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Abstract. We study the Schrodinger operator with a potential that vanishes
at infinity but the rate of falloff of the potential depends on the direction. It
turns out that for such potentials scattering theory becomes in general multi-
channel.

1. Introduction

It is well-known that the continuous spectrum of the self-adjoint Schrodinger
operator H = — A + q in the space ffl = L2(ΊRm) coincides with the half-line [0, oo) if
g(x)-»0 when |x|->oo. Moreover, if the estimate

lίMl^cα+MΓ1-', ε>o, (i.i)

is satisfied, then for the pair H0= — A, H the wave operators (WO) exist and are
complete [1]. In constructing the scattering theory the estimate (1.1) is in some
sense optimal: if q(x) = c\x\~1 the WO do not exist. On the other hand, in the
theory of multiparticle scattering [2-4] when the potential does not decrease in
some directions the WO may exist but may not be complete. The break-down of
completeness is connected with the existence of eigenvalues of operators describ-
ing subsystems of smaller numbers of particles thus the continuous spectrum of
the operator H covers the half-line [%, oo) where κ<0.

This paper is devoted to the study of the Schrodinger operator with a potential
that tends to 0 if |x|-κx), but the rate of falloff depends on the direction. It appears
that for such potentials scattering theory becomes, in general, multichannel. This
means that although the WO Wmay exist, its range R(W) need not coincide with
the whole absolute continuous subspace Jj?ac of the operator H. The break-down of
completeness of the WO is thereby connected with the following situation,
corresponding to the existence of negative eigenvalues for subsystems for multi-
particle Schrodinger operators.
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Let Rm = IRmι©IRm2 and correspondingly x = (x1?x2). Let us introduce the
operator h(x2)= — Δl + g(x1?x2) acting in the space fflv =L2(lRmι) and depending
on the parameter x2. Assume that the operator h(x2) has negative eigenvalue A(x2),
tending sufficiently slowly (slower than IxJ"1) to zero when |x2|->oo. We denote
by ι/Xx1 ?x2) the corresponding eigenfunction of the operator h(x2). Then under
suitable assumptions there exists not only the WO W but also some "additional"
isometric WO w, and the subspaces R(W] and R(w) are orthogonal. The operator w
is constructed in terms of the function tp(x l 5x2) and some properties of scattering
[5] with the auxiliary potential λ(x2) in the space J^2 =L2(IRm2). In contrast to the
Schrodinger operator with multiparticle potential, in our situation the operator H
has no negative continuous spectrum [because g(x)->0 when |x|-»oo], but its
negative discrete spectrum is necessarily infinite.

Using multiparticle terminology, let us consider H to be the energy operator of
a system of two particles (described correspondingly by coordinates x x and x2)
with the potential energy depending in a sufficiently arbitrary way on the positions
of the particles. In these terms the WO W corresponds to the states for which both
particles are asymptotically free ("senior" or main channel of scattering). The
"additional" WO w describes the process ("junior" channel of scattering), for which
the first particle is asymptotically in the state with wave function φ(x1?x2)
(depending on the position of the second particle), and the second particle is being
scattered on the "effective" potential λ(x2).

Earlier the multidimensional Schrodinger operator with anisotropically de-
creasing potential was examined in [6, 7], where it was established that the WO W
exist and are complete if

aί(ί + \x2\Γ*2 (1-2)

and

aί +2~1min {α2, m2} > I,α2 + 2~1min {α^m^ > l,αj>0 . (1.3)

At the same time, using Cook's criterion it is easy to verify that under the
assumption (1.2) the WO W exist if (x,1 +α2 > 1. The above described effect of the
break-down of completeness of W can take place if oq +α2 > 1, α^O, but one of
the conditions (1.3) is not fulfilled. Therefore the sufficient conditions for
completeness of the WO in the papers [6, 7] are in some sense close to necessary.

By its subject and methods the present paper is close to the note [8], where the
break-down of completeness of the WO in scattering by time-dependent potentials
was discovered.

