
Communications in
Commun. math. Phys. 65, 15—44 (1979) Mathematical

Physics
© by Springer-Verlag 1979

Vacuum Energy in g^-Theory for #->oo

G. V. Efimov
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Abstract. In the nonlocal gφ*(d^l) and local gφ* theory the S-matrix is
obtained in a form of the functional integral which is proved to exist. The
density of vacuum energy

- l imi l
F-^oo V

is investigated. It is proved to be analytic through the whole complex g-plane
except for the negative real axis and point 0 = 0. Its asymptotic behaviour for
g— KX) is found.

1. Statement of the Problem

The φ4-theory is rather popular and quite a number of papers are devoted to
investigations of various aspects of this theoretical model. Without exaggeration,
one can say that it is just this model that tests majority of theoretical methods and
approaches. It is difficult to report all contributions of investigations of different
aspects of the φ4-theory.

In the given paper, the gφ4-theory is applied to study the density of vacuum
energy

(1.1)
F^oo

The function E(g) in (1.1) is finite in the local φ4-theory for space-time dimensions
d=l (anharmonic oscillator) and d = 2 (the so called (/^-theory) only. For d > 2 the
function E(g) does not exist at all in the local theory because of ultraviolet
divergences. However, E(g) is finite in the nonlocal theory when the causal Green
functions D(k2) of the scalar field φ decreases rather fast in the Euclidean direction
(/c2 = /c2-k2^-oo).

In the given paper we will consider all these cases and obtain the analytical
properties in the complex 0-plane and the asymptotical behaviour of the function
E(g) for 0— >oo.

0010-3616/79/0065/0015/S06.00
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We will examine the theory of one component scalar field φ(x) described by the
Lagrangian density

^(x)^φ(x)(Ώ-m2)φ(x)-g\:K(l2 D)φ(x)]4
(1.2)

The operator K(l2 D) is nonlocal and satisfies the conditions
i) K(z) is an entire analytical function of an order of ρ^ in the complex

z-plane,
ii) K(z) decreases rapidly enough when z = l2k2 = l2(kQ — k2)-+ — oo ,

iii) K(-l2m2) = l,
iv) / is a parameter characterizing the region of nonlocal interaction.

The local theory is the limit /->0. The finite unitary S-matrix in perturbation
theory for the Lagrangian (1.2) is constructed in [1].

In paper [2] the representation of the S-matrix as a functional integral was
given for the case of nonpolynomial interactions. In this paper we use the
representation obtained in [2] for investigation of the theory described by the
Lagrangian (1.2).

The S-matrix as a functional of the scalar field φ(x) in the Euclidean space of
dimension d is defined in the form of the functional integral

Sv(g, φ) = j dσMexp { - g j <Λc[Φ(u, x) + φ(x)]4} . (1.3)

Here the following notations are introduced.
The system is supposed to be in a finite folume FClR^. In the volume V there is

an orthonormal system of functions {gs(x)} (s = l,2, 3, ...) such that

Σ

The volume Fand the system of functions {gs} can be chosen in the following way

(1.5){gs(x)} = {g.,, ...,„(*!, . - ., xd)} = Π /Sj(x,.) ,
I j = i

. ,,
cos — - x , s is odd

1 . us
sm—x, s is even .

<1L L2

The measure dσu is defined as

Λ du ί 1
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so that

s=ι

Sometimes we will use the notation

2π

The function Φ(u, x) is defined as

Φ(ιι,x) = Σ 0S(*K (1.6)
s = l

where

— y)hv(y), (1.7)

A K(-l2'^ Λkx

A function /zF(x)eD(F), i.e. this function is infinitely differentiable and positive,
has the support 7 and

lim hv(x) = 1.
F-+OO

The function 3)(x) is connected with the causal function D(x) in the following way

„ , ddk

The system {^s} is chosen in such a way that
00 Λdk ΓKΎ — 12k2Y\2

Σ «K.)-ι>^χ)-^r DTO-J Λ <»
(1.9)

VM>0,
s=l

The functional integral in (1.3) is defined as

(1.10)

J dσ<f>exp J
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where

(1.11)
s=ι J/2π

X)= £ 0S(*K (1.12)
s = l

The choice of the interaction in (1.3) or (1.10) corresponds to the so called usual
but not normal product of operators. We can do it in the nonlocal theory and for
the anharmonic oscillator. In the case of the local φ^-theory we have to take the
normal product of operators (see Sect. 6).

