
Communications in
Commun. Math. Phys. 66, 37-76 (1979) Mathematical

Physics
© by Springer-Verlag 1979

The Classical Field Limit of Scattering Theory
for Non-Relativistic Many-Boson Systems. I

J.Ginibre1 and G.Velo2

1 Laboratoire de Physique Theorique et Hautes Energies*, Universite de Paris-Sud,
F-91405 Orsay, France
2 Istituto di Fisica A. Righi, Universita di Bologna, and INFN, Sezione di Bologna, I-Bologna, Italy

Abstract. We study the classical field limit of non-relativistic many-boson
theories in space dimension n^3. When ft->0, the correlation functions, which
are the averages of products of bounded functions of field operators at different
times taken in suitable states, converge to the corresponding functions of the
appropriate solutions of the classical field equation, and the quantum fluc-
tuations are described by the equation obtained by linearizing the field
equation around the classical solution. These properties were proved by Hepp
[6] for suitably regular potentials and in finite time intervals. Using a general
theory of existence of global solutions and a general scattering theory for the
classical equation, we extend these results in two directions: (1) we consider
more singular potentials, (2) more important, we prove that for dispersive
classical solutions, the h->0 limit is uniform in time in an appropriate
representation of the field operators. As a consequence we obtain the
convergence of suitable matrix elements of the wave operators and, if
asymptotic completeness holds, of the S-matrix.

1. Introduction and Statement of the Problem

Since the early days of quantum mechanics it has been a natural question to
compare the classical and quantum mechanical descriptions of physical systems.
One of the oldest and by now best known relations between the two theories goes
back to Ehrenfest [1]. Only recently however was this relation put on a firm
mathematical basis by Hepp [6] who proved that in the limit h-^0 the matrix
elements of bounded functions of quantum observables between suitable h-
dependent coherent states tend to classical values evolving according to the
appropriate classical equation. Furthermore he proved that the quantum
mechanical fluctuations evolve according to the equation obtained by linearizing
the quantum mechanical evolution equation around the classical solution.
However his analysis is limited to finite time intervals and therefore does not
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provide any information on the connection between the classical and quantum
mechanical scattering theories. For systems of finitely many particles such a
connection was provided recently by Yajima [11].

In this and subsequent papers we shall study the connection between classical
and quantum mechanical scattering theories for non-relativistic many-boson
systems. The main result is that, under suitable circumstances, the ft->0 limit of
quantities similar to those considered by Hepp is uniform in time. In particular
this extends his results to the S-matrix.

In order to state the problem in more precise terms, we first analyse the general
structure of the quantum theory in connection with its classical limit. Our results
can and will be described more explicitly only at the end of this analysis, which
takes up most of the present section. It is inspired by that of Hepp and the earlier
one of Gross [6,5]. It is phrased in a way that is suitable for many-boson systems
although it applies to more general situations. In this discussion we restrict our
attention to the algebraic aspects of the problem and do not make any attempt at
mathematical rigor. We treat ft as a free parameter. Since nature gives us only one
physical value for it, this means of course that we are imbedding the actual
quantum theory in a one-parameter family of quantum theories indexed by h.

We consider a system described by a family of quantum variables d={di}ieI

satisfying the CCR

K α ; . ] = 0 , [α.,α*]=<50.. (1.1)

The variables ah = {aM}ieI expected to have classical limits are related to the α's by

ahi = hμai9 iel, (1.2)

for some μ>0. There are reasons why μ should take the value 1/2, but they are
irrelevant for the discussion that follows. We shall come back to this point later. In
all this paper, we shall make the following convention: an operator A which is a
function of both the α's and the α*'s (for instance a polynomial) will be denoted
simply by A(a). This should be remembered especially when taking commutators.

In the Heisenberg picture, the time evolution of the ah's is given by the equation

(1.3)

(1.4)

where the Hamiltonian Hh is assumed to have the form

for some real δ the function i/( ) is assumed to have no explicit h dependence and
to be suitably regular, for instance polynomial. It may however have an explicit
time dependence, which is omitted for brevity. The Eq. (1.3) is solved by

aΛ{t) = U{t, t0 a(toψ ah{t0) U{t, t0 a{t0)), (1.5)

where U(t,t0; a(t0)) is the unitary group satisfying U(t0, ίo; α(ίo)) = i and the

equation

ihjtU(t, t0 a(to))=Hh(an(to)) U(t, t0 a(t0)). (1.6)



Classical Field Limit 39

We want to relate the set of operators an(t) with a family of ft-independent, time-
dependent onumber variables

φ(t) = {φt(t)}ieI (1.7)

to be thought of as their classical limits. It is therefore natural to expand the
Hamiltonian in power series oΐah — φ and a% — φ in a neighborhood of φ, φ (where
φ is the complex conjugate of φ):

^(ah-φ), (1.8)

where the functions Hv H2 and i f> 3 have total degree 1, 2 and ^ 3 respectively in
the variables ah — φ and a* — φ. They have an additional dependence on φ and
possibly on time (which we have omitted for brevity), but no explicit h dependence.
We now define

H'k(a) = la,Hk(a)-], fc = l ,2, ^ 3 . (1.9)

It is clear from (1.1) that the functions H'k are ^-independent, that H\ is a c-
number, and that H'2(ά) is linear in the variables α,*z*. The Eq. (1.3) can now be
rewritten as

iφ + i(άh-φ) = hδ + 2»-\H\+H/

2(ah-φ) + H'^{ah-φ)), (1.10)

where the time dependence has been omitted for brevity.
In order to obtain a non trivial classical limit, we assume δ = \ — 2μ. We then

choose for φ a solution of the equation

iφ = H'l9 (1.11)

which is the classical evolution equation associated with the hamiltonian H. The
Eq. (1.10) then becomes

H'23{h>\a-φJ), (1.12)

where

φh = h-»φ. (1.13)

In order to study the classical limit of the evolution Eq. (1.3) with initial condition
ah(t0) at time t = t0, we define new variables b(t) by

b(t) = C(a(to\ φh(t0))*(a(t) - φn(t))C(a(tol φh(t0)), (1.14)

where

C{a, α) = exp \T (afat - aμΛ (1.15)

for any α = {αj 6 / . The operators C(a,cc) are the Weyl operators. They are unitary
and satisfy

(1.16)
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When applied to the vacuum, they yield coherent states. Using (1.16), one can
rewrite the definition (1.14) as

b(t) = C(a(tol φn(t0))* C(a(t\ φh(t))a(t)

-C{a{t\φh{t))*C{a{t0\φh{t0)). (1.17)

The initial value problem is now reduced to finding a family of operators b(t)
satisfying the CCR, the initial condition

b(to) = a(to) (1.18)

and the equation

H'^3(hμb). (1.19)

The second term in the R.H.S. of (1.19) is O(hμ) because Hf>3(a) has degree at least
two in the a and c/*'s. We now face a well defined perturbation problem, namely to
prove that when ft^O, the solution of (1.19) with initial condition (1.18) tends in a
suitable sense to the solution of the equation

ib = H'2{b) (1.20)

with the same initial condition (1.18). The Eq. (1.20) describes the evolution of the
quantum fluctuations in the limit h^O. It is the equation obtained by linearizing
the Eq. (1.3) around the classical solution φ(t). In sufficiently regular situations the
solution a2(t) of (1.20) with initial condition (1.18) is given by

a2(t) = U2(t, t0 a(to)r a(t0) U2(t, t0 a(t0)), (1.21)

where U2(t, to; a(t0)) is the unitary group satisfying U2(t0, ίo; α(ίo)) = l and the
equation

ijt U2(t910 a(to)) = H2(a(to)) U2{t, t0 a(t0)). (1.22)

Note that U2(t, t0 a(t0)) is independent of h in so far as a(t0) is. Similarly the
solution b(t) of (1.19) with initial condition (1.18) is given by

b(t) = W(t910 a(toψ a(t0) W(t, t0 a(t0)), (1.23)

where W(t, t0 a(t0)) is the unitary group

W(t, t0 a(t0)) = exp[zωft(ί, ί0)] U(t, t0 a(t0))

C{a{t\φh{t)γC{a{t0\ψh{t0)) (1.24)

= exppωΛ(ί, ί0)] C(a(to\ φh(tψ U(t910 a(t0))

•C(a(tolφh(to)) (1.25)

with

ωΛ(ί, t0)

= ft"2" f dτ{H(τ, φ(τ))- Re<Φ(τ), H\{τ9 φ(τ)))} . (1.26)
ίo



Classical Field Limit 41

In order to pass from (1.24) to (1.25), we have used (1.5). In (1.26) we have written
the dependence of H\ on φ and the possible explicit dependence of H and H\ on
time. The scalar product < , ) is defined by

<«,/?>= Σ«iβf (1-27)
ίsl

The choice of the phase (1.26) in (1.24) ensures that the operator W(t,to;a(to))
satisfies the equation

i-W(t,to;a(to))

= (#2(α(ί0)) + ft'2»H^3(h»a(t0))) W(t, t0 a(t0)). (1.28)

The computation showing that W(t, t0 α(ί0)) satisfies (1.28) is straightforward and
will be omitted here. It will be performed in a special case of interest in Sect. 3 (see
the proof of Proposition 3.1).

Now the previous perturbation problem is reduced to comparing W(t, t0 a(t0))
with U2(t, t0 a(t0)). In favorable cases,

s-lim W(t, t0 a(t0)) = U2(t910 a(t0)). (1.29)
ft—•()

This strong convergence implies that, for any family of bounded suitably regular
functions R^a) and for any family of times {ί.} i= 1,2, ...,m,

s-\imC(a(to\(ph(to)r Π

(1-30)

where a2(t) is given by (1.21) and a(t) is given by (1.2) and (1.5) or equivalently
through b(t) by (1.14) and (1.23). The convergence (1.30) can be interpreted in terms
of correlation functions in coherent states.

In more singular cases, it may happen that U2 does not exist. One may then
expect only convergence of the automorphisms of the CCR algebras defined by
(1.19) and (1.20).

