfies the equality:

In particular the r.h.s. 0/(3.28) mα/ces

Proof. First of all we show the existence of /ιί(x1|(x)ylc). To this purpose it is enough
to prove :

Λn,\Λ)\ = 0 - (3-29)
n—>• oo
w' > n

We only sketch the proof of (3.29) since it uses the same ideas as the proof of
Lemma 3.1. We define ZnJ = (S_txΛn)IιnΛn, Znti = (S_txΛrλΛ)JιnΛrλA, Z^ and Zn>J

are defined analogously. Then :

\ht(*Λn) ~ ht(xAnt) - ht(xΛn\Λ) + ht(xΛn,\Λ)\

We compare

a) h(ZJ with h(Zn,J if Lc/1

ay Λ(ZΠ f ί) with h(ZnfJ)
 l nl2

b) Λ(ZΠ f i) with /7(ZMs.) if /ί jt^

by ft(Zπ%ί) with Λ(Zπ,( i). 2

Analog comparison are made for the terms h( \ )'s.

By the use of the estimates (2.16) of Theorem 1, (2.21) of Condition 3, and
(2.12)' the statement (3.29) can be proved.

The second step is to prove the equality

=1. (3.30)
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As in Lemma 3.2, we consider the ratio

(*̂  ,

^^ *and the repeating the construction utilized in Lemma 3.2 we obtain for (3.21) the
same bound from above and below by exp [ ± ym(n x)] where ym has the same
properties as γm. This gives (3.30).

Finally, we observe that in the ratio (3.30) the numerator of the first term being
divided by, the denominator of the second gives in the limit P°°( |α™(x)) by Lemma
3.2 and the remaining term may be written as :

normalization factor

Hence, by the existence of ht(xA\(x)ΛC\ the Lemma 3.3 is proved.
Now we are able to prove Theorem 4 by showing the following equality :

ift(dx)F(x)=iA(dx) ί dλ(xA)P?(xA\a»(x))F(xAv(x)Ae). (3.32)
X £ ά%(x)

It suffices to consider the case where F is cylindrical (i.e. F depends explicitely only
on the coordinates and momenta in some finite A' CTLV\ continuous and bounded.
The general case may be obtained by standard approximation arguments. For the
brevity of notations we take Λ' = Λin the calculations below the reader can easily
extend them for arbitrary finite A'. Since for every bounded continuous cylindrical
F

ί μt(dx)F(x) = lim f i4»\dx)F(x) (3.33)

to prove (3.32) it suffices to prove:

lim f/4">(dx) j dλ(xΛ)Pl"\xΛ\a™(x))F(xΛ)
- m

) (3.34)
£ a%(x)

where F X^-^IR is defined by F(x) = F((x)Λ).
By the use of an ε/3 argument we show (3.34) by proving that the following

three terms below are arbitrarily small for n0 and n large enough with n>n0.

(3.35)
a%(x)

μt(dx) j dλ(xA}P^(xΛ\a^(x})F(xΛ)
a%(x]

dλ(xΛ)Pn°(xA\a™(x))F(xΛ)\ (3.36)
* ay(χ)

\μf\dx) ί t
ϊ aj (x)

(3.37)
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We start with estimating (3.37). Changing variables one obtain

(3.37)^11^1 j dλ(xA)
3eα^(Sl»)χ)

• \P^(xΛ\a^(S^tx)) - Pftx^sω x))| .

According to the Lemma 3.2 (see (3.15)),

\P?(x Jα*(Sω x)) - P»(xΛ\a™((S^tx})\

y>0 (S^ x))] - exp [ - ym(n0 (S<?fx))])

- eχp [ - 7mK

(3.38)

(3.39

Hence

(3.37) ̂  || F || «, f μ(dx) min [2, ̂ (llo; x) - e " ̂ (n°' x)] .
3e

By the use of the Lebesgue theorem, for any ε > 0 we can find a sufficiently large h0

such that (3.37) is smaller than ε for all n^n0. The same arguments show that the
term (3.35) vanishes as n0->oo.

So (3.34) will be proven if we prove that for any fixed n0, (3.36)-»0 as n-+co.
Putting

g(x)= J dλ(xΛ}P"t°(xΛ\am

Λ(x))F(xΛ)

it follows

(3.36) =

We shall prove that

g(S_tx)= limg(S(tl\x) for μ-a.a.