In this paper we will study the density of vacuum energy defined as (1.1) where

is given by (1.10). Our investigation proceeds as follows. We prove that:
i) the functional integral (1.3) given by limit (1.10) does exist for any V < oo and

defines an analytical function in the complex g-plane singular at point 0 = 0;
ii) the function E(g) in (1.1) is analytical throughout the complex 0-plane except

the negative real axis including the point # = 0;
iii) the upper and lower bounds are found for the function E(g) when $->oo in

the nonlocal theory as a function of dimension d and an ultraviolet behaviour of
the causal Green function D(k2) in the Euclidean region

iv) the representation of E(g) is obtained as a dispersion integral in the
complex 0-plane

v) the upper and lower estimations in the local gφ*-ih.Qθΐy for the function

F-oo V

are found where Φ = const. The minimum of E(g, Φ) for gr->oo is at the points

2. Existence of the Functional Integral

Here we show that the functional integral (2.3) does exist, i.e. the limit in (1.10)
exists for all complex g φ 0.

First let us consider the right half plane Re#>0. In this region we have

|SW(0,φ)|^l, (VJV>1). (2.1)

Further consider the difference

- exp ί - g J dxίφ(x) + Φ(N\u, x)]4ll. (2.2)
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Transform this difference in the following way

1 a 2

0

• exp ί - g j dx[φ(x) + Φ(N\u, x) + ξ Ψ(N> M\u, x)]'
l v

i

0

- 120 J dx[!P(JV M)(M, x)]2[φ(x) + Φ(jv)(t/, x) + ξψ(N M\u, x)]2

F
+ 16#2 [ J dxΨ(N>M\u, x)[<p(x) + Φ(]V)(w, x) + ξιp(N>M\u, x)]3]2} ,

k I 1
where

Ψ(N' M)(w, x) = Φ(]V + M)(w, x) - Φ(N\u, x) ,

C(w, x) - j dx[φ(x) + Φ(]V)(iί? x) + ξ Ψ(N> M\u, x)]4 .
F

Making use of the Holder inequalities for integrals

If dσA,A2\ ^ [j dσ\A, pf |j dσ^2

where p1 +p2 = 1, one can obtain

(ι/, ξ) + 16|0|2C3/2(W, ξ)} f j
l^

Further using the obvious inequalities

one can obtain finally

{
/ N + M \2Λ 1/2

j r fx Σ ^S

2W (2.3)
F \s = Λ T + l / J

Because the series ^]^2(x) converges well, for any ε>0 there exists N0 such that
for any M>0 and N>N0 the inequality

s, (2.4)

is valid. This means that the sequence S(y\g,φ) for F<oo and Reg>0 is
fundamental and bounded.

Thus the limit in (1.10) does exist. This limit defines the functional integral (1.3)
for any V < oo and Re g > 0.
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Fig. 1

Now consider the region Reg 5^0. The integrals in (1.11) are not defined for
Reg<0, therefore we have to do the analytical continuation of the function
S(y\g,φ) in the region Re#<0, that is not a complicated problem. In order to do
the continuation into the region

the contours of integrations over us should be transformed as follows

us-+use <

Then we get

d±
2π

i -4

•expi- (2.5)

Now it should be proved that the limit JV->oo of this functions does exist for
— π^θ^π. To this end let us go over to the integration in (2.5) over each variable
us along the contours Ls as shown in Fig. 1. Then we have

elθ, φ)\ ̂  Y[ J
s = l Ls

du. rl

exp - JC) + ΦW(M,; (2.6)