So far we have considered the problem of evolution in finite time intervals.
Now we turn to scattering theory. This requires a little more structure. We want to
compare the evolution of the system with a simpler evolution called the free
evolution. Therefore we assume that we are given a free hamiltonian

H0h(aH) = hί-2"H0(ah), (1.31)

where Ho(-) is quadratic and time-independent. The free evolution is then
represented by the one-parameter unitary group of operators

Uo(t;a) = oxp{~ih-1tHOh(arι)}=oxp{-itHo(a)}. (1.32)

Note that U0(t a) is ^-independent in so far as a is. It is now convenient to
reformulate the evolution problem in the asymptotic picture defined by

ά(ή=U0(t;a(t))a(t)U0(t;a(tψ (1.33)
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and similarly by

b(t) = U0(t b(t))b(t) U0{t b{ή)*, (1-34)

with the operators b(t) given by (1.14). It follows immediately from (1.33), (1.34),
and (1.17) that

b(t) = C(a(tol φh(toψ C(alf), <Pn(t))a(t)

. (1.35)

The operators in the asymptotic picture are expected to have limits as t and/or t0

tend to + oo for fixed α(ί0) = α0 if the Heisenberg operators behave as free
operators for large times. Obviously the operators b(t) satisfy the CCR and the
initial condition

6(to) = a o . (1.36)

The evolution Eq. (1.19) becomes

ib = H'2(b)-H'0(b) + h-μH'^3(h"b), (1.37)

where

H'k is defined for k = 2, ^ 3 , by

H'k(a)=[_a,Hk{aϊ\ d 37a)

with

Hk(a)= U0(t, a)*Hk(a)U0(U a), (1.37b)

H'o is defined by (1.9) with fc = O and the time dependence has been omitted for
brevity. The previous perturbation problem now becomes that of proving that
when ft-»O, the solution of (1.37) with initial condition (1.36) tends in the same
sense as above to the solution of the equation

ib = H'2(b)-H'0(b) (1.38)

with the same initial condition (1.36). In addition, the limit h^O is expected to
have some uniformity in t and t0 for fixed ά0, and to commute with the limits
where t and/or t0 tend to + oo, provided the latter exist. In sufficiently regular
situations, and in particular in those considered in the present paper, where the
Eqs. (1.19) and (1.20) have the solution (1.23) and (1.21) respectively, the Eq. (1.38)
has the solution

a2(t) = U0(t a2(t))a2(t) U0(t a2(t))*

= U2(t,t0;ά0)*ά0U2(t,t0;ά0), (1.39)

where

U2(t,t0;a0)

= U0(t0 a(t0)) U2(t, t0 a(t0)) U0(t a2(t))* (1.40)

- U0(t a0)* U2(t, t0 a0) U0(t0 2 0). (1.41)
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In order to pass from (1.40) to (1.41) we have used (1.21) and (1.33). The operators
ϋ2(t, t0 ά0) form a unitary group satisfying U2(t0, t0 ;άo) = t and the equation

i j t U2(t, t0 a0) = {H2(ά0) - H0(ά0)} U2(t9 t0 a0). (1.42)

Similarly the Eq. (1.37) is solved by

b(t) = W{t910 α 0 )* ά0 W{t, t0 a0), (1.43)

where

= U0(t0 α(ί0)) W(t, t0 a(t0)) U0(t b(tψ (1.44)

= Uo(t;ao)*W(t9tQ;ao)Uo(to;ao). (1.45)

In order to pass from (1.44) to (1.45) we have used (1.23) and (1.33). The operators
W(t9t0;ά0) from a unitary group satisfying W(t0, to;άo) = ί and the equation

ijt W(tJ0;a0)={H2(ά0)-H0(ά0) + h-2"H^3(f^ά)} W(t9tΌ;a0). (1.46)

In order to study the fc->0 limit uniformly in time we need more information
on the asymptotic behaviour of the classical solution φ(t). For this purpose we
introduce the classical free evolution which is the evolution associated with Ho in
the same way as the total classical evolution was associated with H through Eq.
(1.11). Since Ho is quadratic the classical free evolution is represented by a group of
real-linear operators uo(t) and one easily checks the identity

U0(t a) C(μ9 α) U0(t a)* = C{μ9 uo(ήoc). (1.47)

We introduce the asymptotic picture for the classical evolution by

) = uo(-t)φ(t)

= u0(-t)φh(t)9

so that (1.47) implies

h(ή). (1.49)

We now assume that the classical solution is asymptotically free, namely that the
limits

lim φ(t) = φ+ (1.50)
ί-> ± oo ~~

exist in a suitable sense. Under this assumption and in favorable circumstances
one expects the following results:

1) The limit

s-lim W(t910 α0) = U2(t9 tQ α0) (1.51)
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should exist uniformly in t and t0 for fixed ά0. This implies limiting properties of
the correlation functions similar to those expressed by (1.30) namely:

s-lim C(ά0, φh(toψ [

m

= Π Rβ2(ti)) (1-52)

uniformly in t0 and the ί 's for fixed ά0.
2) If in addition the quantum theory is asymptotically complete, then the

operators W(t, t0 a0) should have strong limits as t and/or ί0 tend to ± oo at fixed
ά0. Similarly U2(t,t0;ά0) should have strong limits in the same circumstances.
These limits are simply related to the corresponding iS-matrices in the Heisenberg
picture (α0 being the incoming field)

S(ao)= s-lim Uo(t;άo)*U(t,to;ao)Uo(to;ao) (1.53)
ί-> + oo

and

S2(ά0)= s-lim U2(t,t0;ά0). (1.54)
ί ^ + oo

to^> — oo

Indeed it follows from (1.25), (1.45), and (1.49) that

W(t, t0 α0) = C(α0, φh(tψ U0(t α0)* l/(ί, t0 50) C/0(ί0 a0)

• C(α0, ^( ί 0 )) exp [iωn(t, ί0)] (1.55)

and therefore that

s-lim Mk(ί, ί0 a0) = C(α0, φfi + )*5(α0)C(α0. φft_)

• exp [zωft( + oo, — oo)] . (1.56)

The phase ω^(+oo, — oo) should be finite for asymptotically free classical so-
lutions. Furthermore the limits ft->0 and ί, ί0-> + oo should commute. In
particular

s-limC(αo,(50ft + )*S(ao)C(ao,φΛ_)exp[iωΛ(+oo, - oo)] =S 2 (α 0 ) . (1.57)

In the absence of asymptotic completeness, one nevertheless expects similar results
to hold for the wave operators, provided they exist [see (5.97)].

We conclude this preliminary discussion with a comment on the role of the
parameter μ [see Eq. (1.2)] which was left unspecified until now. The parameters h
and μ enter into the basic Eqs. (1.19) and (1.37) only through the combination hμ so
that the entire analysis is insensitive to the choice of μ. The requirement that the
quantum mechanical energy tend in some sense to the classical one imposes δ=0
or equivalently μ = 2 E s e e Eq. (1-4)], but this choice is extraneous to the dynamical
problem. From now on, we choose μ = ̂ , in keeping with common use.

After this discussion, we are in a position to state our results more precisely.
They consist in proving (1.51) with the uniformity in time there stated, and (1.57)
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and its analogues for the wave operators, in the case of a non-relativistic many-
boson system with two-body interactions, in space dimension n^3. From the
convergence (1.51) with uniformity in time, the convergence (1.52), which is
perhaps of more direct physical significance, follows with similar uniformity in
time. Since however the derivation of (1.52) from (1.51) is completely straightfor-
ward, we shall from now on concentrate on (1.51) and not mention (1.52) any more
in the rest of the paper.

We now introduce the notation appropriate to describe the system mentioned
above. Let a(x) and a*(x) satisfy the CCR

[α(x),α()0]=O, la(x)a*(y)-] = δ(x-y). (1.58)

The φc)'s play the role of the α/s. We recall that ah(x) = h1/2a(x). The total
hamiltonian of the system is

h2

Hh(ah) = — j dxVa*{x) Va(x) + \ \ dxdyVh{x - y)a*(x)a*(y)a(x)a{y), (1.59)

where Vh is a real even function. In order that Hh have the form (1.4) with δ = 0 (i.e.
μ — ^) we must impose that

mή = hm, Vh(x) = h2V(x), (1.60)

with m and V ^-independent. From now on, we take in addition m= 1. The total
Hamiltonian can then be rewritten as

4Ha), (1.61)

where

H0{a) = \\dxVa*{x)-Va(x), (1.62)

HA(a) = ±$ dxdyV(x - y)a*(x)a*(y)a(x)a(y), (1.63)

and the operator H{a) defined in (1.4) becomes

H(a) = H0(a) + H4(a). (1.64)

In the classical limit that we are considering, the particle number

l (1.65)

is O(h~ % the total energy is 0(1) and therefore the energy per particle is O(h). Since
the mass itself is O(h) the De Broglie wavelength is 0(1). In the limit h-> 0, the
particle structure disappears and the system becomes a classical field or a fluid
described by the classical variable φ which is now a complex function of x. The
quantum mechanical free evolution is generated through (1.32) by the free
Hamiltonian H0(a) defined by (1.62). The operator H^a) defined by (1.8) becomes

Ht (a) = - \ J dx{Δ φ(x)a*(x) + A φ(x)a(x))

+ J dxdy V(x - y)\φ(y)\2 (φ{x)a*(x) + φ(x)a(x)), (1.66)
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and therefore the classical evolution Eq. (1.11) obtained through (1.9) becomes

iφ=-\Δφ + φ{V*\φ\2). (1.67)

Similarly, the classical free equation is

iφ=-±Δφ, (1.68)

so that the free evolution operator uo(t) is given by

(1.69)

The remaining terms of the decomposition (1.8) will be given where needed,
namely in Sect. 3.

The implementation of our program requires some information on the
evolution at finite and infinite times of both the classical and quantum theories.
The classical theory will be treated in a companion paper [4], where we study the
Cauchy problem for the Eq. (1.67) and the scattering problem for the Eqs. (1.67)
and (1.68). The results relevant for the present analysis are collected in Sect. 2. As
regards the quantum theory, we need to define and study both the total evolution
associated with U(t, t0 άQ% W(t, tQ ά0) and the evolution of the fluctuations
associated with U2(t, t0 ά0). Various degrees of difficulty arise in the analysis of
these operators, depending on whether the potential Fis locally square integrable
(VeLfoc) or not. In order to keep this paper to a reasonable length, we treat here
only the case where VeLfoc. In this situation the evolutions given by the operators
U{t, t0 α0), W(t, t0 α0), and U2(ί, ί0 a0) are studied in Sects. 3 and 4 respectively.
The more singular case is left for a subsequent paper. Having all the necessary
ingredients we can then proceed to the proof of the announced convergences when
fi->0. This is done in Sect. 5 where the results are stated in a precise form in
Proposition 5.1 and Theorem 5.1. The assumptions on the potential vary from
section to section and will be given whenever needed.

2. The Classical Theory

In this section we describe some results concerning the Cauchy problem and the
scattering theory for the classical equations (1.67) and (1.68) in 1R" with n^3. A
more detailed exposition, closely following [3], as well as the proofs will be given
in [4]. Here we present the main results in a simplified form which is sufficient for
the applications in this paper.

