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Abstract. Correlation inequalities are used to show that the two component
J(¢?)* model (with HD, D, HP, P boundary conditions) has a unique vacuum if
the field does not develop a non-zero expectation value. It follows by a
generalized Coleman theorem that in two space-time dimensions the vacuum is
unique for all values of the coupling constant. In three space-time dimensions
the vacuum is unique below the critical coupling constant.

For the n-component P(|¢|*), +u¢d, model, absence of continuous sym-
metry breaking, as u goes to zero, is proven for all states which are translation
invariant, satisfy the spectral condition, and are weak* limit points of finite
volume states satisfying N . and higher order estimates.

loc

I. Introduction

It is a general fact in statistical mechanics and quantum field theory that the
appearance of multiple phases and spontaneous symmetry breaking occurs more
readily as the number of space dimensions increases. In the case of the statistical
mechanics of lattice systems with a continuous internal symmetry group, spon-
taneous symmetry breakdown can occur for three dimensional lattices [10] while
for two dimensional lattices every equilibrium state is invariant under the internal
symmetry [4]. For the two component rotator, absence of symmetry breakdown
implies uniqueness of the phase [2].

Multicomponent quantum field theories can exhibit spontaneous symmetry
breakdown in three space-time dimensions [10], while in two space-time dimen-
sions, a general result due to Coleman [3, 11] “There are no Goldstone bosons in
two space-time dimensions” shows that spontaneous breakdown of a continuous
internal symmetry cannot occur, provided the symmetry is generated by a local
conserved current. Given these results, we have considered two questions. The first
is whether absence of symmetry breakdown implies uniqueness of the vacuum
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(clustering of the Wightman functions). The second question is whether the
Coleman theorem is applicable to the models considered so far in constructive
quantum field theory.

Using correlation inequalities for two-component Euclidean (quantum) fields
(with HD D,HPP boundary conditions) with interaction A(¢?)?, we show that
absence of a spontaneous, non-zero, field expectation implies uniqueness of the
vacuum. We also prove that independence of the (standard) boundary condition in
presence of a non zero external field implies independence of the standard b.c. at
zero external field. Thus in three space-time dimensions the vacuum is unique for
(HD HP D P) boundary conditions below the critical coupling constant.

In two space-time dimensions, we conclude that the vacuum is unique for all
values of the coupling constant by answering our second question. We do not
show that Coleman’s theorem is applicable in its original form. We have
generalized it so that we do not need to prove the existence of a conserved current
but we only have to derive estimates on the time component of the current (Sects.
IV and V). For a general n-component quantum field theory in two space-time
dimensions, absence of spontaneous symmetry breakdown (but not uniqueness of
the vacuum) follows from Nj . and higher order estimates.

In the case of the plane rotator on the two dimensional lattice, perturbing the
interaction enabled us, using correlation inequalities, to prove that there was only
one translation invariant equilibrium state [2]. The two-component quantum field
model is more singular and such perturbations cannot be applied directly. We thus
have demonstrated the uniqueness of the vacuum in the sense that a certain state is
clustering but we have not shown that there is only one Wightman state for this
model.

For clarity of presentation, we elaborate the preceding outline and give here a
sketch of the argument, referring to the section where a particular result can be
found.

We Discuss First the Two Component Model

1. It is known that the periodic state (), with external field p{¢, dx, (u>0) exists
and is exponentially clustering [7]. Correlation inequalities show that the state
(>, converges as |0 to a state noted (), (Lemma III.1 and discussion preceding
it). Again by correlation inequalities it follows the (), is clustering (Lemma I11.3)
and thus has a unique vacuum.

2. If {¢,(x)>, =0 then by correlation inequalities (Theorem IIL.5) it follows
thet (>, =)y, where the state { ), is obtained from finite volume states with =0
and thus by construction is invariant under the internal symmetry. Thus (), is
both clustering and invariant under the symmetry.

3. In two space-time dimensions we may prove that {(¢,(x)>, =0 and thus this
theory (), exists and is clustering for all values of the coupling constants. In the
analogous situation of the plane rotator on a two dimensional lattice, the absence
of spontaneous magnetization at all temperatures follows from Mermin’s theorem
or the more general result of Dobrushin-Shlosman [4]. However in the quantum
field theory case, we are dealing with a continuum quantum theory and the proof
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that (¢,(x)), =0 is based on the Goldstone [25] and Coleman [3, 11] theorems.
In order to apply these methods we must establish the existence of a “current”
which generates the internal symmetry and such that the vacuum Q, (correspond-
ing to the state (>, )is in the domain of the current. It is thus necessary to make a
detailed study of the current.

4. It is straightforward to show that, for suitable 9,

J9) = [ (d,(x)m,(x) = (x)7,(x)) H(x)dx

generates the internal symmetry (Proposition IV.2). However to obtain the
necessary estimates (in order to prove that €, is in the domain of the current) the
local number operator estimates of Sect. IV (j(3) <const (H + 1)) are not sufficient :
we must consider the commutator [H ,, j(3)] where H, is the Hamiltonian with
external field u. Thus we define a time smoothed current j*()
={dte™j(9)e”"™Mun(t). Then the estimates of Sect. IV apply to j*(y) and to
[H ,,j*(m]. This allows us to obtain [[j*(7)€Q, | = C uniformly in (€, is the vacuum
corresponding to H ).