Consider the integral

du 1 -i
I



Vacuum Energy in gφJ-Theory for 21

.014
9*4

exp - 1+0 e

where — Rs^ξ0s^Rs. Here the mean value theorem was used. Further

.θ \ 2 ϊ

- i / o e x pϊ~^o |/2π

r
exp^-#Jdx

= exp -

0\e

where ηls,η2s>® Finally we have

exp ] - g j dx Φ(x) + &s(x)ξ0se
:

.914

/.=

Making use of this estimation for each integral in (2.6) we obtain

N

^ Π
s= 1

exp|-
l

l + θ(e

il N

- g f j d x φ(x)^4+ X ®Sl(x
F sι = l

τ«)

)ί.,,̂ Γ}
J J

Choosing Rs = sb(b>^} we have

--sΛ\2 Uc<oo

and

Σ
s=l

Therefore

or

N

• Σ .
s=l

(2.7)
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The analogous estimations can be applied to the difference A^+M in (2.2), and an
estimation of the type (2.3) can be obtained.

Thus the functional integral (1.3) defined as the limit (1.10) does exist for any
V < oo and defines an analytical function in the complex 0-plane.

3. Analytical Properties of E(g) in the Complex 0-Plane

The following theorem will be a basis of further analytical investigations [3].

Theorem. Let functions {fn(z)} (n = l,2,...) be regular in a region GC<C and

lim/n(z) =
—

uniformly in each compact KcG. Let M is a set of zeroes of the functions fn(z) in G.
Then the zeroes of f(z) in G coincide with the limiting points of set M lying in G.

Let us consider the function

The singularities of Bv(g) in the complex 0-plane are defined, first, by the
singularities of Sv(g) and, second, by zeroes of Sv(g) in the g-plane.

We will study the position of singularities and zeroes of the function

N °° du ί N I N \4}
s(v\g)= Π ί -τ=^eχp 1-2 Σ u π - g f d x Σ ^«(χK (3 2)

s=ι -oo |/2π I n = ι v \/ ι=ι / J

and following the above theorem determine the position of singularities of the
function

\nSv(g)= lim InS^fo). (3.3)
JV-»oo

So let us consider the function S$\g) in (3.2). Introducing the new variables

we obtain

Π Ϊ ""
>s = 1 — oo

\

N

n=l V \ « = 1

One can see from this representation that S(y\g) has an essential singularity at the
point 0 = 0 and no other singularities in the complex g-plane.

Now let us show that the function S(y\g) has zeroes on the negative real axis in
the g-plane only. We calculate the increment of the argument of S(y\g) along the
contour C in Fig. 2. For this aim it is convenient to use a different representation of
the function S(y\g). Introducing in the integral (3.2) the new variables
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Fig. 2

and making simple transformations we obtain

, d"v

(\/ϊπ)N

o 1

1

(3.4)

where

H Σ ̂  f ** Σ ^"(
Λ

JV

Σ
.«= i

(3.5)

Here we go over to the spherical variables in the space IRN. The function A(Ω) in
(3.5) is

(3.6)
V \ n = l

where ηn are the spherical variables. It is important that

Performing the integration over .R in (3.5) one can obtain after simple
transformations

(3.7)
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where
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It is essential that the dependence on ί in (3.7) is picked out in the explicit form, the
integral over b is taken over the finite region

and the function Q(γ\b) is integrable.
Thus, the function S(γ\g) can be represented in the form

ί <*& (3.8)

This representation is convenient for our aim.
From the representation (3.8) it is easy to find the asymptotical behaviour of

the function S(γ\g) for \g\-*Q and |#|-»oo. Introducing the variables

g = reίφ and t = ρeίφ

one can get

(3.9)

and then

1 + 0 -

, ' / V \ & +

2Γ - ί\ /-\ / J

(3.10)

- (2]A)Λ

Making use of this asymptotical behaviour (3.10) it is easy to calculate the
increment of the argument of S^(g) along the contours CR and Cε in Fig. 2:

N
A arg S(y\g)\ c = —2π —, A a.]

