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Abstract. A five-modes truncation of the Navier-Stokes equations for a two
dimensional incompressible fluid on a torus is considered. A computer analysis
shows that for a certain range of the Reynolds number the system exhibits a
stochastic behaviour, approached through an involved sequence of
bifurcations.

1. Introduction

In recent years much attention has been devoted to the study of simple differential
or difference equations which, although deterministic, exhibit a transition, as some
parameters go through certain values, to a stochastic behaviour. The equations
which are studied often arise in a natural way as simplified models in fluid
dynamics and in ecology. The best known examples are perhaps the models of
Lorenz [1] and Henon [2]. In these models stochastic behaviour arises as a
consequence of the appearance of an attractor of complicated structure which is
called "strange attractor". Trajectories in a neighbourhood of the attractor appear
to move in a completely erratic way. Phenomena of this kind are predicted, under
certain hypothesis, by the mathematical theory of turbulence of Ruelle and Takens
[3,4].

In the following we consider a model obtained by a suitable five-modes
truncation of the Navier-Stokes equations for a 2-dimensional incompressible
fluid on a torus. We argue on the basis of computer analysis that in a certain range
of the Reynolds number our system behaves in a way similar to that predicted by
Ruelle and Takens. However the sequence of bifurcations through which the
system goes over stochastic behaviour is quite peculiar, and different both from
that considered in the theory of Ruelle and Takens, and from that of the other
known models.
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2. The Model

Consider the equations

divu^O

where u is the velocity field on the torus T2 = [0, 2π] x [0,2π], p is the pressure,
and f is a (periodic) volume force.

We expand u in Fourier series

u(x)=
k Φ O

where k = (k l 5 fc 2 ) is a "wave vector" with integer components, k1 = (/c2, — kj, and
the condition yk= ~7_ k (reality condition) holds. By expanding p and f in similar
series we get formally the following equations for {y k} k Φ O

:

Once {yk}kΦO *s known, pk is given by

. v (k 2 -kiXk r ki)_
Pk=-' Σ 2 y".

k1 ,_ , k
In (2.1), (2.2) /k, /k are the components of f with respect to 7rτ^ίk'x and τrτ£ lk'x

|k| |k|
respectively.

If L is a set of wave vectors such that if keL, also — keL, we define the
truncated Navier-Stokes equations as

*k =- j Σ ^s€ik^^^-v|k|2yk+Λ' (keL)
k!+k 2 + k=0 Z i K l l l K 2 l l K l

kι,k 2eL ,~ ̂

In this paper we take L as the set of vectors k1=(l, 1), k2 = (3,0), k3 = (2, — 1),
k4 = (l,2), k5 = (0, 1) and their opposites. Equations (2.3) with this choice of L
admit solutions in which some components are real and others pure imaginary.
We shall consider one such solution, namely one in which

with real y.'s.
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The equations become, after having changed time and length scales in order to
have v = 1 and to get rid of some factors, and taking a force acting on the mode k3 :

We consider such equations because they are the simplest non trivial truncation
with more than three modes. Three mode truncations are not considered because
they seem to lead to non interesting dynamics. One can prove that any real system
obtained by a truncation to three modes with a force acting on only one mode has
either one stable fixed point or two stable fixed points and one unstable one.

Furthermore the computer shows that for any choice of f any randomly chosen
initial data evolves towards one of the fixed points up to a fairly large value of the
"Reynolds number"

r = Σ l Λ I
keL

Equations (2.4) have a symmetry property : by changing both the signs of y4 and y5

they are unchanged (this is the reason why we get two symmatrically placed
attractors, see below).

3. The Stationary Solutions and Their Stability Properties

The model (2.4) has the following stationary properties :

a) For O^r ̂ jR^Sj/S/ϊ there is only one stationary solution y = y(

0

r) with
components

::;Γ4~"~0

which turns out to be stable and a global attractor for r small enough (this is a
particular case of general results on the theory of the Navier-Stokes equations
[5]). Numerical evidence suggests that the above solution is a global attractor for
all r<LRv

RO
b) For R1 <r^R2= -— j/3/2 there are 3 stationary solutions: the old one,

y — yffi which has become unstable (as a consequence of the crossing of the
imaginary axis by one of the eigenvalues of the Liapunov matrix) and two more
y+}, with components

which are stable.
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- 1 . 0 0.0 1 .0

F I G . l a ( r - 2 8 . 0 )