We denote by || \\q the norm in Lq = Lq(W) (l^q^ao), except for q = 2 where
the subscript 2 will be omitted, and by Hk = Hk(W) the usual Sobolev spaces. For
any interval / (possibly unbounded) of the real line IR, for any Banach space &, we
denote by ^(I,^S) [respectively ^b{1,3S)~\ the space of continuous (respectively
bounded continuous) functions from I to &. Let n ̂  3, let 2 ̂  r < 2n/(n — 2), let k be
an integer, k ̂  1 we define:

Xkr = {ψ:ψeHk and DaψeU for all α, \a\ = k} (2.1)
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and

are(/) = « b(/,H 1)nif(/ 9X k r). (2.2)

It is convenient to rewrite the Cauchy problem for the Eq. (1.67) with the initial
condition φ(t0) = φ0 in the form of the following integral equation

φ(t) = uo(t - to)φo - i ] dτuo(t - τ) {φ(τ)(F*|φ(τ)|2} , (2.3)
ίo

where uo(t) is defined by (1.69). We first state a global existence and uniqueness
result.

Proposition 2.1. Letn^3, letXkr and SCa(-)be defined by (2.1) and (2.2) respectively.
Let V satisfy the following assumptions:

(2.4)

where

P2>i if k>ί and r = n = 3,

and

where V± = M a x ( ± V,0). Let ίoeIR, let φoeXkr be such that uo(t-to)φoeSea(]K).
Then the Eq. (23) has a unique solution φ(t) in &JJR). This solution satisfies

and

H(φ(ή) = H(φ0), (2.8)

where H( ) is defined by (1.64)

Remark 2.1. The parameters pγ and p2 control the decay of the potential at infinity
and its local singularities respectively. They are coupled through (2.5); the worst
singularities allowed for V+ correspond to p2

 = l for n = 3 (with r > 3) and to
p2>n/4 for n ^ 4 [with r close to 2n/(n — 2)].

As mentioned in the introduction [see especially the Eq. (1.50)] we need some
information on the asymptotic behaviour in time of the solutions of (2.3). In a first
step we can construct solutions asymptotically free at + oo or at — oo by solving
the integral equation

φ(t) = uo(t)φo - i } dτuo(t- τ) {φ(τ)(F*|φ(τ)|2)} , (2.9)
ίo

where t0 lies in a neighborhood of + oo or of — oo. For this purpose we introduce
the following spaces. Let r' satisfy

1/2 - ί/n < 1/r ̂  ψ < 1/2 - ίβn. (2.10)
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For any interval / (possibly unbounded) of IR, we define

),\ψ\OI«x>}9 (2.11)

where

(2.12)

We shall use freely the notation ψe3^a(JK)n^0(I) to denote a function
the restriction of which to / lies in 3CQ{1).

We are now in a position to state the following result.

Proposition 2.2. Let rc^3, letXkr, %a and %0 be defined by (2.1), (2.2), and (2.11)
respectively. Let V satisfy (2.4)-(2.6) and in addition

(2.13)

Let φoeXkr be such that uo{t)φoe3PJR)n3Po{Wi+). Then
1) For t0 sufficiently large (depending on φ0) and in particular for t0 = oo, the

Eq. (2.9) has a unique solution φ in ^ f l (R)n^ 0 (IR + ) .
2) Let ί 0eIRor ί o = + oo and let φe^α(3R)n^ 0(IR+) be solution of the Eq. (2.9).

Then uo(-)φ(s)e&JJStyn^O(1R.+) for all seJR. Furthermore, there exists φ+eXkr such
that wo(ί)φ + 6^α(lR)n^o(IR+), uo( )φ(s)-uo( )φ+e&o(R)9 and

\imuo(.)φ(s)-uo( )φ+=0 in £!Γo(R), (2.14)

s-*oo

where φ(s) is defined by (1.48). In particular

limφ(s) = φ+ in Xkr. (2.15)
s-^ oo

Furthermore, for all ίeIR,

\\φ(t)\\ = \\φ+\\> (2-16)

(2.17)

0 φ+φ0

Similar results hold for t0 in a neighborhood of — oo and uo(t)φo or φ in

Remark 2.2. The condition (2.13) imposes an additional restriction on the decay of
the potential at infinity. It follows from (2.10) and (2.13) that pί < 3n/4. One checks
easily that for any allowed choice of r and r', (2.13) is stronger than the upper
limitation on p1 and compatible with the lower limitation on p1 that come from
(2.5).

Remark 2.3. Under the assumptions of the Proposition 2.2, the wave operators
formally given by

Ωc±φ±=φφ) = φ±-i f dτuo(-τ){φ)(V*\φ(τ)\2)} (2.18)
±00
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are well defined as (non linear) maps from Y± to itself, where

Y± = {ψ : UoiήψeSrjNnSϊotR*)}. (2.19)

A solution of (2.9) in ^fl(IR) will be called dispersive (respectively dispersive in
the past or in the future) if it belongs to ̂ 0 (R) [respectively to &0(R~) or ^ 0 ( R + ) ] .
Proposition 2.2 provides us with solutions that are dispersive in the past or in the
future but not necessarily in both directions. For such solutions the uniformly of
the ft->Ό limit announced after (1.51) holds only when t or t0 tends to — oo or to
+ oo. As a consequence, for such solutions one cannot obtain in general the
limiting property (1.57) for the S-matrix but only the corresponding property for
the wave operators.

In order to obtain dispersive solutions, more information is necessary. In
particular, we shall see that under an additional restriction on the initial data φ0,
all solutions of the Eq. (2.3) obtained from Proposition 2.1 are dispersive if the
potential Fis repulsive in a suitable sense. For this purpose we define a new space
Σ as the Hubert space

Σ = {ψ:ψeH1 and xψeL2}, (2.20)

with the norm defined by

llvlli = l lvl l 2 + IH 7vll 2 + l lχψll 2 (2 2 i )
The relevance of Σ is best seen from the following lemma.

Lemma 2.1. Let xpeΣ, let 2<.q^2n/{n-2). Then

\\uo(t)ψ\\q^aq(ί + \t\)n^-nf2\\ψ\\Σ9 (2.22)

where the constant dq depends only on n and q.

We can now state the following result.

Proposition 2.3. Letn^X letXkr, 9£a(>\ 3C0( ) and Σ be defined by (2.1), (2.2), (2.11),
and (2.20). Let V satisfy (2.4)-(2.6) and in addition

(2.23)

where

ί/p4 = Min(l, 2 + 4k/n - 4/r) (2.24)

and the derivative of Vis taken in the distribution sense. Let φoeXkrr\Σ be such that
uo(t)φoe8Ca(R).

1) Let t0 be finite and let φ be the solution of (2.9) in &JWC) as obtained from
Proposition 2.1. Then <pe#(IR,Σ).

Assume in addition that V is repulsive in the following sense:
V is non negative and λ2V(λx) is decreasing in λ for all xeW and all /ίeIR+.
Then φe^hφ^Σ).
Assume in addition that V satisfies (2.13) and that wo( )φoe$"o(IR). Then
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Let φ± be defined as in Proposition 2.2 then φ+eΣ and

lim φ(s) = φ + in Σ. (2.25)
S-> ± 0 0 ~~

2) Let r' be such that

1/2 - ί/n < ί/r ^ ψ < 1/2 - ίβn, (2.26)

let

Pi<«/2, (2.27)

and let V satisfy in addition

X'VVELP' + LP4 (2.28)

with

p3<n/2. (2.29)

Let ίoeIR or to= + oo and ίβί φe$Γfl(IR)n$Γ0(IR+) be solution of the Eq. (2.9).
Then φe^{lR,Σ). Lei φ + be defined as in Proposition 2.2, then φ + eΣ and

lim φ(s) = φ+ in Σ. (2.30)
S~* + 00

For repulsive interactions in the previous sense, Proposition 2.3 provides us
with a large class of dispersive solutions. Actually it implies asymptotic complete-
ness in the space Z :

Z = {ψ\ψeΣ and uo( )ψe3Co(WL)}. (2.31)

Corollary 2.1. Let r and r' satisfy (2.26). Let V satisfy (2.4), (2.5), (2.27), the
repulsiυity condition of Proposition 2.3, (2.28), (2.29), and (2.24). Then the (non
linear) mapping

φ_^φ+=Scφ_ (2.32)

defined formally by

oo

φ+=φ--i ί dτuo(-τ){φ(τ)(V*\φ(τ)\2)} (2.33)
— oo

and, more precisely, by a combined use of Proposition 2.2 and 2.3, is a bijection of Z
onto Z.

Remark 2.4. In each of the situations covered by the previous propositions one can
also obtain boundedness properties of the solutions and continuity properties with
respect to the initial data.

3. The Quantum Theory

In this section, we define the quantum theory formally described in Sect. 1, and in
particular we derive the main properties of the operators W(t, s a) defined by
(1.45) and (1.55) that will be used later.
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The basic space of the theory is the boson Fock space

^=®^v, (3.1)
iV = O

where Jf^ is the space of totally symmetric square integrable functions of N
variables in Rn. The Fock vacuum is denoted by Ψo. The scalar product in &? is
denoted by

<Φ, ψy = jdXΦ(X) Ψ(X), (3.2)

whereX = (xv ...,xN) and

fdX= Σ (Nir^dx^.Jx^ (3.3)
N = 0

The norm in Jή? is denoted by || ||. No confusion should arise with the scalar
product and the norm in L2 = #eγ for which we use the same notation. The norm of
a bounded operator A in ffl is denoted by |||^4|||. The creation and annihilation
operators are defined, for any αeL 2 , by

\(a*(a)Ψ)(X)= ΣΦi)nXW-
I ί = i

In (3.2)-(3.4), we follow the convention of Friedrichs [2]. The particle number
operator N is defined by (1.65).

For any self-adjoint semi-bounded operator A^cί in Jf, we denote by Q(A)
the form domain of A, namely Q(A) = @((A — cl)1 / 2). Q(A) is a Hubert space with
norm ||((1 -c)ί + A)1/2Φ\\. We denote by Q*(A) the completion of Jtf in the norm
||((l-c)lL + ^ ) ~ 1 / 2 Φ | | . We shall also use the space <tfo(N) of vectors in Jf7 with
finitely many particles.

We now begin the study of W(t, s a). For this purpose we need some properties
of the Weyl operators defined [cf. Eq. (1.15)] by

C(a, α) = exp[α*(α) - α(α)] (3.5)

for any oceL2.

Lemma 3.1.
1) C(α,α) is unitary and strongly continuous as a function of oceL2.
2) Let aeH1. Then C(a,oc) is bounded in Q(H0) and in Q*(H0) uniformly for α in

a bounded set of H1. (Ho is defined by (1.62)/
3) Let a '.t-^ociήetf1 (IR, L2). Then C(α,α(ί)) is strongly differentiable in t from

Q(N) to Jtf. The derivative is given by

C(a, α(ί)) = C(a, α(ί)) (a* (A) - α(α) + ilm<α, ά » , (3.6)

where ά = da/dt.