^R 4

Whence

(3.11)
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Now let us consider the increment of the argument of S(y\g) along the contours
C+ and C_ in Fig. 2. For this aim the function S(y\g) for g = re±ίπ can be written in
the form

J dbQW(b)
b-

N-2 N - 2 Ί

+ $ d ρ e - Q / r -
±ίl/Q-b J

Let us consider the even N = 2n. Without loss of generality we can consider the
limit

The function Sv

Ln\re±lπ) can be represented in the form

Let us consider

n\reίπ} = R$\r) sin θ

L 2 J

The function B(y\r) can change its sign not more than

polynomial Tr»-ιι is of degree
2 J

n-1

n-1
times because the

. It means that the function S(γn\rein) along

the contour C+ can increase its phase not more than by π
have

n-1

n-1
+ 1 .

+1 . Thus we

(3.12)

Collecting all estimations (3.11) and (3.12) we obtain

The increment of the argument of S(yn\g) cannot be negative because S(yn\g) has
no poles. Besides it is always a number multiple of 2π because S(yn} has zeroes only.
Finally we get

(Vn>0). (3.13)

Consequently the function S(yn\g) has no zeroes in the complex g-plane except

the negative real axis, and on this axis it has

increases when n->oo.

n-1
zeroes. The number of zeroes
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Thus, according to the Theorem the function Sv(g) in (3.3) has zeroes on the
negative real axis only in the complex g-plane for any V < oo. It means that \nSv(g)
has singularities at point g = Q and on the negative real axis. Consequently
according to the same Theorem the function E(g) in (1.13) has singularities at point
0 = 0 and on the negative real axis in the complex g-plane.

4. Upper and Lower Bounds of E(g) in Nonlocal Theory

In this section we obtain the upper and lower estimations for real positive g on the
density of the vacuum energy in nonlocal theory when the causal Green function
D(k2} decreases rapidly enough in the Euclidean direction.

First, the lower bound of E(g) will be obtained. Let us consider the function

Sy(g) = j dσu exp ί - g J dxΦ4(u, χ)\. (4.1)
I v

The inequality

v

gives

J dxΦ4(u,x)°£ — [J dxΦ2(u,x)
v V \γ

Sv(g) ^ f dσu exp - £[f dxΦ2(u, x)}2 . (4.2)
I y \v \ }

This integral can be calculated in the following way. It can be represented in the
form

•j oo

Sv(g)^-= j dte-'2Fy(g9t)9 (4.3)

where

{ / i
— 2it \ — J dxΦ2(u, x) > .

]/ V y J

The last integral is calculated in the Appendix. When V is large enough we get

(4.4)

Substituting this function Fv(g,t) into (4.3) and introducing the new variable

t = u ]/V one can obtain

ddk1/1 ^ -I ,^ * . -. / -r^/1 O \ \ I /A ^N

V °°
sv(g}=- J du
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When F-»oo this integral can be calculated by the method of steepest descents.
The saddle point is on the negative imaginary axis in the (u + iu)-plane. Putting
uQ = — iv0 we have the equation

=0

or

JdL. f)(k^}

(4.6)

Thus the following estimation on E(g) is valid

E(g)=- lira —\nSy(g)^E_(g),
F->oo V

ddk r- (4J)

E _ (g) = - vl + \ J —j In (1 + 4v0 ]/gD(k2}),

where v0 is determined by (4.6). The formulas (4.7) can be written on the basis of
Eq. (4.6) in a different form

4,

ddk
--k2D'(k2)-D(k2)

a
(4.8)

Now let us obtain the behaviour of E_(g) for gf->0 and g-*co. When g->0

and

When #-»oc the behaviour of v0 as a function of g is determined by the ultraviolet
behaviour of the causal function D(k2). Further let us consider particular cases.
First, the case when for k2->oo

1~a), (4.9)

where

2(\+ά)>ά

as a consequence of the condition D(0) < oo in (1.9). In this case from (4.6) for g-+oo

v0 = const g

follows, whence

E_(g} = c_g^+a^d, (4.10)

where C_ is a constant which can be determined if necessary.
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In the case of anharmonic oscillator [d = 1 and a = 1 in (4.10)] the causal Green
function is

1-ffc 2

(in units m = l). In this case the function E_(g) in (4.7) can be calculated in the
explicit form:

E_(g)= max - - +i(j/ι +4u-
9

This expression can be written after simple transformations

where

υ(l+υ)(2 + v) = 2g.