1 . 0 2 . 0 3 - 0 4 . 0

F I G - i b ( Γ r 2 8 -0 )

Numerical evidence indicates that any randomly chosen (in the sense of the
Lebesgue measure) initial data is attracted by either y(+} or y(^ i.e. y(+} are global
attractors.

c) For r >R2 there are 7 stationary solutions: the old ones y(

0

r), y(+} and γ(£ with
components

=ε 1/5/3

80

9_

80Γ σ = ± l (3.3)

The first three are now always unstable, while the new four are stable for
r^^3 = 22.85370163... and numerically they attract any randomly chosen initial
data.
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0 - 0 1 . 0 2 . 0 3 - 0 4 . 0

F 1 0 . 2 ( r ~ 2 8 . 6 0 )

5 - 0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 - 5 4 . 0 4 . 5 5 - 0

F I G - 3 ( r = 2 8 . 6 5 0 )

4. The Periodic Solutions

a) At r = jR3 the four stable stationary solutions become unstable because a pair of
complex conjugate eigenvalues crosses the imaginary axis, and four stable periodic
orbits around the fixed points γ(£ arise via a Hopf bifurcation (Fig. la, b). As

predicted by the Hopf theorem the period of such orbits tend to T= ~ 0.73227
Uoi

(λQ being the imaginary part of the eigenvalues which cross the imaginary axis) as
r-+R3 from above. These orbits are stable up to r = R4 = 28.41... and the computer
shows that they attract any point chosen at random.

b) At r = R4 the periodic orbits lose stability because an eigenvalue of the
Liapunov matrix of the Poincare map crosses the unit circle in — 1. As predicted
by the general theory of bifurcation [6], the computer shows that each one of the
orbits considered in a) gives rise to a new periodic orbit with double period (Fig. 2).
The new orbits are very similar in shape to the previous ones, only they wind up
twice.
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0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 - 0 3 . b 4 - 0 4 . 5 5 . 0

P I G - 4 ( r = 28 - 6 6 6 )

The computer shows two other similar bifurcations, taking place at
r = R5 = 28.64... and r = R6 = 28.66... (Figs. 3, 4) each time the new orbits wind up
around the fixed points twice as many times and the period doubles, up to a period
eight times the initial one (see Table 1). We cannot definitely state that there are no
other bifurcations of this kind, however the computer shows that up to r = 28.6660
the orbit arising at r = jR6 is still there and that

c) in r = JR7, 28.6660 < RΊ < 28.6662, a new kind of orbit appears (Fig. 5). Each
of the previous four orbits bifurcates into a new orbit, with period T*~3.8, as shown
by Table II. The new orbits wind up around two of the fixed points y^, instead of

Table 1. Periods of periodic orbits
considered in b), § 4, for different values
of r

r T(r)

23.00
26.00
28.40
28.42
28.63
28.64
28.660
28.665
28.666

0.73227
0.77458
0.81602
1.63300
1.64512
3.29135
3.29300
6.58686
6.58706

Table 2. Periods of periodic orbits
considered in c), § 4, for different values
o f r

r T* (r)

28.667
28.690
28.700
28.715
28.716
28.718
28.7194
28.7200

3.80314
3.80734
7.61811
7.62041

15.24110
15.24208
30.48554
60.97203
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I .0 2 . 0 3 - 0 4 . 0

F I G - 5 ( r r 2 8 - 6 8 0 )

only one like the previous ones. More precisely there are two orbits winding
around y(+}

+ and γ(?+ and the other two around y([}_ and y(ti}_ (Fig. 7a-d).
Increasing r we have a sequence of bifurcations in which each time the period
doubles and the number of loops around each fixed point doubles (Fig. 6). We
found four further bifurcation points of such nature, for the following values of
r:#8~28.70, #9-28.716, JR10~28.719, JR n ~ 28.720. Since the period doubles
each time and the orbits become increasingly intricate requiring higher precision,
we did not look for further bifurcations. So we cannot definitely state whether we
have just a finite number of bifurcations, or the period keeps doubling and the
bifurcation ppints accumulate. If the latter is the case, and if the bifurcation points
accumulate at the rate indicated by the ones we have found, increasing r we would
have very soon an orbit with a period so large that it would be impossible to find it
on the computer. However we can get some information on how far these
bifurcations go in the following way. All the orbits arising in this sequence of
bifurcations however complicated, have the following common feature: they wind
up around two of the fixed points y(/j, and they make three loops around one point,
then two around the other point and so on (Figs. 5-7). So if we consider the graph
of, say y 1 ? as a function of time, if we wait long enough in order to get the point sit
on a periodic orbit, we see a typical bump structure (three positive bumps followed
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X 4

-I . 0 0 . 0 1 . 0

F I G - 7 C ( r - 2 8 . 6 8 0 )

-4

- 1 . 0 0 . 0 1 . 0

F l G 7d ( r = 28 -680 :

F I G δa ( r - 2 8 . 7 0 )

F I G - δ b ( r-28 - 7 3 )

by two negative bumps, for example (Fig. 8a)). We could see that this pattern holds
at least up to r = 28.73 (Fig. 8b).