2. Preliminaries

Let the operator H = — A+ q, q = q, be self-adjoint in the space 2tf = L2(Rm) on the
domain of the unperturbed operator H0= — A. The wave operator (WO) W± for
the pair H0, H is defined by the formula

W+ = W±(H,H0)= s-limexp(ιΉί)exp(-LFf0ί). (2.1)
ΐ — > + GO

If the limit (2.1) exists then the WO W± is isometric and HW± = W±H0. The WO is
called complete if R(W±) = J^ac. The breakdown of completeness of the WO leads
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to the non-unitarity of the scattering operator S=WfW_. We assume that f
and omit indices " + ", || || = || - ||̂ , ̂ . = L2(Rm^), ; = 1,2, || - ||7 HI - \\#f An integral
without limits means integration over the whole range of variables of integration,
C and ε are different positive numbers (correspondingly sufficiently large and
sufficiently small), whose exact values are of no importance for us. We do not
assume that #(x)->0 when |x|-»oo. In particular, our results are applicable to
decreasing potentials. This case is most interesting.

We need the following well-known assertion [9]. Let V be the operator of
multiplication by the function (1 + lxl)"1"*, ε>0. Then there exists a number
<5 = <5(ε,w)>l such that for /e^m, @m some set dense in L2(]R

m), the relation

||7exp(-iff0f)/||=0(r*) (2.2)

is valid. By virtue of the inequality \\V*g\\^\\Vg\\*\\g\\*-*9 se[0,l], (2.2) implies
that for

0(Γδ), αe(0,l] (2.3)

where <5, <5 < α, can be chosen arbitrarily close to α.

Theorem 1. Let the potential q satisfy the estimate (1.2), where α 1 +α 2 >l, α^O.
Then the WO W exists.

Proof. It is sufficient [9] to verify that for / from some dense subset of Jf and δ > 1
the relation (2.2) is valid, where V is the operator of multiplication by the function
(H-|x1|)~αι(l + |x2|)~α2. The finite sums of functions /(x) = /1(x1)/2(x2)» where
fjG@ , are dense in J^ and

||7exp(-iH0ί)/||= Π ||(l + |x,IΓβ'exp(iJ/)/Jr

j = ι

With the help of (2.3) each of the two factors in the right-hand side can be bounded
by t~δj. One can choose δ± + δ2>i because δj is arbitrarily close to α; and
α x + α2 > 1 by assumption. D

We need also some information about generalized wave operators from the
article [5]. Let, for some α >0, the potential and all its partial derivatives of order
κ, where |κ|^[2~1m] + [α~1]-i-2, satisfy the estimates

(2.4)

Then the strong limit

W=s-lim exp (iHt) U$\t) (2.5)
t~* GO

exists, the operator W is isometric and HW= WHQ.
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The proof of the existence of the limit (2.5) in [5] is based on the relation

. (2.6)

We note that the set @m is invariant under the action of the operators D.
Moreover, if the function v(x) satisfies the inequality (1.1), then for

0(ί~1- ). (2.7)

If only φO->0 when |x|-»oo, then for each /eL2(Rm)

Iim||»l7«(f)/H=0. (2.8)
ί->oo

The proof of the relations (2.7), (2.8) for arbitrary fe is analogous to the well-known
case fc = 1. In our applications the role of the space L2(IRm) is played by L2(IRm2),
x = x2, and q(x) is replaced by the function λ(x2).

Let us make more precise the "axiomatic" description of the situation in which
the break-down of completeness of the WO takes place. The effective construction
of classes of potentials, for which the assumptions introduced here are true, will be
given in §6. Assume that for at least sufficiently large \x2\ the operator h(x2) — — Δ 1

+ q(xί,x2) in the space Jf^ = L2(IRmι) has an eigenvalue satisfying with some α>0
and m = m2 the conditions (2.4). If the operator h(x2) has several (possibly infinitely
many) eigenvalues we choose one of them. We denote by ψ(x1,x2) the correspond-
ing real-valued normalized, i.e. §ψ2(x1,x2)dx1 = l, eigenfunction of the operator
h(x2). The functions λ(x2) and ip(xl9 x2) are assumed to be smoothly extended to all
x2.

Let us construct the function lfc(p, t\ peIR™2, corresponding to λ(x2). We shall

omit the indice fc, 1 = 1̂ , U0(t) = exp\itΔ2 — i $ l ( — iV2,τ)dτ\. Define the isometric
I o

operator of identification J, J : Jf2->J-f,

If the limit

w - s-lim exp (iHt)JU0(t) (2.10)
ί— >• OO

exists, then the operator w is isometric, Hw = w( — A 2 ) and JR(w)C^?

flC. It will be
shown in §4 that the subspaces R(W) and R(w) are orthogonal and hence
R(W)^^fac. The spectrum of the restriction of the operator H to the subspace
JjfacQR(W) contains the half-line [0, oo), therefore the multiplicity of its positive
spectrum is infinite if m2 > 1 and no less than 2 if m2 = 1.