5. Now j*(n) does not generate the internal symmetry if u=0 (since H, does not
commute with the symmetry). However we can show that for u=0, j(n) does
generate the symmetry (Theorem IV.6). To extend the above estimates to
Jm) (im€2 . | £C) we need a convergence argument. Correlations inequalities do
not apply to a variable as j(1). However using the characterisation of field theory as
a state on the algebra of bounded local observables, .o7, correlation inequalities
and analytic continuation imply convergence of the states w, (corresponding to
the theory with an external field u¢,) on o/ as u—0.

This fact, the bound on j*() uniform in g, and a suitable convergence of j*(n) to
j(n) as u—0 (Theorem 1V.8) allow us to extend the above uniform bound to j(y)
(Proportion V.5). It follows that Q, is in the domain of j(y), and thus we can use
the Goldstone theorem (Theorem VIIL.2) to show that {¢,(x)>, =0.

In the case of N-component models (N=3) we cannot appeal to correlation
inequalities and cannot prove uniqueness of the vacuum, but we may show
absence of symmetry breakdown via the Coleman theorem (Sect. 6) [3,11]. It is
however a fact that the space component of the current is more singular than the
time component and thus within the constructive framework it is preferable to
estimate only the time component. Therefore we generalize the Coleman theorem
so that a minimal number of hypotheses must be verified (Sect. VII)!.

II. Local Operator Algebras and Euclidean Fields for the N-Component Field ¢(x)
A) Free Fields

The Hilbert space of states for the n-component free scalar field ¢ is represented by

n

the Fock space 7 = (X) 7, [8] where 7, is the usual Fock space for the time zero
Jj=1

1 Of course we can apply this generalized theorem to the preceeding situation N =2. It is what has
been done explicitly in the paper (see proof of Theorem 111.7)
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fields

J :wl_ Ty~ 12 (1112
of) 1/i[a, (™) +afu™ " f)]

i
n(f)= %[af(#mf)—aj(ﬂl/zf)] fe LR,
where u=[—V?*+m*]'2, V' is the Laplacian in s dimensions. Given f=(f,, ...,f,)
we define

(f) = z 7(f)

We denote by Z,,= (X) Z,, the Fock space associated with the field ¢, with
j=1
periodic boundary COl‘JlditiOHS on the boundary of V. The corresponding fields ¢y,
are defined by replacing u by u, =[ — V¥, +m*]"/? where Vj, is the Laplacian for
the region V with periodic boundary conditions. There is a natural embedding of
Fy, Into Z, and the fields ¢, may be considered to act on & [13,17].
The free Hamiltonian is

Hy= dr(@ .“)
j=1
Hoy)= dF(j:C‘Bl ,u(y)>,

where dI'(1) denotes the second quantization of the one-particle operator u [28].
The number operator is defined by

N:dr(jgz'})l 1).

More generally, local number operators are defined by

m—dr(@ e c)

where 0=<7t=1 and 0=<{(x)e CJ. A similar definition holds for periodic boundary
conditions with the restriction supp {C V.

The local operator algebras are constructed in Fock space as follows. Let A
denote an open bounded region of space.

/(A)=von Neumann algebra generated by {e'*", ¢™®} supp f,gC A. The C*-
algebra of (quasi) local observables is ./ =norm closure of U A (A)

Let I;(g) be an n X nunitary representatlon of the mternal symmetry group G.
Then ¢,(x Z 19)e (x), m( Z 7(x) defines an automorphism of the
C*- algebra ;zi denoted og), Wthh is 1mplemented in Fock space by U(g).
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A similar construction holds for (/(A4),, with periodic boundary conditions,
with the restriction ACV.

If the Wightman functions (vacuum expectation values) of ¢(x, t) are analyti-
cally continued to purely imaginary times ¢, one obtains the correlation functions
(Schwinger functions) of the Gaussian stochastic process ¢*(x) (the Euclidean free
field) with mean zero

PIfH=0 j=L..n

and covariance

(NG @) =0, (£(—=V2+m*) " g).

frge (RY), +V?is the Laplacian in d=s+ 1 dimensions.

More generally, if 3 denotes an open bounded region in Euclidean spacetime
we may define the field ¢f with covariance determined by (f,(—V; +m?)~'g)
where V is the Laplacian with any of the standard boundary conditions on 04 :

Dirichlet (D), Periodic (P), Neumann (N), or Free (F)

(V2e=V?)  [20,21].

The Schwinger functions are invariant under the transformations

bi(x)— Z i19) 7 (x)

B) Interacting Fields
We consider free or periodic boundary conditions in two space-time dimensions.
Let 0=¢(x)=1,geCg,suppgCV. A, and A, are respectively defined by
g(x)=1 for xe A, and suppgC4 A, is defined as the set of points within a
distance t of A.
The Hamiltonian H(g) is defined by

H(g)=H,+ [dxg(x)[2:((x)*)*: —0:(x)*: — pp, (x)]
=H,+H,/g) with 1=0.

suppg’

H(g)y, is defined analogously, with ¢ replaced by ¢, and H, by Hy,.
Higher Order Estimates [26]

For any k=1,2,... there are constants a,b (depending on g but independent of V)
such that

N*=a(H(g)+b)
Ny, = a(H(g)y, +b)".
Estimates [29]
For any 1 <1, there are constants a, b (independent of g and V') such that
NioSa(f(g)+b)
Nip S alH(g) gy, +b),
where H(g)=H(g)—inf spectrum H(g).

NT

loc
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Note that the proof of Spencer carries over unchanged to multicomponent and
periodic fields. We sketch it in an Appendix.
Furthermore, H(g)(V)V—MZ H(g) strongly on C*(H,) [18].