Hence it appears that in the limit of large and small g

g- π/-\ ι y ^ Ί

jW/3=0.47V'3, ^oo.
O

Second, the case when

for fc2-^ co. The solution ϋ0 of the equation (4.6) is

d

v0 = const (In #)4?

in the limit 0->oo so that

(4.12)

(4.13)

(4.14)

(4.15)

Here C_ is a constant which can be found.

Now let us obtain the upper bound to the function E(g) for real positive g. The
following obvious inequality is valid for the function Sv(g) in (4.1):

F \ s = l

s=ι
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Here qn are positive numbers. Then it is easy to get the following upper estimation
for E(g):

E(g)=- lim lnSv(0) lim ΣM

Γ 1, r , r .- l ιm-ln jAr B exp]-g fώc

The numbers qs can be chosen in such a way that

τ
(4.17)

For example in the case of the orthonormal system (1.5) these numbers should be
taken as

and

V = (2L)d.

Because the numbers qs and consequently the function q(k2) are arbitrary, we

(418)

When gf->0 the minimum is for g(/c2) = 0. In this limit we obtain

) , (4.19)

i.e. the lowest perturbation order when the interaction Lagrangian is not taken in
the normal form.

The behaviour oϊE + (g) for g-κx) is defined by the ultraviolet asymptotic of the
Green function D(k2). In the case (4.9) the function

A2\β

Tκ
Γ > (4.20)

where A and β> - are parameters, can be chosen to determine the function E+(g)

in (4.18).
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Substituting (4.20) into (4.18) and putting g ^co one can see that the minimum
is realized for large A. We have

where

P>2

in|C1( j8)X- + C2(jJ)-fίfΓ|5F15|,

Jdi-

2W | J(2π)d/c2 ( 1 + f l '(/c2 / ί+l)

Then it follows

(4.21)

where

C+ ^minC^
dC2(β) ψ(2(l+a)-d)C2(β)

2(2(1+a)-d))[ dC,(β)

4(1 +ά)-d

This constant C+ can be calculated.
Thus two estimations (4.15) and (4.21) show that in the nonlocal theory when

) = 0((k2)~l~a) for /c2-^oo in the limit #->oo the vacuum energy E(g) is

^~d, (4.22)

where C is a constant satisfying C_ <C<C + . The formula (4.22) can be rewritten
in the form

(4.23)

<1
d 1-

4(ί+a)-d ί +

d

2(1+ a)

d

2(1+ a)

because of 2(l + α)>d according to the condition D(0)<oo.
Note once more that the behaviour E(g) for g-»oo is defined by the dimension

of space-time d and the ultraviolet asymptotic of the causal Green function D(k2}
for /c2-»oo.

The function E + (g) in (4.18) for the anharmonic oscillator reads:

£+(,)=minmmj^_ί
1 dk

' (1+fc 2 ) 1 +
A2
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In the limit g-^oo it is easy to obtain

— TTΊ 1 TΊ TΠ 1 TΊ

ί Λ

Γ A 3g 1 -1

π I o/? ' π 1

2π max
s m w

(4.24)

Collecting the estimations (4.13) and (4.24) we obtain

0.474#1/3 <E(g)<Q.151g1/3 . (4.25)

The exact calculations which can be done for the anharmonic oscillator making
use of the Schrodinger equation give [4]

One can see that our estimations are rather accurate.
At last let us consider E + (g) for 0— »oo in the case (4.14). This estimation can be

obtained by choosing q(k2) = Aεxp{ — k2y}. After simple calculations one can get in
the limit g-*ao

/In In ύf'
. + 0 -—- (4.26)

Thus in the φ^-theory with the propagator D(k2) (4.14) we have in the limit of
strong coupling

+ 0

In paper [5] the φ4-theory with the propagator D(k2) = e~k2 [i.e. 7 = ! in (4.14)]
was considered. The authors have calculated eight perturbation orders for
different characteristics of this model (energy levels, Green functions). The
knowledge of exact asymptotics (4.27) should help for different methods of
asymptotic summation.