Proof
1) Unitarity is obvious. Strong continuity then follows from weak continuity

on <«0{N).
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2) We have

C(α,α)*H0C(α,α) = f J dx{Va*(x)+ Pα(x)) (Pα(x)+ Pα(x)) (3.7)

(3.8)

This proves 2) for Q{H0) and by duality for Q*(H0).
3) Let ϊ ' j , Ψ2e'H?0(N). Then by an elementary computation

- 1 / 2 t P 2 > , (3.9)

where

t),ά(φ (3.10)

The operator D(t)(N + ί)~112 is bounded and norm continuous in t. Therefore

ίC(a, α(t)) - C(a, α(s))] «P = \ dτ C(a, α(τ))D(τ) «P (3.11)

as a strong Riemann integral in j f for any *F in β(iV). This proves 3). Q.E.D

The main constituent of W(t, s; a) is the total evolution operator U(t, s a)
which we now define. We do not strive for the greatest possible generality, since
the strongest assumptions we shall need on V will arise in the study of the limit
ft->0 in Sect. 5. Let n^3 and V± = Max(± V,0). We assume that V satisfies the
following conditions

( p ^ l ) .
[ }

The Hamiltonians Hh, H o, and H4 [see (1.61)] are defined through the direct sum
decomposition

00 00

Hn= Θ Hm= © hH0N + h2Hw. (3.13)
N=ί N=l

Under the assumptions made on V, HhN is for each N the self-adjoint operator
defined a!s a sum in the sense of quadratic forms, with Q(HhN) C Q(H0N) it is semi-
bounded [10]. Furthermore Hh is essentially self-adjoint on &(Hh)n^0(N). If in
addition F + e L 2 + L°° and V_eL2Λ-L^ (resp. V^eL2 + ε + L») for π = 3 (resp. for
n = 4), then f/̂  is essentially self-adjoint on the subspace of vectors with finitely
many particles and smooth wave functions [8]. The total evolution [see (1.6)] is
defined by

U{t,s;a)=U(t~s;a) = Qxpl-ih~1(t-s)Hh]. (3.14)

In order to study W(t, s a) we need the explicit form of the decomposition (1.8).
H^a) is given by (1.66). The other terms are given below:

H2(a) = H0(a) + G(a) + K(a) + L(a) + L*(a), (3.15)



Classical Field Limit 53

where H0(a) is defined by (1.62), and

G(a)=$dxg(x)a*(x)a(x), (3.16)

K(a) = I dxdyk(x, y)a*(x)a(y), (3.17)

L(a) = ̂ dxdyT(x,y)a(x)a(y), (3.18)

with

g(x) = SdyV(x-y)\φ)\2 = {V*\φ\2){x), (3.19)

k(x,y) = φ(x)V(x-y)φ(y), (3.20)

Kx,y) = φ(x)V(x-y)φ(y), (3.21)

H^3(a) = H3(a) + HA(a), (3.22)

with

H3(a) = A3(a) + A*(a), (3.23)

Λ3(α) =\dxdy V(x - y)φ(x)α*(y)α(x)α(y), (3.24)

and H4(a) is given by (1.63).

We first derive some properties of H2(a).

Lemma3.2. Let VeL™+Lp i.e. V=V1^V1 with F ^ L 0 0 , V2eLp

9 p^2 and let
φeL2c\Lq with l/p + 2/q = l. Then the operators N~1G, N~1K and
{N(N-1))~1L*L are bounded and

Ill^'^lll^ll^lloo' (3 2 5)

(3.26)

(3.27)

\c\ (3.28)

where

and II | |H S denotes the Hilbert-Schmidt norm in Jtf'1. Furthermore

Max(c, II^Hoo)^ ll^i IIoo II^II 2 + II ̂ 2lipII9II^ (3.30)

Proof. (3.25) a n d (3.26) a r e obvious . I n o r d e r t o p r o v e (3.27) it suffices t o s h o w t h a t

L*Li^\c2N(N— 1) (3.31)

because L*L commutes with N. Now

WLΨf^^dX^dy.dyJiy^y^ΨiX^^y.ψ

(3.32)
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by Schwarz's inequality. The proof of (3.28) is similar. Finally (3.30) follows from
Holder's and Young's inequalities. Q.E.D.

Corollary 3.1. Let the assumptions of Lemma 3.2 be satisfied. Then, for any ωeC,

M = l,

(3.33)

-1/2\\\^c, (3.34)

where c is given by (3.29).

Proof

\2

implies

1/2 lc \ - l / 2

-ώ -N\ Lr #
\l/2 /„ \ - l / 2

c \ ' c
-(iV + 2) -ωLl-N

(3.35)

^N) L*L^c{N+l) (3.36)

by (3.31). This proves (3.33), from which (3.34) follows by sum and
difference. Q.E.D.

In Sect. 5 we shall make essential use of a regularized version of the Eq. (1.46).
For this purpose we introduce a regularization operator Pvκ as follows: let
σίe

(£1(]&+) be positive and decreasing, σί(s) = 1 if 5 ^ 1, σ1(s) = 0 if s^2. We denote
by σv the operator σ1(N/v) in Jf. Let ρ1eL1nL2 be even, positive, with | | ρ 1 | | 1 = l.
Let ρx be its Fourier transform. Assume in addition that ρ ^ O , that \k\ρ^{k) is
bounded and that ρx{λk) is a decreasing function of λ for all AeIR+ and keW. For
any κ>0 let ρκ(x) = κnρί(κx) and let ρκ^ be the operator in ^ defined by ρ^xp

00

= ρκ*ψ for any xpe^v Let Rκ= @ ρ®JN and Pvκ = σvRκ where the superscript
N=0

(x)siV denotes the symmetrized JVth tensor power. The parameters v and K are a
particle number cut-off and a momentum cut-off respectively. The operators σv, Rκ

and P v κ commute among themselves and with N and Ho. They satisfy O^PV K

— P^κ = ̂ ? a r e increasing in v and /c and satisfy

s-limPv κ = l . (3.37)
v,κ->oo

Some of the regularizing properties of Pvκ are expressed by the following
lemma.

Lemma 3.3. Let V satisfy the assumptions of Lemma 3.2.
1) Let φeL2nLq with l/p + 2/q = l. Then σv(H2-H0) and therefore

PVK(H2 — H0) are bounded in ffl and strongly continuous with respect to φeL2nLq.
2) Let φeL2. Then PVKH3 and PVKH4 are bounded in J-f and strongly continuous

with respect to φeL2 (H3 and H^ are defined by (3.23), (3.24), and (1.63) and the a
dependence is omitted).
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Proof. Part 1) follows immediately from Lemma 3.2.
2) Because of the particle number cut-off it is enough to prove that RKΛ3,

RKA* and RKH4 are bounded from Jt?2 to Jf1? from 3tfγ to 3tf2 and from Jf2 to 2tf2

respectively. Let xpe^ and Ψ, ΦeJ4?2. Then

(ψ,RκΛ3Ψ) = \dx1dx2dx\ψ(x1)φ(x2)

'Qκ(x1-x/

1)V(xf

1-x2)Ψ(xf

1,x2)9

- XΊ) v(χΊ -

It is therefore sufficient to prove that the operator B in L2®L2 defined by

(Bθ) (xl9 x2) = f Jx; ρκ{Xl - x\) V(x\ - x2)θ(x>v x2) (3.38)

is bounded. Now it follows from Young's and Schwarz's inequality that ||f?[|
= ll^i II00 + II Qκ II II 2̂II This proves boundedness; continuity is then
obvious. Q.E.D.

We are now in a position to study W(t, s a) defined formally by (1.55) through
(1.25), (1.26), (1.45) where φh, φ, φh are defined by (1.13) with μ= 1/2 and (1.48). We
assume that V satisfies (3.12) and that

2ΓΛU) with l/p + 2/q = l. (3.39)

Then C(a,φh(ή) and U(t,s; a) are well defined through (3.5) and (3.14). The phase
ωh(t,s) defined by (1.26) now becomes

ωh(t,s)=-h-1\dτH4(φ^))' (3 4 0 )
s

It follows from (3.12) and (3.39), by Holder's and Young's inequalities, that ωh(t,s)
is well defined and continuously differentiable in ί. This completes the precise
definition of W(t,s; a). We now derive the regularized version of (1.46) mentioned
above. In order to be precise, we indicate explicitly the time dependence coming
from φ in the operators Hk(a) = Hk{t9a\ fe = 2,3,4, defined by (3.15), (3.23) and
(1.63), and Ήk(a) = Hk(t,a) defined by (1.37b), which then becomes

Hk(t9 a) = U0(t a)*Hk(t, a) U0(t, a) (k = 2,3,4). (3.41)

Proposition 3.1. Let Vsatisfy (3.12) with p^2. Let φ satisfy

φe^(ΊR,H1nLq) with l/p + 2/q = ί (3.42)

and the Eq. (2.9). Then the operator Pvκ W(t, s a) defined above is strongly
differentiable in Jt? and its derivative is given by

iP

+ fιH4.(t,a))W(t,s;a). (3.43)
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Proof. We first remark that under the assumptions made on Fand φ, the integrand
in the R.H.S. of (2.9) lies in ^(IR,L2). Therefore the integral is well defined as a
strong Riemann integral in L2 and the Eq. (2.9) makes sense. Furthermore φ
satisfies the equation

φ{t) = φ(t0) -i\dτuo(- τ) {φ(τ) (F*|^(τ)|2)} , (3.44)
ίo

from which it follows that φe^^i^L2) and that

J }. (3.45)

In the rest of this proof we drop the a dependence in all the operators. It
follows from Lemma 3.3 and from (3.42) that the R.H.S. of (3.43) is a bounded
operator in J^ and is strongly continuous with respect to t. Therefore it is sufficient
to prove (3.43) on a dense subset Q) of J f. We take

@=={Ψ:U0(s)C(φh(s))Ψe@(Ht)^0(N)}. (3.46)

Using the facts that U(t — s) is strongly differentiable on @(Hh\ that
®(Hn)c Q(Hn) C Q[HQ\ that U0(ή is strongly differentiable from Q(H0) into Q*(H0\
that C(φh(ή) is bounded on Q*(H0) and strongly differentiable from <#0(N) into Jf7

(by Lemma 3.1), that Pvκ is bounded from Q*(H0) to Jf [because Ifclρ̂ fc) is
bounded], we see that, for any Ψe2), PvκW(t, s)Ψ is differentiable, and that its time
derivative is given by:

i j t Pvκ W(t, s)Ψ = PvκC(φn(tψ { U0(ή* (Ho + hH4)

• t/0(ί)* + ft" xif 4(<p(ί)) U0(t)*} U(t - s) U0(s)C(φh(s)) Ψ.

(3.47)

We are left with the task of writing (3.47) in the form of (3.43). This results from an
algebraic computation to be performed below using the Eq. (3.45). This com-
putation amounts to writing the same operator in two ways as the sum of various
terms and is justified by the fact that all terms involved are well defined as
bounded operators in 34?. Using (3.45) and (1.49) we obtain in the R.H.S. of (3.47)

(3.43) then follows from (1.16), (1.8), (1.63), (1.66), (3.15)-(3.24), the fact that
<φ, φ(V*\φ\2)) = 2H4(φ) and the definition (3.41). Q.E.D.