Finite Propagation Speed [27, 13]

™M of(A)e” "9 C o/ (A,) and the automorphism e™9 of (A)e™ " js independent of
g provided A,CA, and similarly for H(g),. We may thus define the time evolution
automorphism 1(t) by

1(0).A (A) ="M (N)e O A, CA,.
The Euclidean theory is constructed by replacing the free measure dpu, by

e~Ug'bdﬂ§,b

dﬂs,b: ye—Ug,bd[ug \

Ug = g[;ﬁ(d)Ez)z :9,b_53¢E2 :S’b—ud)f](x)d”(x)

the subcripts 3, b in the Wick ordering indicate that the Wick subtractions are
made with respect to the measure du§ , (dug , is the measure corresponding to the
" free theory with standard boundary conditions b on dA). Half-b boundary
conditions are defined by:

d = e-Us‘Fd'ug,b
Ky mup= j'e—U\g‘Fd‘ug’b'

One obtains the Schwinger functions

<¢fl (xq).. '¢fm(xm)>8(H)b = j d’fl (x,).. 'stm(xm)d‘ué}(H)b

E : E
¢, (x) is one component gf o (x,). . - .
One is thus generally interested in the infinite volume limit

lim {3, (x ). % () Dsany -

9/ R4

IT1. Correlation Inequalities for Schwinger Functions
and Uniqueness of the Vacuum

We consider now the two component J(¢*)* —odp* — up, model, where 2 >0, =0,
o real, in d space-time dimensions. The lattice approximation of the finite volume
Euclidean Schwinger functions satisfy the following inequalities, which then carry
over to the continuum finite volume and infinite volume theories. (These limits
exist for d<3.)

Let .# be the set of finite families of test functions [elements of #(IRY)] and .#,
the set of finite families of non-negative test functions. For Ae.# we define

fA: H d)f(f)

feAd



Multicomponent Field Theories 55

Let |A| denote the cardinality of A. Let § be an open bounded regular set in R?
with standard boundary conditions [28]. The following inequalities are valid :

a) Ginibre's Inequalities [12,5] if A,Be.# .., |B| even, and ¢= +1

(LA DT+ edlp)dg = (PTus{DTp+edls) 20 ()
if A,Be.l,,|A| and |B| even, ¢, ,= +1
UDTa+e105) (DTp+er055)0s Z (DT +105.0 (DT p 220550, 20. (2)
b) Generalized Griffiths’ Inequalities [1,22a] if A,Be.#,
(Pfadids 2 bl e (Pl 20 j=1.2, 3)
<¢1A>g<¢23>9§<¢m</>23>920- )

Remark 1. The above ineqﬁalities together with the ¢-bound [7] imply the
existence of the theory for d=2 or 3 with Dirichlet (D) or half-Dirichlet (HD)
boundary conditions.

Remark 2. In the following we drop the E in ¢¥, and we make the u dependence in
the above states explicit: ), denotes the Euclidean state in region 9 with a fixed
standard boundary condition b and external field x4 =0.
We suppose the infinite volume limit exists for some standard boundary
condition b:{), ,= 91%{1 g, for all u>0, and we define (), ,= H?ol Oy This
a u

limit exists since {¢, 4, , monotone decreases and {¢, ,», , monotone increases
as ul0 by (3) and (4). For |B| odd {¢, b,5),=0 and for |B| even {¢, 4,5, ,
converges as 1|0 by (2). In fact, we have the estimate:

II.1. Lemma. Let p1>0 then:
i<¢1A¢2B>u,b_—<¢1A¢23>+,b|§<¢1A¢13>;4,b~<¢1A¢1B>+.b'
Proof. For |B] odd the left hand side is zero. For |B| even, by (2)
DA P15t ap) v 21415 Pap)s s
P14l 1800 =P 1aP 180+ p Z TP 14P2p)+ v =P 1aP 25D 0]
@ 14P28005 =< P14P250+ ol SXP 1 4P 1p0s =P 1aPipre . T

By the same proof we have
111.2. Lemma.
!<¢1A¢28>3,u.b_ <¢1A¢23>S,O,b| é <¢1A¢1B>‘9,u,b - <¢1A¢1B>S,O,b *

HL3. Lemma. If there exists a sequence u,—0 such that (), , has the cluster
property for all n then (. , has the cluster property.

Proof. By a density argument and multinearity we have only to show clustering for
the set {¢, .5} with 4, Be. /.



56 J. Bricmont et al.

Using Ginibre’s inequality one can show the generalized Dunlop-Newman
inequalities [6] VA,B,C,De ./ .

I<¢1A¢2B¢1C¢2D>u,b"<¢1A¢23>y,b<¢1c¢2o>y,b|
é<¢1A¢1B¢1C¢1D>u,b_<¢1A¢1B>u,b<¢1c¢’w>u,b
if |B| even and

<¢1A¢2B¢AIC¢2D>;42,17§ <¢1A¢18¢1C¢1D>;42,b_ <¢1A¢18>ib<¢lc¢1D>u2,b

if |B] odd.
These inequalities extend to the limit state (). Thus we have only to show
clustering for the field ¢,. That is we must show

l}li_f}flw <¢1A'fx¢13>+,b: <¢1A>+,b<¢13>+,b >

where 1,.¢, =[] ¢,(z.f)

feB
But
<¢1A>+,b<¢13>+,b§<¢1Afx¢13>+,b
§<¢1Afx¢13>umbm" <¢1A>un,b<¢18> b ®

Since {¢; 4, ™{Py 40+ p it follows that

lim <¢1A1x¢13>+,b = <¢1A>+,b<¢13>+,b~

|x]— 0

This concludes the proof. [See also [28] p. 357.] O

L4, Lemma. If {¢,(f)),=0Vfe (R then P10+ 5= Pru>s p VAEM ..