5. Dispersion Representation of E(g)

After the investigations performed in the previous sections we prove the vacuum
energy E(g) defined by (1.1) has the following properties:

i) E(g) is analytic in the complex 0-plane except the negative real axis,
ii) for |#| -+00

(5.1)

(5.2)

|g const |0|,

iii) for 0-+ + 00

E(g) = const ga(d>a\
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where

,
) — a

iv) for Reg>0

(5.3)

where £^ = 0(77!), i.e. E(g) can be developed into an asymptotical series.

It follows from (5.1) and (5.2) that for |#|-»oo

\«(d^. (5.4)

Further it is possible to write the following dispersion representation

£(g) = 1 dζE(ζ)

g 2πi]

cζ(ζ-gY ' }

where C is the contour shown in Fig. 2. The integration over this contour C in (5.5)
gives

whence

or introducing the new variable u — -

According to the conditions (5.3) and (5.4) the function σ(u) satisfies

ίo(M-), M^o,
v ; \0(e~u), u-^oo. v J

The representation (5.6) can be written in the other form

00 OO 00

E(g) = g J ds J duσ[u)e-*-βsu = g f dse~sB(gs), (5.8)
0 0 0

where

B(t) = ] duσ(u)e~t\
o
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This function B(t) according to the estimations (5.7) is analytical for Re ί > — 1 and
for f—>oo

B(t) = 0(Γ1+Λ). (5.9)

Thus the perturbation series in the nonlocal φ4-theory is summarizable by the
Boral method to the exact expression.

6. E(g) in the Local (/^-Theory

A great number of papers (see [6]) are devoted to the local φ4-theory. The upper
and lower estimations were obtained for E(g) [6-8] but these estimations are quite
rough. Here, by using our representation (1.3) for Sv(g, φ\ we will get more exact
estimations for

κ0,Φ) (6.1)
F->oo V

in the limit g^oo and for an arbitrary constant field Φ = const.
The function Sv(g, Φ) in the local limit can be represented as

Sv(g, Φ) = lim J dσuexp {gW^(u, Φ)} , (6.2)
/^oo

where the interaction Lagrangian is taken in the normal form

Wf (u, Φ) = - f d2x : [Φz(tt, x) + Φ]4 :
v

= - J Λc t(Φ,(u, x) + Φ)4 - όDΛOXΦ^M, x) + Φ)2 + 3D,2(0)] . (6.3)
V

In the two-dimensional space- time the limit /-»0 in (6.2) does exist for any
elements of the S-matrix. We will study the vacuum energy E(g, Φ) in (6.1).

First we obtain the upper estimation E + (g,Φ) in (6.1). Let us write down the
following obvious inequality

v s
(6.4)

where qs are positive and vs are real numbers. After simple transformations one
can get

•exp -
v

s ' s

4

. s yl+qs

- W f ( 0 ) \ \ ,

u^φ -6Dί(0)
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where

Then the following inequality is valid for E(g, Φ)

The numbers qs and vs can be chosen in such a way that

lim V^T 1+9(0)

1
lim — = (-

fi(k2\
J 2(2π

=D,

G. V. Efimov

(6.5)

Here g(/c2) and v are arbitrary, m = l.

For example, in the case of the system (1.5) it can be done in the following way

Then the estimation (6.5) can be written
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where Φ

One can see that

d2k q(k2

Introducing the new variable ψ= —-υ — Φ we obtain finally

,Φ= mn
q>0,ψ

Let us choose

„-,, M λ 2

then

, d2k .
J (2π)2'

AY\ A

(6.6)

1 A2

4π 1+A2

We have for (6.6)

A+ l n,
1

4V

A,ψ
(6.7)

In the limit g->oo one can obtain putting ψ = sign Φ }/3A(A) and calculating the
minimum with respect to A