3. The Existence of the Additional Wave Operator

We shall need some assumptions on the behavior of the functions ψ(xl9 x2) when
[x2|->oo, corresponding, roughly speaking, to certain "auto-modelity" of their
construction. In essence these assumptions mean that

φ(x1,x2)H*2Γ
flmι/Xl*2Γ%), βe [0,1/2), |x2 |->oo. (3.1)
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More precisely, denote φ(x1,x2) = xlψ(xί,x2) and assume that for some fle[0,1/2)

(3.2)

Here and in the following < v >; denotes the scalar product in the Euclidean space
JKnJ,j=l,2.

Let us prove the existence of the limit (2.10). Since ||exp(zΉί)J[/0(f)|| =1, it
suffices to verify the convergence in (2.10) on the dense set fe^ = ̂ m2. Let ζ(x2) be
some smooth function, which is equal to x2\x2\~2 if |x2|>l, /t=C/0(ί)/,

(J/)(x1,x2)^φ(x1,x2)[l + 2-1αxXC(x2),F2>2]/(x2). (3.3)

It is convenient for us - and this is the main idea in the proof of the existence of
the WO w - to consider initially the expression

lim Qxp(ίHt)JU0(t)f , fe®. (3.4)
ί-»00

First let us show that the existence of the limit (3.4) implies the existence of the
WO w. Note that

il(J-J)[/0(ί)/||2-ί^2w
2(x2)|<C(x2)^2/^2)>2l2 (3.5)

and tφc2) = 2~1α||φ||1==0(|x2 |
2 β) by the first condition (3.2). Since D2U0(t)

= U0(t)D29 D2fε@ and u(x2)ζ(x2) = 0(\x2\~1 + 2a) the convergence of the ex-
pression (3.5) to zero when £-*oo follows from the condition 2α<l and the
equality (2.8).

For the proof of the existence of the limit (3.4) it is obviously sufficient to show
that

CKr1-8). (3.6)

We shall evaluate (HJ/ί)(x1,x2) taking sufficiently large |x2|. Since the function ft

does not depend on the variable xx and —Aiψ + qψ — λψ, λ = λ(x2), then by
definition (3.3)

Taking second derivatives of the products ψft and ψ(ζ, ^2/^2 ^n tne variable x2, we
find that

A2Jft = (Δ2ψ)ft + 2~ XΛ2φ)<C, P2/f>2

+ 2< F2φ, F2/t>2 + α< V2ψ, F2<ζ, F2/;>2>2 + ψΔ 2 ft

ζ , V 2 f t y 2 . (3.8)
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Let us check that the norms of the first, second and fourth summands in the
right hand side of (3.8) decrease as t~l~ε when ί->oo, i.e.

,P2<C,P2/ ί>2>2HO(r1-ε). (3.9)

We investigate first (Δ2ψ)ft. Since the function ft depends only on the variable x2,
then due to the fourth condition (3.2) \\(Δ2}ft\\ = \\vft\\2, where v(x2)=\\A2ιp\\1

= 0(\x2\~1~B). The relation (2.7) ensures now that ||t>/ f | |2 = O(f~1~ ε). The second
and third summands in the left hand side of (3.9) may be considered quite in the
same way if we apply correspondingly the third and second conditions (3.2) and
additionally take into account that 2α<l, that the operators V2 and l/0(ί)
commute and that the set 3) is invariant with respect to action of components of
the operator P2.

Let us show that the last summand in the right hand side of (3.8) behaves like

ty2, when ί->oo, i.e.

