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On a New Derivation of the Navier-Stokes Equation
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Abstract. The Navier-Stokes equation is derived by 'adding' the effect of
the Brownian motion to the Euler equation. This is an example suggesting
the 'equation': 'Reversible phenomena' φ 'Probability' = 'Irreversible
phenomena'.

§1. Introduction

As a model equation representing the motion of viscous incompressible fluid
(resp. incompressible perfect fluid), the Navier-Stokes equation (resp. the Euler
equation) in a domain D c Rn was introduced physically in the 19th century.
They are formulated as below:

^ - μAu + (u V)u + Vp =f in Qτ = (0, T) x D,

divw = 0 in Q,

and

- + (M V ) M + Vp=j in βτ,

„ ,Λvu = υ in Qτ,(Fϊlw

 M ιn = 0 on (0,T)x5D,

Here u = u(t,x) = (u\t,x\ ... ,un(t,x)) denotes the unknown velocity field at a
n fl2

point (ί,x)e<2Γ,p = p(ί,x) is the unknown pressure at (t,x\Δ = ]Γ Ap =

dp dp\ Λ. " dul

 u . u f / ^ " ,δw f . Λ-r,. ..,—-- },dιvu= } ^-r, the z-th component of (W V)M= > w 7^-^, in is the1 n l j

unit exterior normal, u0 = uQ(x) = (wj(x),... ,Wo(χ)) ^s ^e given initial velocity
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and /=/(ί,x) = (fl(t,x\ • ••,/"( t,x)} is the given exterior force: μ is a positive
constant called the kinematic viscosity.

Concerning the Euler equation, Arnold [1] derived it as the geodesic spray
of the group of diffeomorphisms. (See also the works of Ebin-Marsden [3], Omori
[11].) So the geometrical foundation of the Euler equation is given. In another
word, we may formulate it in a variational problem.

On the other hand, the heat equation is the typical equation representing
the irreversible phenomena and the Brownian motion is deeply connected with
it. So, we want to derive the Navier-Stokes equation in Un (not in D) from the
Euler equation by 'adding' the effect of the Brownian motion. In some sense
we try to explain the physical term 'internal friction' (Landau-Lifshitz [9], see
also Serrin [12]) by a probabilistic concept.

In the above, we use the word 'try' because we use some 'divergent' integral
in deriving the non-linear partial differential equation with random coefficient
named (E)B in §3. Moreover, the solvability of the above equation (E)B is unfortuna-
tely open for the time being. We may derive the Navier-Stokes equation or rather
the Reynolds equation assuming the existence of solutions of (E)B .

But our theorem suggests at least implicitly, it seems our derivation is deeply
related to the turbulent phenomena. Because even the turbulant flow is, believed,
governed by the Navier-Stokes equation and its statistical feature is exhibited
by the Reynolds equation (Hopf [6], Foias [5]).

In any way, this paper is an experiment to derive the equation of irreversible
phenomena by combining the variational problem with the probabilistic idea.

§2. The Variational Formulation of the Euler Equation

Let Φt(-) be a one parameter family of Diffσ([Rn), where Diffσ([R") stands for
the group of orientation preserving diffeomorphisms of Un whose jacobian equal 1.
(A subscripted variable will never denote differentiation.)

We consider the following variational problem: Given Φ° and Φ1 belonging
to Diffσ([R"), find the one parameter family of diffeomorphisms Φt such that

(i) ΦQ =

and

(ii) Φt attains the stationary point of the following energy functional:

i = l
(in

where Φχ*) = (Φ/(χ),...,Φ?(jc)).
As Rn is not compact, (2.1) does not converge for general Φr So we must

confine ourselves to some class of Diffσ([RM) for which (2.1) converges. Denoting
this class by Diffσ([R"), though we leave the problem of characterizing it for
future study (i.e. characterizing the behavior at oo see Babenko [2], Finn [4]).

Leaving this ambiguity aside, we have the following result characterizing
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/ dΦ1(x)
the desired solution Φt by corresponding velocity field u(t,x) = { — ̂  — ,...,

dΦn(χ)\
— ̂  — 1. (Here and after, we identify freely a vector field and its component

vector.)