(6.8)
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where

B = 2

One can see from this estimation that the minimum vacuum energy £ + (#, Φ) in
(6.7) is at the points

but not for Φ = 0.
Now let us study the lower estimation E_(g, Φ) in (6.1). This estimation is

obtained in a more complicated way.
First of all let us introduce the regularized field

for which

Λ2—l

where

Then introducing the notation

u, x)Φ(Λ'\u, x')

we get in the limit F-»oo and /->0

, χ)φ(u, 0)> =

d2k (Λ2-l)2eίkx

^K,(Λf)

where Kv(z) is the Mac-Donald function, t — j/x2.
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Let us introduce the interaction function

u, Φ) = - j d 2x: [Φ(yl)(w, x) + Φ]4:
v

V

where

1
^Φl2). (6.11)

Making use of the following inequality

2, (6.12)

where Cα = 6 + 4α + α2, we have

- :[Φ^]4: ̂  -2αD2^(0):[Φ(^]2: +Cα£»2

ι/1(0),

:[Φ^>]2: = [φ<Λ>]2_£>2 _Λ(0). (6.13)

Now let us transform Sv(g, Φ) in (6.2)

Sκ(0, Φ) = lim j^σuexp {0[Wf -2αD2,ΛO)H<2>, Φ)]}

= J Ae" - σ(ί) = ff ί dte«σ(t),
— oo \ ^^/ — oo

where

H(*\u9 Φ)=-$d2x: \_Φ(A\u, x) + Φ] 2 : ,
v

σ(t) = lim J rfσϋexp {2α0£»2 ^O)//*/^, Φ)}
i^o

• θ(W«\u, Φ)- 2aD2tΛ(0)H </>(«, Φ) - ί) . (6.14)

Let us consider the representation

Sv(g, Φ) = Tx κfe, Φ) + Γ2F(3, Φ) , (6. 1 5)

where

o
Tlv(g,Φ) = g J dte«σ(t)9

o

For the function TίV(g,Φ) the following estimation is valid

(u, Φ)} .
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This integral can be calculated according to (A.I):

where y = 4gocD2 Λ(0) is an arbitrary number. In the limit A->co when γ is fixed we
have

(6.18)

Now consider the function T2V(g, Φ) in (6.16). We want to get an estimation for
the function σ(ί) in (6.16). For this aim let us consider the region

(u, Φ) - 2aD2tA(0)H¥\u9 Φ) ̂  V(b + CαD^(0)) ,

where b > 0. It is easy to see that this region is smaller than the region

because of

(u, Φ)] ̂  Vb (6.19)

according to (6.13).
Therefore putting

one can obtain the following inequality for σ(t) in (6.15) using (6.16) in the limit
/->()

σ(ί) ̂  min J Jσ.exp {2gaD2 A(Q)H(*\u9 Φ)}

1 2p

Ffc V 4X > '

Further using the Holder inequality we obtain

(6.20)

where - + — = 1, q > 1, q' > 1 .

The integral



Vacuum Energy in gφJ-Theory for g-+oo

can be calculated in the explicit form. According to (A.I) we get

39

where

according to (6.17).
The integral

1

is the 27V-th perturbation order for the interaction

W4(u9 Φ) - H(*\u, Φ) - - J Λc[: (Φ(w, x) + Φ)4: - : (Φ(Λ)(u,x) + Φ)4:].

(6.21)

When F-κx) the main contribution to the integral (6.21) comes from the two-
points coupling

where in the limit F— >co

Making use of the formulas (6.10) one can get for Λ-*ao

21 (In A2)2

•1+4
2πΦ

+ 2
f2πΦ:

2^2

4π3 A2 Γ ' ^ l n Λ 2

Turning to the integral (6.21) we obtain for large F and N

'G(Λ, Φ)]N <

(6.22)

1+0

Since we study the behaviour of all functions in the limit F-» oo then we have (from
the Stirling formula)

p>ί
f 2 ,

= min exp {pIn q'p — p}
2G(Λ, Φ)

[ Vb2 = exp \-V—

Thus the following inequality for σ(ί) is valid

2q'G(A,Φ)

V β V Vb2

2t*ϊ^ + ̂ ί+nw+®-n-ΰG(Λ&\
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In the limit g-> + oo the main contribution to the vacuum energy gives
T2V(g,Φ) because β = qy is arbitrary. Then we have for g-^oo