One can rewrite the left-hand side of (3.10) in the form

where ϋ(x2) = \\Ψ\\ι=0(\x2\
2a) due to the first condition (3.2). Therefore, if in the

product <£, P7

2/ί>2 we differentiate the factor ζ at least once with respect to x2,
there arise for the functions D2ft (or D|/f) coefficients decreasing as |x2 |~

3 + 2fl (or
\x2\~2 + 2a) when |x2|-»oo. Since 2α<l by virtue of the equality (2.7), this implies
that the norm of the corresponding summand decreases as t ~ * ~ε when ί-> oo. This
proves the equality (3.10). Relations (3.8)-(3.10) ensure that

^2/ί>2-^2/ίll=0(r1-β). (3.11)

The equalities (3.7) and (3.11) show that

2-Jl(-W2,t)ft\\

1-β). (3.12)

The last condition of (3.2) and equality (2.7) imply that the first summand in the
right hand side of (3.12) decreases as ί~ 1 ~ε if ί-> oo. The second summand in (3.12)
does not exceed ί~ 1~ ε due to the fact that by construction of the function 1 the
relation (2.6), (where the role of q is played by λ) is valid. The same considerations
together with the first condition of (3.2) show that the third summand in (3.2) is
also 0(t~ 1 ~ε). Thus the relation (3.6) and consequently the existence of the WO w
are proved. We shall summarize the previous results in the following

Theorem 2. Let the functions λ(x2) and tp(x l 5x2) satisfy respectively conditions (2.4)
(where α>0j and (3.2) (where αe[0, 1/2)). Then the WO w exists.
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4. Orthogonality of Channels

Assume that the WO W and w, defined by relations (2.1) and (2.10), exist. We shall
show that the subspaces R(W) and R(w) are orthogonal (orthogonality of channels
of scattering). We do not assume now the function t/;(x l5x2)5 by which the
identification J is constructed, to be an eigenfunction of the operator h(x2\ U0(ή is
an arbitrary family of unitary operators in the space Jή?2. We do not need also
either conditions (2.4) or (3.2). Some assumptions on φ(x l5x2), which are necessary
for the proof of the orthogonality of R(W) and #(w), will be made later. These
assumptions correspond also to the behavior (3.1) of the function ιp(x1,x2) when
x2|->oo. Thus, conditions for the existence of the WO w and conditions for the
orthogonality of channels are essentially different.

For the proof of orthogonality of channels it suffices to check that

0, ί->oo , (4.1)

where the function / belongs to some dense subset of #f and 0eJf2. Let /(x)
= /1(x1)/2(x2), where f^S, $ = 3tf^ f2ε$F2. The linear combinations of functions
/ of this type are dense in Jf and

(exp(-iH0t)f,JU0(t)g) = \dx2(exp(ίA2t)f2)(x2)

Using Schwarz inequality and unitarity of the operators exp(/zl2ί) and U0(t) in
one can estimate this expression by

Let us now make precise the choice of the set $ : $ consists of linear combinations
of functions /1(x1) = exp[ — 2~1(x1 — σ)2] for all σeIRmι. It is well known (see, for
example, [10]) that δ = ̂  and

where b(i)= -2"1(l + 2/ί)~1. Thus for the proof of the relation (4.1) it suffices to
check that for any fixed σe!Rmι

-σ)2]^1,x2)rfx1 (4.2)

goes to zero uniformly in x2 when ί-κx), i.e.

lim sup|4(x2,i)l = 0. (4.3)
t-> 00 X2

For the proof of the equality (4.3) we must study the cases m1 = l9m1=2 and
m1 ^3 separately. If m1 = 1 assume that

^ O , (4.4)

sup jIv^x^x^αΛO, (4.5)

where N is an arbitrary positive number. The inequalities (4.5) and
|exp[b(x1-σ)2]|<l ensure that \A\^C(N)Γ 1/2 if |x2 ^N. On the other hand,
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integrating by parts one finds that

j exp [ί̂  - σ)2]φ(xl9 x2)dxί

/xι-

= -Π J
V o

Since

$exp(by2)dy <α1/2

by (4.2), (4.4) the function A(x2, t) tends to zero uniformly in t when |x2|-*oo. This
implies the relation (4.3) (if m1 = 1).

Now it is convenient for us to investigate the case m1 ̂  3. Let n be equal to the
smallest integer that is equal to or larger than 4~1m1 it is clear that 4~1m1 ^n
<2~1m1. Let the function ψ(xί9x2) have all partial derivatives up to the order n
with respect to the variables x1 and for / = |κ|:gn

(4 6)

(4.7)
*2

Take in Rmι spherical coordinates with center in the point σ, i.e. x1=(ρ,ω),

1 — σ|=ρ, dxί=ρntί~ίdρdω, and let

Applying the formula d(exp(£?ρ2))==2foρexp(bρ2)dρ, we integrate in the integral

ρmι~1tp(ρ,x2)rfρ (4.8)
o

n times by parts. The first integration by parts gives the equality

ρ, x2) + ρ^ - 2φ'ρ(ρ, χ2)]dρ . (4.9)