Proof. Since {¢,(f)>, ,=0 by construction, the proof of this lemma is contained
in the proof of Theorem II1.4 of [2]. O

IIL.5. Theorem. If 1%1 (D (f)p=0 then (5 y=CDg 4
"
Proof. By (4) and (3) and the ¢, <>¢, symmetry of the =0 state we have

<¢2A>&,u,b§<¢2A>s,0,b=<¢1A>9,0,b-§<¢1A>\9,u,b
for Ae ..

From Lemma I[Il.4 it follows that gi}gd<¢1 48,05 €Xists and is equal to
{4+ Similarly for (¢, 5D

From Lemma IIL2 it now follows that gir‘% {Pyab25)4 0.5 EXists and equals
: .0,

{40,580+ , for all A,Be.#,. By multilinearity the same result holds for all
A, Bedl. [
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IIL6. Corollary. If for some (standard) boundary conditions b,b" (5, , =<, , for
all u>0 and 1#1%1 {D1(),,=0 Vfe F(RY) then (o ,={Dq,-

Proof. Follows directly from Theorem IIL5. [

I11.7. Theorem. In two space time dimensions the infinite volume limit exists for
b=MH)D,H)P. The resultant theories have the cluster property and thus the
associated Wightman theories have a unique vacuum ; moreover { yygp=<">p and { Jyp

=<>D~
Proof. 1f liln(}<¢1(f)>u=0 the limit 31{.{209 exists by Theorem IILS. That
m

1i}13<¢>1( /), »=0 follows from the existence of a local current (see Theorem
p, .

VIIL.1). Since the Schwinger functions for periodic bc are continuous in ¢ (in fact
real analytic see [7]), one can deduce that they coincide with those obtained from
H.P. boundary conditions [21].

From correlation inequalities one has:

(¢ U Muap = (¢ 1(f)>;4(H)P (respectively).

So, the first part of the theorem is proven.

The second part is based on Lemma II1.3 and the fact that (exponential)
clustering is known for the theory with periodic bc and u>0.

When we remark for |B| even

<¢1A¢1B>b - <¢1A>b<¢13>b = <¢1A(¢)1B - d)28)>b >
<¢1A(¢1B_ ¢2B)>(H)D = <¢1A(¢1B - ¢2B)>(H)P >
for |B| odd
<¢1A¢1B>(H)D = <¢1A¢1B>(H)P )

respectively, clustering is also proven for (H)D at u=0.
Since both HD and D b.c. coincide with weak coupling b.c. [19a]
Ouw=p U

Remark. Frohlich states that for u>0, D=P =space time averaged free [9]. It
would then follow by Corollary II1.6 that those theories also coincide at u=0.

IV. The Generator of Symmetry Transformations on the Local Algebras

The discussion of the local algebras .7, takes place in Fock space. The vector Q
denotes the Fock vacuum, & =finite particle vectors with wave functions in &.
For simplicity, we consider here the case of two component fields, although the
discussion generalizes easily to n-component fields (see Sect. VI). The symmetry
transformation is then given by:

o, (x)=cossd,(x)+sinsg,(x)
o, },(X) =c0ss,(x) —sinse (x)

and similarly for 7, ,.
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We recall [13,24] that & is a dense set of entire analytic vectors for ¢, ,(f),

7y 5 (f).

IV.1. Definition.
JX)=¢,(x)m,(X) — @ (x)7,(x)

For 9eC§ j(9) = [ dxHx)j(x).

We define Ay, Ay, 4 such that 9(x)=1 for xe Ay and supp3CA,  , We note
that j(9) is a well-defined operator, and indeed & is a dense set of analytic (not
entire) vectors for j(3). This follows by standard estimates [24]: One writes j(3)=J,
+ji +j,+j; where “+” denotes adjoint and

o Bl

i 3 ) ‘/u(p)] .
= (dpdg8(qg— 24 28
J2 2]/%{ pdgS(q p)“/#(p)Jr g 1 @)

Then
a1 V

ji= V—Idpdq9 p+4q)

N+ 1712 (N+1)” ”2H<

g21/—H praprat M() u(q) >

B 1

= l/ﬂ ( (

<w. )

dI'(K), where K is the operator on the one particle space with kernel.

S
]2_ m
_ u(p
Kig.p)=ba- p ]/,U(P) \/uq

(and mapping particle 2 into particle 1).
We write

K(g.p)=3(g—p)+ (g — p)l[(]/ Ha) 1)+(VM_1H
wp) u(q)

=%g—p)+K,(q.p).

Note that K, is a Hilbert-Schmidt operator, since

! H L*(dgdp).

|K1<q,p>|§‘9< )3l pl[ o
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Thus K=M,+K,, where M, denotes the operator multiplication by §(x). Thus:

1 1
[N+ 2N+ 1)) = % 1Kl = U9 o + 1K lls} < 0.

2n

We have thus shown:
Number Operator Estimate
N+ DTN + 1)1 < o0,
Equivalently,
N+ 1)~ < oo

Since by higher order estimates, N* < a(H(g) + b)", the number operator estimate 1s
sufficient when uniformity in ¢ is not required. However, we will also need an
estimate uniform in g, and for this we need a local number operator estimate. For
this, one restricts the x-space kernels to finite regions. For j,, we consider K in x-
space. Since J(x) has compact support dI'(M,) is directly estimated by a local
number operator N, .. To estimate dI'(K,), we label unit intervals such that
xed;=|x|=lil.