(3.40)

(3.41)

(3.42)

and this will imply that (3.36)-»0 as n^co by the use of the bound H ^ H ^ ̂  I |F | | C

and Lebesgue theorem.
Let us fix xeXφ, such that £Pφ(S_tx)φTN where φ/(fe) = l v logic. Then

J dλ(xΛ)P^(xΛ\a™(S_tx))

(3.43)

- J

where the last equality in (3.43) holds if n is sufficiently large, in virtue of Theorem
1) ii) and the definition of ξ™.

Furthermore

(3.44)
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(3.44) is consequence of the following convergence

expC-MS^ί^^ί^xU^J] -̂ > expt-h(S^(xΛu(S_tx)AC)ΛnoJ-] (3.45)

due to Theorem 1 and the continuity of h and of the Lebesgue theorem combined
with the following estimate

^x)ΛC)Λrta+ ) 2: cH l(xΛu(S^tx)ΛC)Λna+ J

(3.46)
(qj,PJ)e(SLn

1)x)Λ0 + λΛ

In fact exp[(3.46)] is the product of two terms one of which does not depend on n
and is integrable w.r.t. dλ(xv) and the other one is not depending on XΛ but
converges as rc— »oo and hence is bounded.

So (3.32) and hence Theorem 4 will be proven as consequence of the following
statement :

^φ(x) = m}) = 0. (3.47)

For every xεXφ> then there exists a jeN+ such that

So (3.47) is implied by the fact that

O. (3.48)

Finally, (3.48) may be obtained by considering that the set in HA where <&(J\XΛ)
take a fixed value has Lebesgue measure 0, and using the locally absolute
continuity of μt w.r.t. the Lebesgue measure. This final statement follows from the
locally absolute continuity w.r.t. the Lebesgue measure of the approximating
measures μ(Λ).

Appendix

Proof of Theorem 1. By the use of the equation of the motion we obtain

The following estimates are obvious

\S^x) \qf\t, x)\ ̂  ~ j/^Spϊ) . (A.2)
|/ K

(A.I) and the hypothesis on φ give the following integral inequality:

&φ(S«>x) ^ J?φ(x) + ά &φ(SMχ)ds ( A.3)
o

where α is a constant independent of n.
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Hence

&φ(φx)^e*M(&φ(x)). (A.4)

Let us put :

uk(ί,x,n,m) = sup {|^n)(ί,x)-^π + m)(ί,x)|

Then by using the equation of the motion and in virtue of (A.2) and (A.4), there
exists a constant c for which the following estimate holds :

uk(t,x,n,m)£ J sup ttp(f\s)-pγ + m\s)\
0 \i\^k

φ(x] I uk+ ̂ s, x9 n, m)ds . (A.6)
o

Interating the procedure n — k times we obtain :

Mfc(t, w)g (̂ "̂ (̂ r- '̂"̂ "̂). (A.7)(n — k) I

This is bound (2.14) with the first meaning of (q,p), that combined with (A.4) gives
the assertion i). The estimates (2.12'), (2.14) with the second meaning of (q,p) and
also (2.15), (2.16) may be obtained with the same arguments as above.

Now we prove ii). By i) one has :

lim ^(S^x) = ̂ (ί)(Stx} xeXΦ. (A.8)
-

Fixed now xeϊφ, it is enough to prove that there exists fr>0 and ϊn, such that
\in\ ̂  b < + oo for which

But the estimate :

(where α3 depends only on φf) combined with the fact that φ'(k)/φ(k)-*Q gives (A.9)
and hence proves ii).

Proof of Theorem 2. Theorem 2 is a consequence of the estimates in [13],
Corollary 2.4. In fact, denoting PΛ(dxΩ)9 ΩcΛ, the probability distribution of XΩ

w.r.t. the measure

normalization factor
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one obtains the following estimates :

ίeΩ ίeΩ

where A,k1,k2 are constant independent of A. Compactness arguments combined
with (A.ll) give the existence statement [14].

Still using estimate (A.ll) one obtains:

where M is a constant not depending on j and b is sufficiently small. Finally by the
Tchebyshev inequality :

for some constant A and B. This gives the thesis.
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