5. The Turbulent Regime

For larger values of the Reynolds number this pattern does not show up any more
(for r = 29 we kept the computer going for 2000 time units), and we observe instead
a random behaviour with the system winding up, in the average, the same number
of times around the two fixed points. This leads us to conclude that a further
bifurcation of a different nature takes place, for r = Rl2, 28.73<#12<29, as a
consequence of which the four periodic orbits go over into two attractors, which
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- 1 . 0 0 . 0 1 .0

F I G . 9 ( r = 29 - 0 )

X 4

- 1 . 0 0 . 0 I . 0

F I G . i 0 a ( r = 3 1 - 0 )

0 , 0 ί . 0 2 . 0 3 . 0 4 . 0 5 . 0

F I G l O b ( r r3 1 .0 )

are located respectively in a region surrounding γ(^+ and 7^+, and y^_ and /.!?_,
each attractor being of a shape which resembles very much the union of the two
periodic orbits which were in that region before the bifurcation (Figs. 9, 10a,b, 11).
This region holds up to r = K 1 3 = 33.43.... The motion on these attractors seems
very random and the pictures of the trajectories resemble very much those found
by Lorenz in the analysis of his model [1].

It would be interesting to carry out an analysis like that of Lanford [7] on the
Lorenz model to investigate the precise nature of our attractors. Figures 9-11
show projections on different planes of a few trajectories with randomly chosen
initial data for different values of the Reynolds number. The behaviour exhibited
in the figures looks exactly what one should expect in the neighbourhood of a
"strange attractor".
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6. The High r Regime

It is known [7] that the Lorenz model has, at large values of the Rayleigh number,
attractors which look to the computer like simple periodic solutions which behave
as global attractors (in the sense, that randomly chosen initial data are attracted
by them). Actually, the existence of attracting periodic orbits for large values of the
Rayleigh number has recently been shown by Judovich [8]. (The fact that such
systems of differential equations possess attractive closed orbits, for small
viscosity, seems to be known to engineers, but we do not have the references [9].)

We have also analysed the large r behaviour of our system, and we found that
actually for r>R13 randomly chosen initial data run eventually into two
symmetrically placed simple periodic orbits (which are obtained from each other
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by changing the sign of y4 and γs). Examples of such orbits are shown in Fig. 12a,
b.

Figures 10-12 show how the "strange attractor" shrinks to a periodic orbit.
The period of these orbits seems to be numerically well defined for r>R13 and
tends to a finite value T(,R13)~ 1.368 as r->,R13. Numerical analysis of the
eigenvalues of the Poincare map indicates that the periodic orbit becomes unstable
as r-+Rί3 because one eigenvalue crosses the unit circle at the point -f 1. All these
facts indicate that we are dealing actually with closed orbits and not with an
attractor inclosed in a tiny tube.

The value .R13 also coincides with the least value of r above which it is possible
to close orbits with random initial point so that the period is well defined. For
r>Rl3 we are able to measure the period with an accuracy of 1CΓ5 at least (as well
as for the period of the orbits found for r<Rί2).

7. Conclusions

The most interesting feature of our five modes truncated Navier-Stokes equations
is perhaps the way it goes over to "turbulence".

Unlike the Lorenz model it goes through a Hopf bifurcation, and then through
a series of bifurcations which lead to increasingly complicated periodic orbits.
Stochasticity grows up in some sense "gradually": our analysis of computer data
leads us to conclude that we have a transition to a "strange attractor behaviour"
through a series of bifurcations which give rise to increasingly complicated
attractors made of two very long interwining periodic orbits. If the sequence of
bifurcations illustrated at point c), § 4, is actually infinite, after many bifurcations,
we would see that these periodic orbits would be very close to being dense on the
"strange attractor". The situation which arises in such a way is very interesting and
it deserves further analysis.
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