We conclude this section with some comments on the limit of W[t,s a) when t
and/or s tend to ± oo. We first consider the operators U0(t a)*U(t — s a)U0(s a).
The existence of their strong limits as s-> + oo is equivalent to the existence of the
wave operators

Ω+(a)= 5-lim U(-s a)UJs a). (3.48)
~ s-> ± oo
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By an easy extension of standard arguments one proves that the latter exist if

fVeLPl+LP2 with l<p?<p,<n,
-vi-vi ( 3 > 4 9 )

On the other hand the existence of the limit as ί-> + oo is a much harder problem
since it is equivalent to asymptotic completeness. It can be expected to hold only if,
for all ]V, the iV-particle system behaves as a free system for large time, for instance
if the interaction is repulsive in some sense. If Fis positive and V(λx) is decreasing
in AGIR+ for all x, it can be proved [9] that for each N the spectrum of HhN is
absolutely continuous and coincides with [0, oo). Asymptotic completeness follows
from similar but stronger assumptions [9]. It is likely and it would be desirable to
prove that asymptotic completeness holds under the repulsivity condition of Sect.
2.

Finally the operator C(a, φh(ή) converges strongly to C(a, φh±) when ί-> + oo
provided φn(t) converges to φh± in L2. This convergence as well as the existence of
the limit for the phase ωn(t, s) as t and/or s tend to + oo hold for all dispersive
solutions of (2.9) in the sense of Sect. 2 for potentials V satisfying the assumptions
of Proposition 2.2.

4. The Quantum Fluctuations

In this section we give a precise definition and study the properties of the unitary
group of operators U2(t, 5 a) formally defined by (1.41) and (1.22). As explained in
Sect. 1, this group describes the evolution of the quantum fluctuations around the
classical solution. The main problem consists in solving the Eq. (1.38), namely an
evolution equation with time-dependent generator. There is an important litera-
ture on this subject (see for instance [7]), but it is simpler to give a direct treatment
taking full advantage of the special features of the present case. We follow the
usual method, namely we first define a truncated unitary group and then we obtain
U2(t,s;a) from it by a limiting procedure. In all this section we shall drop the
dependence of the various operators on a. We shall need the spaces JΊ?3, δeJR,
defined by jtf?δ = Q(Nδ) for δ^O and by Jίfδ = Q*(N^{) for <5<Ξ0, with norms

We denote by J*(<5, δf) the space of bounded operators from 3tf3 to Jfδ' and by
|| | | M , the norm in 3t{δ,δ'\

We first derive some properties of the generator of U2(t, s)

A(t) = H2(ή -Ho = G(ή + K(ή + L{t) + L*(ή, (4.2)

where H2(t) is defined by (3.41) and G(ί), K{t\ L(ί) and L*(ί) are defined similarly.
We introduce the self-adjoint approximants

Av(t) = σvΛ(ήσv (4.3)

for any integer v ^ l , where σv is the particle number cut-off operator defined in
Sect. 3.
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Lemma 4.1. Let VeL^+L? with p^2 and let φ satisfy (3.39). Then:
1) For any (5eR, A(t) belongs to &(δ + 2, δ) and is norm continuous as a function

oft.
2) Av(t) satisfies 1) with bounds uniform in v. Furthermore, for any (5eIR, Av(i)

belongs to έ$(δ, δ) and is norm continuous as a function of t.
3) For any δeJR, Av(t) tends to A(t) as v-> oo, in norm in @(δ + 2 + ε, δ\ ε > 0, and

strongly in $(δ + 2, δ\ uniformly for t in a compact interval.

Proof
1) It follows from Lemma 3.2 and an argument similar to the proof of

Corollary 3.1 that

(4.4)

, (4.5)

where

g(ή = V*\φ(t)\\ (4.6)

and c(ί) is the continuous function defined by [see (3.29) and (3.30)]:

μ 2 2 2 γ l \ (4.7)

This proves boundedness. Continuity is proved in the same way.
2) Follows from 1) and the fact that σve$(δ,δ') for any δ and δ'.
3) Strong convergence of Av(t) to A(t) in &(δ + 2, δ) follows from the obvious

strong convergence on ^0(N) and the fact that Av(t) is bounded in 3$(δ + 2,δ)
uniformly in v. Norm convergence in J*((5 + 2 + ε, δ) follows from the fact that
(i — σv)(l +N)~ε tends to zero in norm as an operator in Jf. Q.E.D.

We can now define the unitary group U2 v(ί, s) by the series

00 t ίi ίm-1

U2v(t,s) = Σ ( — i)m\dt1\ dt2... j dtmAv(t^)...Av{tn). (4.8)
m = 0 s s s

By Lemma 4.1 the series (4.7) converges in norm in 3#(δ,δ) and U2 v(t,s) is norm
continuous and norm differentiable with respect to t in 3$(δ9δ) for all <5eR The
operators U2fV(t,s) satisfy the following crucial boundedness property.

Lemma 4.2. Let V and φ satisfy the assumptions of Lemma 4.1. Then U2 v(ί,s) is
bounded in J^fδ uniformly in v for all δ e IR. More precisely.

(4.9)

where c{t) is given by (4.7).

Proof It is sufficient to consider the case δ^.0. The case δ <0 will be obtained by
duality. Let ΨeJ^. We want to estimate

(4.10)
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Now M(s,s)= ]|Ψ\\2 and

59

By an argument similar to that in the proof of Corollary 3.1 one obtains

+ i[(JV + ί)δ, L(t) + L*(ί)] S δc(t) {N + 2)δ

+ (δc(t)Nδ)-1((N+l)δ-(N-l)δ)2L*(t)L(t)

(4.11)

(4.12)

(4.13)

by Lemma 3.2,

...S2δ2όc(t)(N+l)δ

by elementary estimates.
Therefore

-M(t,s)

which yields

^2δ2δ c(t)M(t,s)

2 ^ 2 e
\dτc(τ) . Q.E.D.

(4.14)

(4.15)

We are now in a condition to define the unitary group U2(t, s) and to derive its
main properties.

Proposition 4.1. Let V and φ satisfy the assumptions of Lemma 4.1. Then there is a
unique group of operators U2(t,s) satisfying the following properties:

i) For any (5eIR, U2(t,s) is bounded and strongly continuous with respect to t,s
in 34?δ and satisfies

δ2δ]dτc(τ)

2) U2(t, s) is unitary in Jf.
3) For any (5elR, U2(t,s) is strongly differentiable from

In particular it is strongly differ entiable from Q)(N) to

Proof
1) For any positive integers μ and v,

(4.16)

to jeδ and

(4.17)

(4.18)



60 J. Ginibre and G. Velo

as a Riemann integral in norm in $(δ, δ) for any δ. It follows then from part 2) of
Lemma 4.1 and from (4.9) that

\dτc(τ)
τe[s,t]

(4.19)

where γ is a constant related to δ. Therefore by part 3) of Lemma 4.1, for any (5eIR,
C/2jV(ί,s) converges in norm in £$(δ + 2 + ε,δ) as v->oo uniformly for t,s in a
compact set. The limit U2(t,s) is clearly norm continuous in έ$(δ + 2 + ε,δ) with
respect to t, s. The previous convergence and the uniform bound (4.9) imply strong
convergence of U2tV(t, s) to ϋ2(t,s) in &(δ, δ) uniformly for t,s in a compact set. As
a consequence U2(t,s) satisfies the bound (4.16) and is strongly continuous in
ί, s. This proves part 1).

2) Part 2) follows from the unitarity of U2 v(ί, s) in j f and from the strong
convergence of t/2,v(i,s) and of £ 2 j V(ί,s)* = ί72jVi>,t).

3) In order to prove part 3) we write

U2Jt,s)Ψ=Ψ-i\dτAv(τ)U2Jτ,s)Ψ (4.20)

as a strong Riemann integral in Jfδ for ΨeJ4?δ + 2. By part 3) of Lemma 4.1 and by
the previous convergence we can take the limit v-*oo in (4.20). The result then
follows from part 1) of Lemma 4.1 and from part 1) of this proposition. Q.E.D.

We finally study the limit of U2(t,s) as t and/or s tend to + oo.

Proposition 4.2. Let V and φ satisfy the assumptions of Lemma 4.1 and let the
function c( ) defined by (4.7) be integrable at + oo (resp. at — oo, resp. in IR). Then

1) For all δeW^ U2(t,s) is bounded in fflδ uniformly in t, s for t, s in IR+ (resp.
R", resp. IK).

2) Assume in addition that the function WgiήW^ defined by (4.6) is integrable at
+ oo (resp. — oo, resp. in IRj. Then U2(t,s) has norm limits in &(δ + 2,δ) and
therefore strong limits in 3$(δ, δ)for all (5eIR when t and/or s tend to + oo (resp. — oo,
resp. ±ooj.

Proof Part 1) follows from (4.16). In order to prove part 2) we write

{U2(t, s) - U2(t\ s)} Ψ = - i ] dτΛ(τ) t/2(τ, s) Ψ (4.21)

as a strong Riemann integral in jfδ for Ψe J^δ + 2. Then by (4.4), (4.5), and (4.16),

\\U2(t,s)-ϋ2(t\s)\\δ + 2,δ

\dτ'c{τ') (4.22)

where γ is a constant related to δ. Part 2) follows immediately. Q.E.D.

In the case where the relevant limits exist, as described in the previous
proposition, we define the wave operators and the S matrix for the quantum
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fluctuations by

Ω2+= s-liml/2(0,s), (4.23)
~ s->±oo

S2 = s-lim l/2(ί, s). (4.24)

In particular, if c( ) and ||g( )lloo are integrable in 1R, the quantum fluctuation
system is asymptotically complete. The integrability condition holds for dispersive
solutions in the sense of Sect. 2 and for suitable potentials.

5. The ϋ^O Limit

In this section we prove the main result of this paper, namely the strong
convergence of W(t, t0 α0) to U'2(ί, t0 α0) uniformly in t and ί0 for fixed α0 [see
(1.51)]. In Sect. 1, α0 was the initial condition at time t0 common to the Eqs. (1.37)
and (1.38). However it is clear from (1.55) that the definition of W(t, t0 ά0) does not
imply any relation between t0 and ά0 and does not contain any reference to the
role of ί0 as initial time. We shall therefore consider W(t, s α0) as defined by (1.55),
for any t and s belonging to IR, in the Fock space associated with the αo's. From
now on, we shall replace the notation α0 by the simpler one a. In particular we
shall freely use the results of Sects. 3 and 4, already written with this notation. The
same remarks apply to U2(t, t0 ά0).