After the nth integration by parts we get that for some numbers βl

= 6-" Σ ^Jexp^ρ2^"""2"^"1^,^)^. (4.10)
/ = 0 0

The non-integral terms, corresponding to ρ = oo, are equal to zero by the condition
(4.6) and the inequality Refc <0. If ρ = 0 the non-integral terms turn out to be zero,
since they contain the factor ρs, where s'^mί — 2n>0. Relations (4.2), (4.8), (4.10)
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and the obvious inequality \b\ ̂  Ct imply that

n co

(4.11)

Since 2n<m1, the proof of (4.3) is reduced to checking the uniform bounded-
ness in x2 of each integral in (4.11). Returning to cartesian coordinates we find that

]ρ*»i-*» + >-ι\<py(ρ,x2)\dρ^ £ $\Xl-σ\-2n + l\D*y>(xl9x2)\dXl. (4.12)
0 | κ | = Z

Split each integral in the right hand side of (4.12) into two parts: over regions
|xj <2σ and |xj >2σ. By condition (4.6) and inequality 2n<m l 5 the first of these
integrals is bounded by a constant. The integral over the region |x1 |>2σ clearly
does not exceed the integral in (4.7), which is by assumption bounded uniformly in
x2. Therefore the relation (4.3) is proved also for m1 ̂  3.

Let now mί=2;setn = l. We repeat the considerations carried out earlier for
m1 ̂  3. Integrating by parts we come back again to the equality (4.9). But now the
non-integral term does not vanish at ρ = 0, so that the equality (4.9) leads to the
estimate

-σΓ^rtx^dxJ. (4 13)

Assume that for ml=2

(A 1 4Λ

lim ' V ' '
X2|->C

Estimating the integral in (4.13) as in the case mί ^ 3 and using conditions (4.14) we
find that the expression (4.13) goes to zero if x 2 |— »oo uniformly in t. Let also for
m 1 =2 the condition (4.5) be fulfilled. Then as in the case m1 = ί one finds that
MI^CC/V^"1, |x2 |^JV. This ensures that the relation (4.3) is valid also when
mί =2. So we have proved

Theorem 3. Let the WO W and w be defined by the relations (2.1) and (2.10), where
U0(t) is an arbitrary family of unitary operators in the space Jf2 and the isometric
identification J is constructed by formula (2.9). Assume the existence of limits in (2.1)
and (2.10). With respect to the function ιp(xl,x2) assume that for mί = l conditions
(4.4), (4.5) are fulfilled, for ml =2 conditions (4.5), (4.14), and for m1 ^3 conditions
(4.6), (4.7). Then the subspaces R(W) and R(w) are orthogonal.

Let for sufficiently large \x2\ the operator h(x2) have several eigenvalues (or the
single eigenvalue be degenerate). We denote by w1 and w2 the WO, constructed by
formula (2.10) with respect to some orthogonal eigenfunctions ψl and φ2 of the
operator h(x2). Then the subspaces ^(w1) and R(w2) are orthogonal. Actually, the
unitarity of operators exp(zΉί) implies that

(w1/, w20) - lim (J1 [/J(ί)/, J2 U2

0(t)g) = lim (7C/J(ί)/, E/2(f)0)2 , (4.15)
ί-»oo ί-»oo

where V is multiplication by the function v(x2) = (ψ1,ιp2)1. Since φc2) = 0 for
sufficiently large x2\ the right-hand side of (4.15) goes to zero by virtue of (2.8).
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5. The Discrete Spectrum

As was pointed out in §1, for potentials considered in the present paper the
negative discrete spectrum of the operator H is infinite. The condition for
infinitude of the discrete spectrum of Schrodinger operators, obtained in this
framework, cannot be deduced directly from the known criteria (see, for example,
[11, 12]), in which, roughly speaking, the inequality q(x)<c\x\~2 + ε, c<0, ε>0, is
assumed. In the study of the discrete spectrum we shall use essentially simpler
assumptions than for constructing scattering theory in § 3, 4.

Theorem 4. Let, at least for sufficiently large |x2|, the operator h(x2)=—A1

+ q(x1,x2) in the space Jf^ have a negative eigenvalue λ(x2\ where λ(x2)<c\x2\~2 + ε,
c<0, ε>0, and let the corresponding real-valued normalized eigenfunction ιp(x l5x2)
satisfy d(x2) = \\ V2ιp\\ t — 0(|x2|~

 1). Then the multiplicity of the negative spectrum of
the operator H is infinite.