Consider dI(y, K,x4,) where y, is the characteristic function of 4,

I N;=dI(74,@14,) with x4, of compact support and y); =1 on 4,, an estimate
similar to (5) gives

|1(Nij+ )~ I/ZCZF(XAIKIXAJ)(NU—‘— n== HXAlKIXA,H .
We then remark that

loc*

S 14K lns = S+ U U 420K s
ij ij

1 1/2 , . i s
<[y Ly, K
_(%:(1+|l|2+l]l2)2) (%‘, “( +|l' +[]! )/(Ax 1XA,“HS)

SO+ + DK, s =CIIL =5 — 71K, (P @)l -

Since differentations only improve the behavior of K, (p, g) we see that

Z ”XA,KIXAJ”HS<OO'
ij

Using the Nj , estimate, we obtain

loc

dr(Mg+K )< |19 a(H(g)+ b)+ Z 174K 124, us a(F(g) +b)
= C(H(g)+Db).
The operator j; is estimated in the same way as dI'(K,). We thus have.
Local Number Operator Estimate

(H(g)+b)"V2j(9)(H(g)+b) "> SC  (uniforming).
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We note that the periodic current j(3),, is defined in the same way as j(3) with
¢, m replaced by the periodic fields ¢y, 7).
The number operator estimate goes through as for j(3)

Number Operator Estimate
[Ny + 1D~ 2j(9) (N gy + )2 S C.
Equivalently.
PNy, + )" SC (uniformly in V).

The local number operator estimate also goes through for j(%). We remark, for
example, that {dqdpK (g, p)a*(g)a(p) is replaced by

; 4 El: AK (g Pz)a; (gayv(p)

2 2
where 4= v and q,, pr= ik

This can be written in x-space as

Vi2

—fE/z dxdy K (x, )(V)aV (x)ay(y),

where K (x, )y, = Y K,(x+nV,y+mV).
Then ’

Z H)’A, 101X 4; H<Z”/Al 1XAJ“<C

i,jeV
We thus obtain

Local Number Operator Estimate

I(H(g)w, +b) " V2i(y,(H(g)+b) 2| <C  (uniformly in Vand g) .

We now begin a detailed discussion of the current and associated symmetry

transformations. We will write H=H(g),_o, H,=H—p¢,(g). We suppose

Ay D Agpp s

IV.2. Proposition [13,8]. ¢ (), 7,(f), j(3) are essentially self-adjoint on 9.
If supp $C A then e’sf(s’e;z/ VseR. Also, 59 of | ™S =g of .

Proof. Essential self-adjointness follows since & is a dense set of analytic vectors
for ¢, =, j. For s sufficiently small we may calculate (p,, *Ye*®y,) for v, p,e 2
by expanding the exponentials. If supp f is contained in the complement of A we
conclude that ¢/ commutes with ¢, Similarly for ™). By duality it follows
that ¢*/We .o/, =.o/,. It then follows for all seRR by the group property.

Again by expanding exponentials, and using $(x)=1 for xe 4, it follows that
/¥ implements the automorphism «, on o/, for small s. The result then follows
for all s by the group property. [
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In order to guarantee that the infinite volume vacuum is in the domain of the
current we must average j(3) in time. That is, we must consider

j)= [ dn(t)e™ j(9)e M.

The following propositions are used to show that j(n) also generates the symmetry
automorphism (Theorem 1V.6).

By a higher order estimate and the number operator estimate we have
L) (H + 1)1 < SN + 1) [N + 1) (H + 1) <.

The estimate [|[j($)(N +1)™ | < co implies that j(3) may be extended from finite
particle vectors so that 2(j(3)) > 2(N). This means that 2(j(3)) > 2(H,). Since H is
essentially self-adjoint on 2(H,)Nn2(H (g)) it follows from [[j($)(H+1)"| <00
that the domain of essential self adjointness of j(3) can be extended to include
2(H).

So j,=e™j(9)e " is well defined and in fact essentially self adjoint on Z(H),
the domain of H, since j(9) is. This last estimate also implies that &j(3) is a Kato
small perturbation of H for ¢ small enough. Then H + ¢j(9) is self-adjoint on 2(H).

In the same way, H +¢j, is self adjoint on Z(H).

IV.3. Proposition. ¢~ H ¢“H "% jmplements o, on /(A)if A,,, C Ay (We recall that
A, is the set of points within a distance d of A and Ay is the set on which $=1.)

Proof. Since H +¢j, is self adjoint on Z(H) the Trotter product formula holds and
eis(H+ eje) — Strong '}Lnolo (ei(S/n)Hei(ss/n)jt)n .
Then for Ae o,

eiSH*eje) go—is(H+ej) strong lim (ei(S/")Hei(SS/")jt)nA(e —ise/m)jep— i(S/n)H) .

n—o

Now since "/ implements o, and ¥ implements t, (which commutes with ) it

follows that €™ implements o, and therefore

eisH eI go~SH* ) —gtrong lim (1), %.,,)"d =T0,A4. [
n—oo

1V.4. Proposition. ¢~ “HeSH T eZnucind) jmplements o, on o, if A CAg and

s+ tmax
Y N =11, Z0VK.
K

Proof. By induction based on
eiS(H +e{niic, Y n2je,))

= pistnH +eje, ) ¥ ma(H +eje, )

= lim [/t +eie) pilsimnatt +eis)Jn

n— oo

By Proposition IV.3 this implements

. . . B
WM (o, Fy,)” =i, g2y =%y +my=1. 1

n—>o0
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We note that j(H+1)"'=e"™j(3)(H+1)"te " is strongly continuous in t.
Thus ) An(ty)j, S [ dtn(0)jt) on Z(H).