— E(g,Φ) = lim —lnSv(g,Φ)
F-»oo V

= lim -ln(Tlv(g9Φ)+T2V(g,Φ))
F->oo V

= 0(1)+ lim ilnΓ2K(ί7,Φ)
F-*oo K

< max

(6.23)

This expression should be minimized over the parameters b and β. Making use of
(6.12) and (6.18) we obtain

Finally we can write changing the sign in (6.23)

min - g(b + 6D2

2 A(0))
β,b A

Now let us get the asymptotical behaviour E_(g, Φ) for g-^co. Using the formulas
3

(6.11) and (6.22), changing the variables b=—-^Q and Λ2=A and limiting
8π

ourselves to logarithmic terms In A we obtain

E _ (0, Φ) = max min \ - —^

πρ2A

28q'(\nA)2F(A,Φ)

β Φ2 β InA 1

~+~β^q~~q^ϊπ 16<?2#
, (6.25)
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where

/2^\+2p-^>

41

\lnA) \lnAJ '

The supremums with respect to A, ρ, and β can be performed and the result in our
approximation is

(6.26)

where B=—q'F (lng + In B)
2π

Φ2~ — \ng
2q β [l+p 2π

(6 27)

where . Therefore the inequality (6.23) proves its value in the limit

Finally we obtain in the limit

(6.28)

where q>ί.
We can see that the extimations (6.7) and (6.28) are close one to another in the

limit g^><x>. They can be jointed, the result for E(g, Φ) in (6.1) is

1 + 0
I n l n g V

where ^/c^l.
It follows from this formula that the minimum of the vacuum energy in the

tne nmu" ^^oo is at points

(6.30)

It means that in this system there is a phase transition for g—»oo. It should be
noted that our estimations (6.8) and (6.28) do not prove, strictly speaking, the
existence of the phase transition in the φ^-theory. This was proved in [7] (see also
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[9-11]). The reason is that the accuracy of the first term in (6.29) is O(glnglnlng),
what is much more than the second term which is O(lng). Nevertheless our
estimations certainly indicate that the phase transition takes place and give the
points Φ± where vacuum energy has minimum.

Acknowledgements. I would like to thank Prof. D. I. Blokhintsev, B. N. Valuev, V. A. Zagrebnov, O. A.
Mogilevskij, and V. V. Priezjev for discussions.

Appendix

Let us show that for F-»oo

Qv = \δΛ exp f - \ j ddxΛ2(x) - ia J rfdx j ddy^F(x, y)/l(y)]2 + i f ddxα(x)yl(x)
I F F F J

~'kΣus~ial ddx
s V

(A.I)

where

dίk(x~x>}

(A 2)

In the integral (A.I) let us change the variable

where

= ΣU^,Ul,.. (A.4)
s

Then we have

Σ « A = Σ β,»* » ft, = Σ
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The integral in the new variables can be calculated:

Qv = J δυ exp ί - \ £ (1 + 2iadn)v2

n + i £ /?Λ j

(A.5)
n iT-ώiuαj

Now let us consider

iadn)= Σ ^—4—(2iσ)fcΣ<ζ. (A.6)

Making use of the formulas (A.4) one can get

n HI, ..., njζ

= $dyί ... $dykDv(yί>y2)Dv(y2,y3) ... Dv(yn9y1).
v v

When V is large enough this function is

^ „ , ddk
]fc + 0(exp{ - const V1"})

V

whence

Σln(l+2 ίWJ=Fj-^ln(l+2ίαD(/c2)). (A.7)
n \^^J

Further consider

Λ = 0

nd
k

nβn= Σ α»Λ,»ϊ - 'D»k.fc-ια»k + ι
«ι,. , « k + ι

In this expression it is possible to take the limit F-> oo

Jim

Substituting this formula into (A.8) we obtain

lim Σ— ̂ —- = $dx$dX'a(X)G(x-X')a(X'), (A.9)
--

where G(x — x') is defined by the formula (A.2).
Thus substituting (A.7) and (A.9) into (A.5) one can obtain (A.I).
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