Theorem 2.1. Let Φt be the desired solution of the above variational problem. Then
the vector field u whose integral curve is Φ ί? satisfies the Euler equation [E] in

Remark 2.2. (i) There exists some difference between the initial value problem
and the two point fixed problem. But we connive at this difference as we do in
deriving the geodesic equation.

(ii) Modifying if necessary, we have the rigorous result for compact manifold
with or without boundary. See Arnold [1], Ebin-Marsden [3], Marsden-Ebin-
Fisher [10]. Concerning Diffσ([R2), see also Kato [8].

§3. Preparations from the Probability Theory

Let H be a real separable Hubert space with an inner product (,) and let Bt =
[Bl(ω)}n

 =l be an [Revalued Brownian motion defined on a complete probability
space (£2,F,P). Denoting by Ft the σ- field generated by {/?s(ω);0^ 5^ ί}, we
consider following classes of //-valued stochastic processes.

B(H) = {Xt Xt is //-valued process such that (Xt,h) is {Ft} adapted measur-
able process for all hεH}

L2(H) = (ΦteB(H) Φt eL2( [0, T] x Ω //) } with norm given by

M(H) = {MteB(H)ι(Mt,h) is square integrable martingale relative to {Ft} for
all

dA
A(H) = {AteB(H);At has a strong derivative —eL2(//) and A0 = 0}

Q(H) = (Qt = Mt + At ;MteM(H) and AteA(H)}.

We call an element of Q(H) as //-valued quasi-martingale relative to {Ft}9

and every XeQ(H) is expressed uniquely as X = Mx + Ax,MxeM(H) and
axεA(H\ called the martingale part and the absolute continuous part of X
respectively.

Now, we enumerate some results.
r

1. For ΦteL2(H\ we can define a stochastic integral §ΦsdBj

s by the relation:
o

]φsdB{,h] = }(Φs,h}dB{ for all ΛeH,
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where right hand side of this equality is the usual stochastic integral of Itό. We
ί

note that lΦsdB{ is a //-valued martingale and belongs to L2(Ω,H) for each

ίe[0, T] and C([0, T],//) for a.s.ω.
2. For MteM(H\ there exist uniquely <&t£L2(H)(j =!,...,«) such that

7 = 10

Moreover, for QteQ(H), we have the following representation

7 = 10 o

with Φ/, ΨteL2(H) and £>0e//. We say {Φ/}"=1 the ^-derivative of β and denote

3. For QteQ(H\ we can define a stochastic integral §QsodBj

s by the relation:
o

h)°dB{ for all heH,

where right hand side is defined by the stochastic integral of Stratonovich (Ito [7]).
We have

0 s

Lemma 3.1. If, for real valued {Ft} adapted processes a j ( i ) ( j = l , . . . , r i ) and
, Γ] x Ω\ the equality

7=1 0 0

holds for each φeC$((Q9 T)), ί/z^n we

Proof Since the equality in the statement of this lemma also holds for each
</>eL2([0, T]), taking φ(t) = X[QtS}(t)9 we have

ί + b(t)dt = 0 for all se[0, T] .
7=10 0

We see easily that this implies the conclusion.

§4. The Derivation of the Navier-Stokes Equation

Now we consider the following "variational problem affected by the Brownian
motion".
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For α.s.ω, given Φ°( ;ω) and Φ1^ ω) belonging to Diffσ([Rn), find the one
parameter family of diffeomorphisms Φt( ω) such that

(i) φ0( ;ω) = φ<>(. ;ω) and Φ^ ω) - Φ^ ω)

and
(ii) Φt( ω) attains the stationary point of the following functional:

1 n Γ rίΦ1 /7R1

,) = f f Σ V+^τr
0 0 5 " i = l L ϋl ai

where Bt denotes the rc-dimensional Brownian motion defined on a probability
space (Ω, F, P).