We define j(n) = | din(2)j(1) for ne Cg.
Thus |[j() (H+1)" || < 0.
Since +i[H, ji))]= £ jin) where n= 4 n() and [jip) (H4 1) <o, it is a

dt
standard result that j() is essentially self-adjoint on any core for H [24].

1V.5. Proposition. et *eZantling ____, pistH +ajtn),

strong
Proof. H+eZAn(tK)j,Km—g—>H+aj(n) on Y(H) and H +¢j(n) is self-adjoint on
Z(H).

It is a standard result [23] that these properties imply the desired strong con-
vergence. [ ]

We thus conclude that e~ ## " 0D implements o, on .« if A, ; C Ay where
suppnCL=T.T], n=0.

IV.6. Theorem. Let suppnC[—T,T], n=0. Let A=set of points within a distance
T+ 1 of supp 9 and let A be such that A, C Ag, then e*1Me of ; and €™ implements o
on .

Proof. Take s small then use the group property. ¢j(n)=[H +¢j(#)]—H on Z(H),
and since ¢j(n) is essentially self-adjoint on Z(H) the Trotter product formula
holds, and so €% = strong lim [e ™ ‘¢/"H g /mH = efnyyn.

n— oo
The operator in brackets implements o, on .<Z(4). Thus " implements 2,
on ./ ,.

To show € ¢ .o/ ; we use duality. Let Ae.Z, where A'C A Then since ™/
implements the identity automorphism on </ , the same argument as above shows
that e~ H gisH 00 jmplements the identity automorphism, as does ¢/, That is,
MM 4o BIMW = 4, Thus e®We /) =.of ;. O

We have thus attained our first main result, that j(x) is the local generator of
the automorphism o,
We now proceed to investigate the case of a non-zero external field u¢,(g): H,
=H+ud,(g).

Since ||¢,(g)(N+1)"||<oo, it follows by a higher order estimate that
llup (g)(H+ 1) 1| <1 for p sufficiently small.
Thus H, is self-adjoint on Z(H).

Define

Jfl — eitH“j(S)e—itH“ ,
Jn=J den(u)jt.

As before, j*(n) is essentially self-adjoint on any core for H , in particular on Z(H).

w
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IV.7. Proposition. j*(y) 29, j(n) on Z(H).

strong

Proof. Since H,——H on 9(H) it follows that """ ¢ Also, He "'
e

=e Ml —pde” Mk Since |ipe Muf|| <||¢(H, +C) I IH,+C)fISC un-
iformly in x as u—0, it follows that He ™ #Ha ™ o 9(H).
It follows that j*=e™ [ () (H + 1) (H+ 1)e "« converges to j, on Z(H) as
u—0.

Also, [lj2f1| < Ii(9) (H , +C)~ | I[(H, + C)f]| C’ uniformly in g and t.
Finally, 00/ —jm) /1 = [dtin(@) ¢ f = j. /1l Since [[ji' / —j /| >0 pointwise in 1
as u—0 and is uniformly bounded, it follows by dominated convergence that
et f~i -0 O

IV.8. Theorem. e/ “=2, gisitn gpg S e of + (where A is defined as in Theorem

strong
IV.6).

Proof. The strong convergence of "™ follows from Proposition IV.7 and the fact
that j(») is essentially self-adjoint on Z(H). That """ e o/ ; follows by duality as in
Theorem 1V.6, since j(}) implements the identity automorphism on A U

We have thus attained our second main result, that " converges strongly to
/™ Finally, we must investigate the periodic current.

supp&C*

V- .
1V.9. Theorem, ¢#() =~ ol

strong

Proof. It is sufficient to show ji(f)—j*(f) on a core for j*(f). One takes C*(H) and
the proof follows Lemma 111.4. of [17]. [

V. Convergence of States on .o/ and Absence of Spontaneous Symmetry Breakdown
Before discussing the convergence of periodic states (based on Euclidean methods)
we recall the general results concerning local norm compactness [15,17]. The
algebra ./(A) is defined as the C*algebra generated by /@M * @)

supp f, suppg C A and .o/ =norm closure of U </(A), and similarly for .szfo(/l)(y). The
o o A
isomorphism p,, of .&/(4) on to o/(A), is determined by

pvei<¢(f) +rlg) — D))+ (@)} ,

where ACV.

The Hamiltonian H(g)y,, with g =y, has a unique ground state Q, in #,. The
state wy, 1s defined on #(%) — the bounded operators on % — by wV() (@, -Q).
(We use the embedding 7, C# to consider Q€ .#.) The state @ is defined on
,szx/(/l) if ACV by @&, =wy py.

As V— oo the states &, are defined eventually on a dense subalgebra of .

V.1. Theorem [ 17]. Let w be a state on of which is a weak* limit of the &y, Then w is
locally Fock ie for each bounded region ACIR? wl.oZ(A) is normal. [

With techniques used in Theorem V.1 one can deduce the following result.
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V.2. Proposition [17]. Let w be a weak* limit of the @®y. Suppose Ay€ oty (A)
converges weakly to Ae.(A) as V— o0 and also

4, l1=C,
lAll=C.
Then there exists a sequence (V). such that wy (Ay,)—w(A).
There is one other useful result:

V.3. Proposition. Suppose {w,} is a set of states on </ such that {,} Mot (A) lies in a
norm compact subset of the dual of </(A). If w is a state on of which is a weak* limit
of {w,} then there is a subsequence W, ——>w on A (A). If o is the unique weak*

limit point of {w,} then W, ———w on oA (A).