The basic tool of the proof is the Duhamel formula between W(t, s a) and
U2(t,s;a) as in [6]. However two complications arise. 1) For the potentials we
want to consider, the derivative in the Duhamel formula is too singular and we
must regularize it by the use of the operators Pvκ. This leads to strong
convergence for finite times, stated in Proposition 5.1. 2) Uniformity in time is not
apparent at this stage. In order to make it explicit we need to differentiate a second
time. This leaves us with two integrals on time variables. One is a simple integral
similar to the one encountered in the usual existence proof of the wave operators
in linear scattering and is controlled by the space decay of the wave function and
the dispersive properties of the free evolution. The second one is a double integral
over two time variables. One integral is controlled by the dispersive properties of
the free evolution and the other one by the time decay of the classical solution. The
main result is stated in Theorem 5.1 at the end of this section, and most of the
latter is devoted to its proof.

Before starting the proof we introduce some more notation. We denote by
III-III! and ||| | | |2 the norm of bounded operators in the one- and two-particle
spaces Jf̂  and J^2 respectively. Let f1 and f2 be operators in jfx and J^2

respectively. We define the second quantized operators Γ^/J and Γ2(/2) by

® Σ i

Γ2(f2)= © Σ Λ(U) (5.2)
N=2 l^i<j^N
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For instance we shall consider V as the operator in J-f2 defined by
(Vψ)(xί,x2) = V(x1—x2)ψ(x1, x2). Then H4 = Γ2(V). If A is an operator in Jf
commuting with JV we shall use the notation Γ2(A) for Γ2(A2) where A2 is the
restriction of A to ffl2. Let b be the function.

b{x) = (l+x2Y (5.3)

with /?> 1. We denote by bί the operator of multiplication by b in ^ and by b2 the
operator in Jf2 defined by

?x2) = b(x1-x2)t/;(x1,x2). (5.4)

We define Bλ =Γ1(bι) and B2 = Γ2(b2). We shall write explicitly the x dependence
coming from φ in g(t\x\ k(t;x,y) and l(t;x,y) defined by (3.19)—(3.21). The
space variables will be omitted when confusion does not arise. In addition we shall
use the notation g(t) and k(t) for the operators in Jf̂  defined respectively as the
multiplication by g(t) and as the integral operator with kernel k(t). For brevity, in
all this section we shall omit the dependence on a of the various operators under
study, the subscripts v and K in σv, ρκ, ρKJ!s, Rκ and Pvκ and, most of the time, the
variable s.

We now begin the proof of (1.51). In all this section we suppose that Fand φ
satisfy the following conditions:

with 2 ^ p 2 ^ p 1

with l/p2 + 2/g2 = l , (5.6)

and that φ satisfies the Eq. (2.9). We shall write V=V1 + V2 with P êZΛ, f = l,2.
These assumptions are slightly stronger than those of Proposition 3.1 and will not
be repeated in the intermediate lemmas. We take a fixed ΨeQiNBJ and define

) = ϋ2(t,s)Ψ, [ ' ]

where the s dependence is omitted, as said above, in the L.H.S. of (5.7). We start
estimating the difference

|| Ψ^t)- Ψ2(t)\\2 = 2Re< ψ, ( 1 - W(t, s)* U2(t, s)) Ψ>

= 2(Ψ,(l-P)Ψ}-2Re<.Ψ1(ή,(i-P)Ψ2(Φ

-2Re(ψ,\dτ~(PW(τ,sψϋ2(τ,s)ψ) = Σ J, , (5.8)
\ s aτ I <=o

where

J 0 = 2<«P,(i-P)y>, (5.9)

J 1 = -2Re< P1(t),(l-P)!P2(ί)>, (5.10)

3 2 = 2\m\άτ(^> .{τWH^τ),?^ ^τyy, (5.11)
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τ)>, (5.12)

J 4 = 2Im J dτ{ Ψ^τ), hH4(τ)PΨ2(τ)}. (5.13)
S

In writing (5.8) we have used Proposition 3.1 and part 3) of Proposition 4.1. We
want to prove that the J/s tend to zero when h-^0 uniformly in t and s. We
consider them successively. For definiteness, we assume s^t. By (3.37), Jo tends to
zero when v, κ:->oo J o does not depend on ί, s. We next consider J1.

Lemma 5.1. J1 tends to zero as v, K:—>>GO uniformly for t,s in a compact set. If in
addition c( ) (defined by (4.7)J is integrable at + oo (resp. — oo, resp. in IRJ, then the
limit is uniform with respect to t in IR+ (resp. 1R~, resp. 1RJ.

Proof. We write

1̂ 1̂ 211̂ 11 ||(l-P)ί/2(ί,5)y||. (5.14)

The last norm in the R.H.S. of (5.14) is a decreasing function of v,κ and tends to
zero when v,κ;—>oo for fixed ί5s. It is continuous in ί,s for ί,seIR and, under the
integrability condition on c( ) for ί,seIRu{ + 00} (resp. R u { - 00}, resp. IR
u{ + oo}u{—00}) by Proposition 4.2. The result then follows from Dini's
theorem. Q.E.D.

We now turn to J2.

Lemma 5.2. J2 satisfies the estimate

τ)| | , (5.15)

where σί is the particle number cut-off function, σ\ its derivative, c(-) is defined by
(4.7) and M2(τ) by

M2(τ)2 = μxdy\$dx'ρ(x-x')(k(τ;x,y)-k(τ;x\y))\2. (5.16)

Proof. We write

|J 2 | g2 | |y | | }dτ | | [H 2 (τ),P]!P 2 (τ) | [ . (5.17)
s

Now

lH2(τ), P] = [H2(τ), σ] R + σ[H2{τ), K\ (5.18)

and

= {σ(N + 2) - σ(ΛΓ)) L(τ) + (σ(N - 2) - σ(N))L*(τ).

Using the estimate
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Lemma 3.2 [see especially (3.27) and (3.28)] and the fact that R,N, and Uo

commute, we obtain easily

\\lH2(τ),σ-]RΨ2(τ)\\

We consider next [H2(τ\R~]. Obviously

||[G(τ) + £(τ),*]!P 2 (τ) | |

Furthermore

where || | |H S denotes the Hilbert-Schmidt norm in ^ and M2(τ) is defined by
(5.16).

On the other hand one obtains easily

τ) + L*(τ),K]Ψ2(τ)\\

^2il2\\(l-R)L*(τ)ΨJ ||(N + l) P2(τ)||

by an argument similar to the proof of Lemma 3.2,

. . .g2M 2 (τ) | | (N+l) !P 2 (τ) | | . (5.22)

Inserting the estimates (5.19)-(5.22) into (5.17) and (5.18) yields (5.15). Q.E.D.

We next estimate (11Ĉ (τX&«!)II11 a n d M2(τ) in the following lemma.

Lemma 5.3.

),β,]llli^ Σ WΦKidyobW^ViX^ (5.23)
1=1,2

M2(τ)S Σ J j h ,
i= 1,2

+ \\φ(τ)\\lSdyρ{y)\\Vi-Viy\\Pi}9 (5.24)

where Viy{x)=Vi{x-y) and l/p. + 2 / ^ = 1, i = l,2.

Proof. In the proof we omit the variable τ. Let ψe^. Then

lG> β*] ψ(x) = ί dyρ(y)ψ(x - y) (g(x) - g(x - y))

from which (5.23) follows by Holder's inequality.
On the other hand

M2 = \\\dx' Q{x-x'){φ{x)V{x-y)-φ{x')V{xf -y))φ{y)\\2,

where || ||2 denotes the norm in L2(dxdy)

S\\(φ-ρ*φ)(x)V(x-y)φ(y)\\2

+ jdy'ρ(y') ||φy{x)(V- Vy)(x-y)φ(y)\\2 ,
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where φy,(x) — φ(x — y'). From this (5.24) follows by Holder's and Young's
inequalities. Q.E.D.

Corollary 5.1.

1) J2 tends to zero when v,/c->0 uniformly in t,s in a compact set.
2) // in addition | |φ(τ)||g. and \\φ(τ)-ρ*φ(τ)\\qι belong to L2(IR+, dτ) (resp. L2(IRΓ,

dτ), resp. L2(W^dτ)) for i = l,2, and if J dτ\\φ{τ)\\Jφ(τ)-Q*φ(τ)\\qι
R+(resp. R~,resp.IR)

tends to zero when /c—>oo for /=1,2, then the limit J2—>0 is uniform for t, seIR+

(resp. IR~, resp. IR).

Proof Convergence and uniformity for finite times follow from Lemmas 5.1 and
5.2 by a simple application of Lebesgue's dominated convergence theorem.
Uniformity for ί,se!R is obvious after noticing that

Φ)=i Σ WVtWJcpWWl. Q.E.D. (5.25)
ί = l , 2

We next turn to J 3 and J 4 . In a first step we write .

J3^2h^2\\Ψ\\]dτ\\H3(τ)PΨ2(τ)\\9 (5.26)
s

J^2h\\Ψ\\\dτ\\HA{τ)PΨ2(τ)\\, (5.27)
s

and we note that in (5.26) and (5.27) h appears only in the explicit factors h1/2 and h
while v and K occur in P. By part 2) of Lemma 3.3, the integrands in (5.26) and
(5.27) are continuous functions of τ. Therefore, in order to prove that
|| Ψx{t)— ^(OII tends to zero when ft->0, we can proceed as follows. By Lemma 5.1
and Corollary 5.1, we can make Jx and J2 arbitrarily small by choosing v and K
large enough. We can then make J3 and J 4 arbitrarily small by taking h
sufficiently small for fixed v and K. At the present stage, we can already prove the
strong convergence (1.51) at finite times.

Proposition 5.1. Let V satisfy (5.5), let φ satisfy (5.6) and the Eq. (2.9). Then the
following strong limit exists

s-hmW(t9s)=U2(t9s) (5.28)
h~* 0

uniformly for t, s in compact intervals.

Proof The result follows from Lemma 5.1, Corollary 5.1, part 2) of Lemma 3.3 and
the preceding remarks. Q.E.D.

We are now left with the task of estimating the integrals in (5.26) and (5.27)
uniformly in t,s. We consider first J 3 . We define the function g^τ) by

2 (5.29)
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Lemma 5.4. The following estimate holds:

1(τ). (5.30)

Proof In this proof we omit the τ dependence. Now by (3.23)

where A3 and A% are given by (3.24). Let Φ be a vector in jtf with finitely many
particles and smooth wave functions. LetX = (x1? ...,xN). Then

(5.31)
(A*Φ) (X) = Σ V(Xi - Xj) φ(Xi) ΦQC\Xi),

so that

by Schwarz's inequality,

. . . = < ( P , ( i V - l ) 2 G ^ > . (5.32)

Similarly

\\A*Φ\\2^fdXN(N-l) Σ \V(Xi-Xj)φ(XdΦQC\XJ\2

= <Φ,N(iV + l)G 1Φ>. (5.33)

Taking the sum of (5.32) and (5.33), we obtain (5.30). Q.E.D.