Proof. It suffices to construct an infinite-dimensional linear manifold Jί
such that (Hu,u)<Q for utJi. Let us evaluate

x (5.1)

for the functions u(x1,x2) = ψ(x1,x2)f(x2), where /=/. Since P1M = (F1ψ)/ and
\ then

(x2)f2(x2)dx2. (5.2)

Differentiation of the condition of normalization §ιp2(xί,x2)dx1 = 1 provides that
§ψF2ψdxί=Q. This implies that

d2f2)dx2. (5.3)

The equalities (5.1)-(5.3) show that, for u(xί,x2) = ιp(xl,x2)f(x2) with
\ the relation

x2 (5.4)

is valid.
Consider now the operator h= — A2 +μ(x2) in the space J^2. By the condition

μ(x2)<c\x2\~2 + ε, c<0, £>0, the multiplicity of negative spectrum of the operator
h is infinite. Consequently, there exists a linear manifold Jt, Jt C Jf2 such that
(ft/,/) <0 and/ = /for/e^. By (5.4) (Hu,u) = (ίif,f) so that one can choose M to
be the set of functions of the form u(xί,x2) = ψ(xί,x2)f(x2), where ftJt. D

Corollary. //, under the assumptions of Theorem 4 g(x)-»0 when |x|->oo, then the
operator H has an infinite number of negative eigenvalues, accumulating at the point
zero.

6. Classes of Potentials

Let us describe here explicitly two classes of potentials q(x\ for which all previous
assumptions on the behavior of eigenfunctions ψ(xί9x2) and eigenvalues λ(x2) of
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the operator h(x2)= — z!1 + g(x1?x2)
 are va^d. These classes are analogous to the

corresponding sets of functions, depending on time t introduced in [8].
Suppose that for sufficiently large |x2|

(6.1)

Then

h(x2) = |x2| -
 2flT>2)/ι(l)Tfl*(x2) , (6.2)

where Ta(x2) is the unitary operator of dilations in the space

^1:(Γα(x2)flf)(x1) = |x2|
 2 flr(|*2Γ%).

Lei ί/ze operator h(l) have an eigenvalue λ with an eigenfunctίon φ(xί). The relation
(6.2) implies that

is an eigenfunction of the operator h(x2) with eigenvalue λ(x2) = \x2\~2aλ. Thus, for
potentials of the form (6.1) the condition (2.4) (by α = 2α) holds, and the relation
(3.1) turns out to be an equality for sufficiently large |x2|. Under the assumption

x?)!!! <oo the first four inequalities (3.2) can be verified by

explicit calculation. Moreover, for functions φ(x l 5x2) — |x2|
 2 φ(|x2|

 ax±) the
expression in the last condition (3.2) is identically equal to zero. Therefore, if
αe(0,1/2) for potentials (6.1) the WO w exists by Theorem 2. All conditions of §4
depend only on the existence and certain decrease at infinity of some number of
derivatives of the function φ.

By virtue of Theorem 1 for potentials (6.1) the WO W exists if IpCxJ
gC(l + (Xil)"^ 1, where α1>(l-2α)(l-α)"1,α1^0. By Theorem 3 the ranges of the
operators W and w are orthogonal so that the WO W is not complete for such
potentials. Since the function p(xi) may decrease slower than |x2 |~

2, tne operator
h(l) can have infinite discrete spectrum. Therefore for such potentials there exist in
general an infinite number of WO w' with orthogonal ranges. By virtue of
Theorem 4 the multiplicity of the negative spectrum of the operator H is infinite if
0<1 and the operator h(ϊ) has a negative eigenvalue λ.

In particular, for homogeneous functions p(xi) = co(x1\x1\~1)\xί\~Λl the re-
lation (6.1) takes the form1

q(x^x2) = ω(xί\x1Γ
1)\x1\-«ι\x2\-«^ (6.3)

where a2=a(2 — a]) ana the condition 2^<1 transforms into the inequality
2~ 1 α 1 +α 2 <l. Therefore when α 1 +α 2 >l, α^O, 2" 1α 1+α 2<l the WO Sexists
but it is not complete if the operator h(ί) has an eigenvalue. This implies that for
potentials of the form (6.3) the conditions (1.3) of completeness of WO cannot be
improved.