The above proposition follows from the general fact that if a set is compact
with respect to one topology then it is compact and therefore closed with respect
to a weaker Haussdorf topology. Thus the norm closure is equal to the weak*
closure [on ./(A4)] and any weak* limit point is a norm limit of a subsequence. []

Using Euclidean methods [ 7] one knows that the periodic Schwinger functions
converge as V— oo for external field x> 0. By analytic continuation [18] and using
the methods of Proposition L1 of [16] it follows that @, (e'*/?...e"*Y) converges
for fie #(R?). Let w, ,w,, be weak* limit points of &,,. Then w, ,w,, agree on
operators of the form Vv .¢*U". Since w, .w,, are locally normal and
{e'?UV)_ U} is strongly dense in .o/(A) it follows that w, ,w,, agree on .«/(A). It
follows that @,;, has a unique weak* limit point.

Using similar methods as in Theorem V.1 one can deduce that for 4 a bounded
region of R?, {w,Me/(A)} lies in a norm compact subset of the dual o/(4)*.

V.4. Proposition. If o, is a weak* limit of w, as p—0 then there exists a
subsequence {i,},. such that

lim w”"(eij“"(f)) =w, (eij“ = o(f)) .

n— oo

Proof. By Proposition V.3 there exists a subsequence w, which is norm convergent
on /(A). Since each w, }/(A) is normal, the norm limit w, is normal on .&/(A).

. (eij(f)) _ wun(eij“" (f))
=w, (eij(f) _ eiju,,(f)) + (w = wun) (eiju,. (f)) .

The first term in the r.h.s. converges to zero because ¢/ converges ultrastrongly
to €YY and w, }.o/(A) is normal. From the norm convergence of o, [ (A) we see
that the second term also converges to zero. [

Remark. for N =2, is weak™ convergent to o, and subsequences are not needed.

V.5. Proposition. Let Q. be the vector associated with w, by the G.N.S.
construction and 7, the corresponding representation of </, then , for fe CY(R?), Q.
is in the domain of m_(j(f)).
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Proof. The periodic local number operator estimate gives

. 1 . )
VB l= 7 (o + DN
o A R0 L
Hyp+b ™" T H b
1 . 1 . .
S5 U + b )] 7| =C  uniformly in V.
(4 b3 PR G T
Thus
isjt(f) __1]? D olsit isjt
o1 =10) - Do (_———~e = ¢ V) <C2¥s.
.. 2l g isi 5 _ .
Therefore from Proposition V.2, w* — < C*Vs which together with

" L 2—efsi— g7 5
Proposition V.4 implies: w, g =C’vs. [
Since by Theorem IV.6 j(n) generates the automorphism o, on .2/(A) (for
suitable #) we have, for Ae.o/(A),

CU+(O( A)= (l)+(€isj('7)A€_ isj(ﬂ)) =(Q " eisn+(j(7l))n+(A)e—isn +(JmQ L)
s

Thus 55 w (o) =i(r, ()2, 7, (AR, )—iQ ., m, (A, (j()2,). We then
s=0

have

V.6. Theorem. , is invariant under the automorphism group. In particular

w+(¢1(f)):0~

Proof. The constant C in Proposition V.5 is in fact a norm |||f]|| on f which is
continuous in the topology of compact support test functions, as follows from the
discussion of the number operator estimates. We obtain |[j(f)Q||=|||f]ll, which
shows that

[ dxh(x)U)j(SmQ=j((h=9m) Q= [ dxSx)UX)jhm)@ if [dxh(x)=1.

Thus j(x)=U(x)j(hy)U " '(x) plays the role of j(x) in the generalized Coleman
Theorem VIIL.1. That theorem then implies that « is invariant under o and so, in
particular (Q,, ¢ ,(f)Q,)=0.

By Theorem I11.7 we have existence of HD, D, HP, P boundary conditions for
the =0 theory, as well as clustering.

V1. Absence of Spontaneous Symmetry Breaking
for the N-Component P(|¢|*) Model

We consider the n-component P(|¢|?)+ up, model, and use the notations of the
preceeding sections.
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VLI Theorem. If o, is translation invariant, satisfies the spectral condition, and is a
weak*® limit point of finite volume states satisfying higher order and Ni . estimates,
then all the weak* limit points of w, as u—0 are SO(n) invariant.

Proof. Let us denote by g,(s) the rotation of angle s in the plane (x,,,x,), the
orientation being such that the rotation of ¢, , to e, is positive ({e,}; -, is a basis
of R" and ¢, is along x,). Then by a theorem of group theory [31], we know that
each g of SO(n) may be written as g=g"""...g"") where ¢"' =g, (s%)...g,(s}).

0<st<2n
- 1<j<k
0=<sf<m } <=

are called the Euler angles of the rotation g.
One can construct n operators j,(#)...j,(3) which are the time components of
the “currents” associated with the rotation subgroups ¢g,,...,g,:

J® = Jdx ) [, 1 ()~ s (I, 9eCPR).

By N-estimates those j,(3) are self-adjoint, and by N7 estimates they obey local
number operator estimates j, (3) < C(H(g)+b) [H(g) is the Hamiltonian associated
with the finite volume state]. Using once more the Nj  estimate one proves the
local Fock property for infinite volume state w,,. If w., is one weak™* limit point of
the w, as u—0, n™ the corresponding representation of .« associated with @, by
the G.N.S. construction and @, the associated vacuum, one can prove as in the

preceeding section (in particular by using higher order estimates):
d :
35(9+O<§7f+(/1)9+)=(Q+[ﬂ+(i,~(f1)), ' (A4)]Q,),

where o, is the one parameter group of automorphisms corresponding to rotation
subgroup g,(s). By the generalized Coleman theorem (Q, «in™(4)Q2,)
=(Q,n7(4)Q,).