Remark 4.1. Generally speaking, there is no meaning in (4.1) because Bt( ) is
not differentiable in t in a usual sense. But this point is partly remedied by consider-

i i
ing §ul

t°dBl

t instead of §ul

tB
l

tdt. More serious problem is to give some meaning
o o

1 n

to the formal integral J ]Γ BΪBJ

tdt. Taking into account that the only the variation
o ίj=ι

of the functional JB(Φt] is necessary, this difficulty will be evaded.
Let Φt(- ω) be a desired solution of the above problem. Taking the first varia-

variation of the functional JB(Φt\ we may show that the vector field w(t, ;ω)
/ . δΦ'Λ

Ί ul(t,- ω) = — - 1 satisfies the following equation.

P = 0
J v l

Definition 4.2. A vector field u will be called a weak solution of the initial value
problem (for brevity, I. V. P.) for (E)B with the initial value u0 e H *(RW) (independent
of ω) if the following conditions are satisfied.

(i) u(ί,x;ω)

J J ul^j θ o dBJ

tdx = - Θ(Q) j u^dx for α.s.ω
0 R" VX ^n

for any θ(ί)eC»[0, T],ί;

(We abbreviate the summation notation, i.e. ulul means that ^ ulul.)
Hereafter, the following function spaces are used. f = x

1%R») = {v£(L\Un})n div υ = 0} .

C*σ(IR") - {ί;6(C^(^))" div υ = 0} .

H i(R») ̂  {t e^H^"))" div i; - 0} .
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where Hl(Rn) stands for the Sobolev space of order /.

Remark 4.3. (a) The pressure p does not appear explicity in the above definition.
But as usual, we may recover p(ί,x;ω)e^'((0, T) x IR") for a.s.ω by

J -^1^1= - J ^-^φdxforφeC%(Rn). (4.2)

(b) Comparing with (E)B, the term *j2μBt is dropped also. Because we have
T

\
0 K"

for any 0eQ>[0, T)9veC%σ(W). (4.3)

Definition 4.4. (See Serrin [13]). A vector field u will be called a weak solution
of the I.V.P. of the Navier-Stokes equation below

if the following are satisfied.

(i) u(t, x)<EL°°(0, T : l^R11)) n L2(0, T : H ̂ ((RM)) .

(ii) u0eMΪ(R»lfeL\0,T:H-\R»)).

T T fi i β ί T fi i

(iii) - J J θuVdxdt + μ J J θ ̂ ~ ~ dxdt - j J θuluj ^~ dxdt
0 Rn O K " ^ ^^ 0 K" ^^

Γ

- 0(0) J MΌϋ'dx + j J θfVdxdt,
Kw 0 Kn

for any θeC^[0, T),ι;eC£σ(ir).

Now, we may state our theorem.

Theorem 4.5. Let ubea weak solution of the (I.V.P.) of(E)B with w0eH^([R"). Then
the average

Ω

gives the weak solution of the following equation.

at
div ΰ = 0

where v = u — ΰ.

Proof. For uεQ(M*(Rn)), by the representation theorem (§3, 2.),
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By Itό's formula,

f f βuVdxdt = - 0(0) J ul(0)v'dx - J0(ί) J »'|j£dx \d.
0 Kn Kn 0 L 03n -̂̂ ί J

T, ,.̂ ' Ί
) J v —j—dx \dt α.s.i

L Rn ^ J

τ

s-ω (4 4)

o

By the rule 3° of §3, we have

(4.5)

Combining there with the relation (ii) of Definition 4.2, and applying the
lemma, we have readily

, > r IΛ M Ί f i i V ι \J ^ r^ Γ

(a)

 Bί^ΓΓίίx =

 RίM M &?dx+ 2 l~dB>~d^dx

(b) J —-j f ̂ x = ^/2jΰ J ul -r-j dx for \Λ = 1,2,..., n.

Inserting the relation (b) into (a), we have

Γ duAl . Γ . - dvl

 f .
(a) J ——v ax = J uuj ——.ax + μ J ulAvldx

Taking the average of (a/, we have the desired equation.
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