It follows from Lemma 5.4. that

i , 2 , (5.34)

where

G l w (τ)=t/ o (τ)*G 1 ( Λ ) (τ)C/ o (τ) , (5.35)

G1R(τ) = Γ1(g1R(τ))9 (5-36)

and

(5.37)

In order to estimate J 3 we introduce

M3(τ,τ') = (Ψ2(τΊG1R(τ)Ψ2(τ')}1/\ (5.38)

so that

2 . (5.39)
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Then by (5.34)

^4v\\dτM3(τ,s) + \dτ]dτ'\M3{τ,τ')\, (5.40)

where M3(τ,τ') = dM3(τ,τ')/dτ'. The quantity M3(τ,s) is readily estimated by the
following obvious lemma [we recall that ΨeQ{NB1)CQ(B1)'] .

Lemma 5.5. M3(τ, s) satisfies the estimate

M^s^^B.ψy^Wg.iτ^ρ^iφ;112^. (5.41)

We now estimate M3(τ, τ'), starting from the identity

2iM3(τ,τ')M3(τ,τ')

= < Ψ2(τ'), lG1R(τ), H2(τ') - H o ] <P2(τ')> (5.42)

which follows from part 3) of Proposition 4.1.

Lemma 5.6. M3(τ, τ') satisfies the estimate

|M3(τ, τ')| S < Ψ2(Λ (N + 1) Ψ 2(τ')>1 / 2 {Ill̂ x (τ)1 / 2 ρ,M o(τ - τ W ) ! ^

+ 2|!δf1(τ)1/2ρ ; sUo(τ-τ')/c(τ')||HS}. (5.43)

Proo/ We estimate the contributions of the various terms of H2(τ') — H() to the
R.H.S. of (5.42). The terms with G and K contribute

r'),[G1Λ(τ),Gl

= \<Ψ2(ΛΓ1(ίg1M^r.

£ 2M3(τ, τ') < Ψ2(τ% Γ^giτ') + fc(τ'))§1Λ(τ) W) + fe(τ'))) ϊ /

2(τ /)> 1 / 2

by Schwarz's inequality,

S 2M3(τ, τ') < «P2(τ
;), NΨ2(τ')>1/2

• | | l ^ i W 1 / 2 ^ ^ o ( ^ - 0 ( ^ ) + ̂ )) l l l i (5-44)

by inspection, where g(τ) = uo(τ)*g(τ)u()(τ) and gf1(τ) and fe(τ) are defined similarly.
We next estimate the contribution of Z*. That of Z satisfies the same estimate.
Now:

, (5.45)
N

where < , -}N denotes the iV-particle contribution to the scalar product in Jf,

h') = uo{τ')®suo{τ'W) (5.46)

[so that L*{τ') = ̂ \dxdyl(τ' \ x,y)α*(x)α*(j;)], the subscripts ij label the variables
that occur in l{τ') and ^2(ij)(T) denotes the wave function with variables different
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from x , Xj. The previous scalar product is estimated by

N \ i<j

•{ Σ < ViίΦ'MΛ©x^W + flfnyίτ))/",^') P 2 ( 0 )(τ')>Jv}1/2

U<j J

by Schwarz's inequality in 34?N,

...= Σ{i(N-1)<Ψ2(τ'),GlR(τ) Ψ2(τ')}N
N

•<Ψ2(τ'),Ψ2(τ'))N_2φ(τ')Ψo,G1R(τ)L*(τ')Ψoyyi2

^M 3(τ,τ'K<F 2(τ'),(iV+l)f 2(τ')> 1 / 2

o(τ-τ')/c(τ')llHS (5-47)

by Schwarz's inequality applied to the sum over N. Then (5.43) follows from (5.44),
(5.47) and the inequality HHUi ^ || | |H S Q E.D.

The task of estimating J 3 is now reduced to that of estimating the norms in the
R.H.S. of (5.41) and (5.43). Before doing this, we perform the same reduction on J 4 .
We first note that

ί)Γ2{V2). (5.48)

Therefore

S < Ψ2(τ), ±N(N - l)σ2i?ί70(τ)* Γ2(V2) U0(τ)RΨ2(τ)}1'2

S 21/2v< Ψ2(τ), Γ2(V2R(τ)) Ψ2(τ)}1/2, (5.49)

where V2R(τ) is the operator in 34?2 defined by

V1R(τ)=Uo(τ)*RV2RUo(τ)\x,2. (5.50)

In order to estimate J 4 , we introduce

M4(τ,τ') = (Ψ2(τ'),Γ2(V2R(τ))Ψ2(τ')y1'2, (5.51)

so that

M4(τ, s) = (Ψ, Γ2(V2R(x)) Ψ}1/2. (5.52)

Then, by (5.49)

S2ll2v\\dτM4(τ,s)+ ίdτ}dτ'|M4(τ,τ')|l, (5.53)

where M4(τ, τ') = dM4(τ, τ')/dτ'. The quantity M4(τ, 5) is readily estimated by the
following obvious lemma [we recall that ΨeQ(NBί)cQ(B2y]:
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Lemma 5.7. M4(τ, s) satisfies the estimate

MA{τ,s)^(.Ψ,B2ψyι2\\\VRUQ{τ)b^l2\\\2. (5.54)

We now estimate M4(τ, τ'), starting from the relation

2iM4(τ,τ')M4(τ,τ')

= {Ψ2{τ'\ [Γ2(ί>2 Λ(τ)),H2(τ')-H0] Ψ2(τ')} (5.55)

which follows from part 3) of Proposition 4.1.

Lemma 5.8. M4(τ, τ') satisfies the estimate

+ \\Ψ\\\\VRU0(τ-τ')L*(τ')Ψ0\\, (5.56)

where w(τ, τ') is the operator in 3fC^ of multiplication by the function
w(τ, τ') = w(τ, τ' x) defined by

w2(τ,τ')=V2*w1(τ,τf

(ττ')k(τ';y)\2 { ' >

Proof. We estimate the contribution of the various terms of H2(τ') — H0 to the
R.H.S. of (5.54). The terms with G and K contribute

\<Ψ2{τ'), ίΓ2(V2R(τ)), G(τ') + X(τ')] Ψ 2(τ')>|

= |< Ψ2(τ% Γ2&V2R(τ\ G(τ') + X(τ')]) Ψ2(τ')>|

τ, τ') < Ψ2(τ% N(N- 1) Ψ2(τ'))1/2

0 (τ-τ')(G(τ') + ̂ (τ ')) | | | 2 (5.58)

by Schwarz's inequality. The contribution of G to the last norm is estimated by

o (τ-τ ' )0(τ ' ) | | | 1 , (5.59)

where Vy is the operator in Jf\ of multiplication by the function Vy(x) = V(x — y).
h contribution of K is i f θ h

\\VRUΌ(τ-τ')K(τ')θ\\

y

The contribution of K is estimated as follows. Let θeJ^2. Then

where ρs i ί l denotes the operator ρ^ acting on the variable 1,

by Schwarz's inequality applied to the integration over y2, with w1 defined by
(5.57). From this it follows that

| | | 2 ^2 | | |w(τ,τ ' )ρJ | | 1 . (5.60)
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We next consider the contribution of Z* to the R.H.S. of (5.55). That of L
satisfies the same estimate.

^(nΣί^WλΛ/τ'jy^ίτ'y

/jv|

2

r
 ( T Ί Ψ (Vϊ\ 1 1 / 2

ijk*

Σ < WτOζ/τ'),{V2R(τ))JtJW ^ / j M ^
ίjkΦ

by Schwarz's inequality in J^N,

P|| \\VRU^τ-τ')L*(τ')ΨQ

(5.61)

(5.62)

by Schwarz's inequality applied to the sum over N. The last square bracket is
estimated by

L . -j i/2 = 2 i / 2 < y 2 ( τ 0 >

τ /) | | | | |w(τ,τ0ρJ| | 1. (5.63)

Substituting (5.59) and (5.60) into (5.58), and (5.63) into (5.61) and (5.62), and
collecting the various terms, we obtain (5.56). Q.E.D.

In order to complete the estimates of J 3 and J 4 , we shall use as an essential
ingredient the dispersive properties of the free evolution. For any q ^ 2, we denote
by q the conjugate index defined by l/q+l/q = l.

Lemma 5.9.
1) Let 2^q^oo. Then for any

2) Let 2 ^ q< oo, ί/q + ί/l =1/2. Then for any ψeΘ(\x\"/ι),

(5.64)

,^β/iίrB /ΊiW">ιι. (5.65)

where ax is a constant depending only on I and n.

Proof. 1) The result follows by interpolation between the cases q = 2 and q=co
where it is a consequence of the integral representation

uo(t x, y) = (2πitynl2 e x p [ - ( x - y)2/2ίf] . (5.66)
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2) The identity

|MO(1)T/;| = |#Xexp( — ix2/2)xp)\ (5.67)

(where #" denotes the Fourier transform) and the Sobolev inequality

WψW^a^i- Δ)nl2l\p\\ (5.68)

imply

\\uo{\)\p\\qύaι\\\x\nlιψ\\. (5.69)

The general case follows by homogeneity. Q.E.D.

We shall need one more technical result, the proof of which is given in the
appendix.

Lemma 5.10. Write ffl2 as

(5.70)

where ξ = (x1 + x2)/2, η = x1 — x2, and the subscript e in L2

e means the restriction to
even functions. Let f and f be operators in fflγ = L2 leaving L2 invariant, and let f2

andf2 be the operators in 2tf2 defined by f2 = tξ®fη andf'2 = tξ®fη corresponding to
the decomposition (5.70). Then

^ (5.71)
/ceRn

where rk^ is the operators in Jtifί of convolution with the function

(5.72)

We are now in a condition to estimate the various norms that appear in the
R.H.S. of (5.41), (5.43), (5.54), and (5.56). We recall that V and φ satisfy the
assumptions (5.5) and (5.6).