1 If α1=α1(m1) is not too large the singularity of q(xl9x2) at xί=Q does not violate the self-
adjointness of operators h(l) and H
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The second class of potentials, to which the results of the present paper are
applicable, consists of functions

q(x) = p ( x 1 ) r ( x 2 ) , (6.4)

where m1 = 1, r(x2)~c|x2|~
α2, |x2|-»oo, α2e(0, 1/2) and the function p(x1) goes to

zero sufficiently quickly when IxJ-xx*. Under the assumption
\p(xj\ ^ C(l + IxJ)""1, oc1 > 1, the WO W exists. If, moreover, al > 2, then obviously
α1 +2~1α2 >1, 2~1α1 + α2 > 1, but the conditions of completeness (1.3) are violated
still because for m1 = l they require also the inequality 2α2 > 1. In particular, for
ml=m2 — l and a function p with compact support the function q is different from
zero only in some strip, parallel to the axis x1 = 0. Therefore the scattering by the
potential, contained in the strip, is qualitatively dependent on the speed of falloff of
the potential along the strip (the critical value is |x2 |~

1/2).
For verification of the assumptions of § 3-5 we need some information about

the behavior of eigenvalues and eigenfunctions of the one-dimensional operator

h2= — -j-2 +rp(x) if P = $p(x)dx<0 and r->0, r>0. For sufficiently small r the

operator h(r) has a unique (negative) eigenvalue λ(r) = — s2(r) thus, by virtue of the
results of the paper [13]

s(r}=-2-1Pr + 0(r2). (6.5)

Moreover, for sufficiently rapid falloff of p(x) one can differentiate the asymptotics
(6.5) a sufficient number of times. Denote by t/?(x,r) the real- valued normalized
eigenfunction of the operator hr /(x, r), g(x, r) are the solutions of the equation
hrιp = λ(r)ψ with asymptotics /(x, r) ~ exp [ — s(r)x] when x -> + oo and
0(x, r) ~ exp [s(r)x] when x— » — oo. In the paper [14] the estimate

and a similar inequality for g(x,r) are proved. Moreover, using wellknown [14]
integral representations for the functions / and g and the asymptotics (6.5) one can
show that the relations /(x,r)~exp [ — s(r)x], gf(x,r)^exp[s(r)x], r-^0 can be
differentiated with respect to the variables x and r. We do not dwell on the precise
meaning of this assertion. It suffices for us to differentiate twice with respect to r
and once with respect to x. Since λ(r)= —s2(r) is an eigenvalue of the operator hr,
the functions ψ, f and g are proportional. This implies that

ψ(x, r) - s1/2(r)exp [ - s(r)|x|] , r->0 . (6.6)

Let us go back to the study of the operator H with the potential (6.4). Assume
that for sufficiently large |x2

r(x2) = cx 2Γα 2 + r(x2), c>0, α2e(0,l/2), (6.7)

the function r(x2) has /c = [(2α2)
-1] + 2 continuous derivatives and

(6.8)

Not giving precise assumptions on the function p(xί) we mention only that we
require more rapid falloff of the function p ( x ί ) for smaller α2, and P<0.
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Asymptotics (6.5), (6.6) and assumptions (6.7), (6.8) ensure that the function
λ(x2) satisfies the condition (2.4), and that the relation (3.1), where a = a2,
φ(x1) = 2"1/2(-cP)1/2exp(2"1cP|x1|), is valid for the function φ(x1,x2). The
relation (3.1) implies the validity of the conditions (3.2) and (4.4). Therefore by
Theorems 2 and 3 for potentials of the form (6.4) there exists the WO w and the
ranges of the operators W and w are orthogonal.

If the conditions (6.7), (6.8), where c>0, α2e[0, 1), fc=l, P<0 and
J (1 + |x1|)|p(x1)|dx1 < oo are fulfilled, then by virtue of Theorem 4 the operator H
with the potential (6.4) has infinite discrete spectrum.

In conclusion we note that for potentials (6.4) when w2 = 1 the assertions of
Theorems 1-4 are also valid if the bounded function r(x2) satisfies conditions (6.7),
(6.8) only when x2-» + oo. In this case for constructing the operator U0(t) one may
use the operator — d2/dx2 + λ(x2) with zero boundary condition in the space
L2(0, oo).
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