Lemma 5.11. Let l^pί9 l^n/β9 l>2 and let

l/l^l/Pi-l/l far i = l,2. (5.73)

Then

| | | ff1(τ)1 '2ρ>M0(τ)6Γ1 '2 | | |1g| | ί)(τ)|μ ι(τ), (5.74)

| | |Fi?t/ 0(τ)5 2- 1 / 2 | | | 2^2-" / iA i(τ), (5.75)

where

λ I(τ) = |τ | - "" f l / Σ ll^llpjlβllr,- (5-76)
ί = l , 2

Proof (5.74) follows from (5.29), (5.3), and (5.65) by Holder's and Young's
inequalities. (5.75) follows from Lemma 5.10, from (5.4), (5.65) and the fact that

fc||Tl = | | r 0 | | Γ | ^ | | ρ | | Γ i . Q.E.D. (5.77)
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Lemma 5.12. Let l'^pί and define /. and q[ by

1//, = 1 - 2 / ^ = 1^.-1//, for i = l , 2 . (5.78)

Then

IHffi(τ)1 / 2ί?#«o(τ-τ')5(τ')| | |1^IMτ)|| f t(τ Jτ'), (5.79)

(5.80)

* τ ' ) > (5.81)

τ, τ')ρJlli £ ||w(τ, τ')|| „ gμ,(τ, τ'), (5.82)

V ί(τ,τ'), (5.83)

where w(τ,τ') is defined by (5.57) and

' t t f o τ ' W Σ ll^llΛllί?
i= 1,2

Σ ii^iipjiΦίτoii^V (5 8 4 )
l 2 /

Proo/ The estimates (5.79) and (5.80) follow from (5.29), (4.6) and (5.64) by Holder's
and Young's inequalities. We now prove (5.81). By (5.29) and Holder's and
Young's inequalities again,

ύ\\φ(τ)\\ Σ ll^llpjj^τ'), (5.85)
£ = 1 , 2

where

ySi(τ,τ')={μy\\ρ^u0(τ-τ')k(τ'; •^)|| s

2

i}
1 / 2 (5.86)

and

l/s. + l/p. = l/2 for i = l,2. (5.87)

By part 1) of Lemma 5.9,

yS |(τ,τ')g||ρ||τ1(2π|τ-τ'|)-/'{ίί/jΊ|fc(τ'; • ,y)\\lΫ12 (5.88)

with l /s+l//=l/2. Now

= { j dy\φ(τ', y)\2 ((\φ(τ'f * | Vf) (y))2'*}1/2

^ Σ
ί = l , 2

^ Σ MτOlβ IMIp, (5-89)
£ = 1 , 2

by Holder's and Young's inequalities. (5.81) then follows from (5.85)—(5.89).



Classical Field Limit 73

We now turn to (5.82). The first inequality is obvious. From (5.57) and Holder's
inequality, we obtain

where s is defined by (5.87). Now

where ySι{τ,τr) is defined by (5.86) and we have used the convexity of the norm in
LSι/2. The end of the proof is identical with that of (5.81).

Finally we consider (5.83). We first split the L.H.S. as follows

\\VRUQ{τ-τ')L*(τ')Ψ0\\ ^
ί

•ii i^r p i / i ^ ' )® s ^ ' ) i i , (5.90)

where the last norm is taken in Jf2. By Lemma 5.10, we obtain

\\\VRU0(τ-τ')\Vt\
pΊι\\\2

where v (resp. t , ΐ = 1,2) is the operator of multiplication by K(resp. Vi9i = l,2)m
JΓί,

^ Σ II^J |e | | r ,(4π|τ-τΊΓ"' ' | |W' (5.91)
.7=1,2

by part 1) of Lemma 5.9, by (5.77) and Holder's and Young's inequalities. On the
other hand

The result now follows from (5.90), (5.91), and (5.92). Q.E.D.

Collecting the estimates contained in Lemmas 5.4-5.12 and using the fact that

\\ψ(τOil = IMI is actually independent of τ\ we obtain

+ 3 } dτ ) dτ'{ Ψ2(τ% (N+ί) «P2(τ')> m Inf μ,(τ, τ')l, (5.93)
s s J

J4^2hv\\Ψ\\l<Ψ,B2ψyll2\ dτlnϊ λtiτ)
I S

+ }ί/τ}dτ'(6||N!P2(τ0|H-||!P||)Inf/xl(τ>τ')}, (5.94)

where λt(τ) and μz(τ,τ') are defined by (5.76) and (5.84) and the Infimum is taken
over the values of I allowed in Lemma 5.11 for λι and in Lemma 5.12 for μv

We can now state our main result. We concentrate on situations where we can
control the classical theory by the results of Sect. 2, the quantum theory by the
results of Sects. 3 and 4, and the limit ft->0 by the estimates of this section.



74 J. Ginibre and G. Velo

Theorem 5.1. Let n*z3 and let Vsatisfy:

'VeLPίnL2 withpί<n/2

for n = 3,4,
ί+LP2 (5.95)

.for n^5.

Let r and r' satisfy the (compatible) conditions

1/2 - ί/n < 1/r ̂  Ψ < 1/2 - l/2n

LetXkr, 9£a(>) and $Γ0( ) be defined by (2.1), (2.2), and (2.11). Then
1) The Eq. (2.9) has global solutions in ^α(IR) in the sense of Proposition 2.1, and

solutions dispersive in the past (i.e. in ^α(IR)n^0(IR~)) or in the future (i.e. in ^fl(IR)
nβfo(ΊK+)) in the sense of Proposition 2.2.

2) The quantum mechanical evolution operators U(t — s) defined by (3.14) form a
strongly continuous unitary group. The wave operators (3.48) exist.

3) Let φ be a solution of (2.9) in £Γfl(lR). Then the operators W(t,s) and U2(t,s)
form strongly continuous unitary groups and satisfy Propositions 3.1 and 4.1
respectively. If in addition φe^ 0 (IR + ) (resp. φe^0(IR~), resp. φe^0(IR)J, then
W(t, s) has strong limits when s tends to + oo (resp. — oo, resp. ± GO) and U2(t, s) has
strong limits when t and/Or s tend to + oo (resp. — oo, resp. ± oo).

4) Let φ be a solution of (2.9) in S£JR)n2E'0(R+) (resp. 3Ca(K)n3C0(R~)9 resp.
j . Then for any θeW^for any

s-lim W(t,s)Ψ=U2(t,s)Ψ (5.96)

uniformly in t,sfor t.s^θ (resp. ^θ, resp. in IR). Moreover, ( fφeJ 0 (lR ± ), the wave
operators (3.48) converge in the following sense

s-limC(φΛ(O))*Ω±C(φΛ±)exp[iωΛ(O, ±oo)] = Ω 2 ± , (5.97)

where ωh is defined by (3.40) and Ω2± by (4.23).
5) Let φ be a solution of (2.9) in ^0(IR) and assume that the quantum system is

asymptotically complete. Then W(t,s) has strong limits when t and/or s tend to ± oo.
Furthermore

)*SC{φh_)exp[iωh(+ao9 - o o ) ] = S 2 , (5.98)

where

S= s-lim l70(ί)*[7(ί-s)C70(s) (5.99)
ί-> + oo
s-> — oo

is the quantum mechanical S-matrix and S2 is defined by (4.24).

Proof. Parts l)-3) are restatements of results from Sects. 2-4 in the special case at
hand. We turn to part 4). For definiteness we assume that φef f l (E)πf 0 (IR + ) ; the
other cases are similar. It is sufficient to prove (5.96) for Ψ in the dense set Q(NB1).
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From the definition (2.11) of ^ 0(IR+) and the conditions l/r '<l/2-l/2w and
px <n, it follows that

00

\dτ\\ψ{τ)\\l<m, /=1,2. (5.100)
0

In particular, by (5.25), c(τ) is integrable in 1R+. By Lemma 5.1, this implies that J1

tends to zero when v, κ-κx) uniformly with respect to t,s in IR+. By an argument
similar to the proof of Proposition 2.2, which cannot be given here, one can prove
the remaining assumptions of part 2) of Corollary 5.1. Therefore also J2 tends to
zero when v, /c—>oo uniformly with respect to t,s in IR+. Furthermore, by part 1) of
Proposition 4.2 and by (5.25), it follows from (5.100) that the factors
(Ψ2(τ%{N+l)Ψ2(τf)}112 and | |W 2 (τ ' ) | | in (5.93) and (5.94) are bounded un-
iformly with respect to τ'e!R+ for fixed ΨeQiNBJCΦiN). In order to complete
the control of J 3 and J 4 we now pick ε > 0 sufficiently small so that
n — e>Max(plJw/jS, 2) and substitute in (5.93) and (5.94) the inequalities

i f I τ -

Then the integrals over τ for fixed τ' in the R.H.S. of (5.93) and (5.94) are bounded
uniformly with respect to ί, 5, and τ' in IR+. It then follows from the assumptions on
V(especially from the condition px <n/2) and the definition of ̂ 0(IR+) that

for both l = n±ε and therefore that the remaining integrals over τ' are bounded
uniformly with respect to t,seIR+. This completes the proof of (5.95) with the
uniformity thereafter stated. Finally, the convergences (5.97) and (5.98) follow
immediately from the uniformity of (5.96) in ί, s and from the existence of the wave
operators and of the S-matrix. Q.E.D.

For the class of potentials considered in Theorem 5.1, Propositions 2.1 and 2.2
provide us with a systematic method of constructing classical solutions satisfying
the assumptions of parts 3) and 4) of Theorem 5.1. In order to construct dispersive
solutions [i.e. solutions in iF0(IR)] as needed in part 5), stronger conditions on the
potential are needed. Proposition 2.3 provides such a set of sufficient conditions,
which is compatible with (5.95) in dimension n^.5. [One can take for instance
V(x) = C\x\~v with C > 0 and 2<y<Min(4,rc/2).] Under the assumptions of
Proposition 2.3, all classical solutions are dispersive and determined by φ_. If in
addition quantum mechanical asymptotic completeness holds, then part 5) of
Theorem 5.1 applies and (5.98) can be rewritten as

h{+oo, - o o ) ] = S 2 , (5.101)

where 5, is the classical ^-matrix.
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Appendix

Proof of Lemma 5.10. Let ψ and \p'e^f2, let θ = f2ψ and ff=f^. All these
functions are written as functions of variables (x l 5x 2) corresponding to the first
decomposition in (5.70). Let ξ = (xί+x2)/2 and η = x1—x2. We define partial
Fourier transforms as follows

ίψ(Kη)

\ψ(ξ + η/2, ξ - η/2) = (2π)"" J dke^ψ(k9 η)

and similarly for ψ'9 θ, and θ'. Then

-ρ{x2-x'2)θ'{x'vx'2)

= (2πΓ2n j dkdk! jdξdξ'dηdη' exp(ίk'ξ' - ikξ)§(k, η)

• ρ(ξ - ξ + (i/ - i7')/2)ρ(f - ξ' - (, - ηf)/2)θ'(k>, η').

Let ξ — ξ' = ζ. For fixed /c,?/,?/7 and ζ, the integrations over (̂  + ^)/2 and k' are
trivial and yield

</2<A Λ/ί V'> = (2π)"" J dfe f di/diy'^k, ^ ( ί ~ ^ ( f c ' , tf),

where we have used the definition (5.72). Taking norms in L2

e(dη\ we obtain,

k ί , / Ί | | 1 \\<p{K Oil W{K Oil

from which (5.71) follows by Schwarz's inequality. Q.E.D.
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