The proof is then completed by the fact that each rotation g of SO(n) can be
written as a product g=¢"" ... g",

Remark. A typical application of this theorem is the case P=/1:(¢¢)*:n=3 and
periodic boundary conditions. For this case the infinite volume state w, may be
constructed by the method of [7].

One can also consider the general case: P a semi-bounded polynomial, no
restriction on n and periodic boundary conditions, since the spectral condition has
recently been proven for this theory [22].

VII. Generalized Coleman Theorem

We consider the following general framework for a field theory in two space-time
dimensions, with an internal symmetry group.

1. # is a Hilbert space carrying a unitary representation U(a) of the space-
time translation group, aeIR?, satisfying the spectral condition H* — P* =0, H =0.
There is a (not necessarily unique) vacuum vector €.
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2. o/ is an algebra of operators (taken to be bounded local observables or to be
unbounded fields). The vector Q is in the domain of all Ae.</.

3. There is a one-parameter group «, of transformations of .27, which commute
with the space-time translations.

4. j(x) is a (not necessarily tempered) operator valued distribution. We define
the smoothed out current

Jox)= [ dx'h(x—x)J(x') ,
where he C3. j(x) is assumed to have the following properties:

a) translation covariance: for any space-time translation a,
Ul)i(x)Ufa)" ! =j(x +a) ;

b) the domain of j(x) contains the vacuum € and j(x)Q=j"(x)Q;

c) relative locality: for each Ae.o/ there exists a diamond D CIR? such that
(j(x)2, AQ)— (A Q,j(x)Q)=0 if xe D°=set of points space-like to all points in D.
This also holds with A replaced by j(y);

d) for all Ae.«/,

(@.2,40)=[ax{(5.00.40) - (4° 2.x. 0],
Pls=0

Within this framework we prove the theorem
VII.1. Theorem. For all seR and all Ae.o, (Q2,0,AQ)=(Q, AQ).

Thus the state (€2, -Q) on &/ is invariant under the symmetry transformations.
This is a generalization of the Coleman theorem “There are no Goldstone bosons
in two space-time dimensions” (see [117). Notice that Lorentz invariance plays no
role (except in the form of the spectral condition) and indeed we do not suppose j is
the time-component of a conserved current (the “space component” plays no role).
The assumption that o, commutes with spacetime translations suffices, instead.
This is particularly useful for models in two space-time dimensions, since the
space-component of the current is more singular than the time component.
Furthermore, we do not need uniqueness of the vacuum, nor its cyclicity with
respect to .o7.

For the application to Theorems IIL.5 and IIL.7 we need only <¢,(f)>, =0and
for this the “Goldstone Theorem” VIL2 suffices. However, for general n-
component models the full Theorem VIIL.1 is required to show the absence of
symmetry breakdown.

VIL.2. Goldstone Theorem. Let E, be the spectral projection onto vectors with
P?=0. Then

d
7| (QoadAQ)= Jdx[(Eqj(x, 192, AQ)— (A" Q, Eqj(x, )Q)].
s=0
Proof. The proof is based on the Jost-Lehman-Dyson representation and is
standard [25]. We remark that in place of current conservation we use the
commutation of o, with time translations. []
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We note that E, may be replaced by E,=E,— E,, where E, is the projection
onto vectors invariant under space-time translations (vacua). This follows from the
following lemma, taking f(x)=(j(x), AQ)— (A" Q,j(x)Q) [in this case F(x) in the
lemma has compact support].

VIL3. Lemma. Let f(x)= | du(p)e’™ where u is a finite complex measure. Suppose
that for each g(t)e 2, F(x) = [ dtg(t)f(t, x) is integrable in x. Then w has no support at
f=0 (and in particular no support at p=0).

Proof. Write u=v(po)d(f)+ p'(p) where v is a measure on p, and y’ has no support
at f=0. Then F(x) integrable implies F(f)=v(§)o(f )+jg(p0)du'(p) is bounded and
continuous, and thus as a measure cannot have support at f=0. Thus v=0. [
Notation. We introduce the function 3,(x)=3 (%) with 3(x)e Cg, supp $C[—2,2]
and 3(x)=1 for xe[—1,1]; reR*.

Then we may write, using Theorem VIL.2 and Lemma VIL3

A (00,40 = Jim (9,0, 42)— (4" ©, 49,9}
s=0

VIL.4. Proposition. If there exists a constant C < oo such that, for all reR™,
IEWi8)QI=C

then for all s
(Q,a,AQ)=(2, AQ).

Proof. (See also [11].)

By weak compactness there exists a sequence Ej(9, )Q2=1, which converges

weakly to a vector 1. Then

4 @0 AQ) = Jim (9, AD (4701, =, 4Q) (A7),
s=0

Since o, commutes with space-time translations, we can replace 4 by
U(@)AU(a)" !, aeR? and we obtain

(p, AQ)— (A" Q) =(p, U(@)AQ)— (A" Q, U(—a)y).

Comparing the support of the Fourier transform with respect to a on both sides,
and using E,;p=0 we conclude

(1, 4Q)—(A*Q,y)=0.

d
Thus — =0.
us s SZO(Q, o AL2)=0

By the group property it follows that (Q,0,A4Q)=(Q2, AQ).

VIL.5. Theorem. In two space-time dimensions, there exists a C<oo such that
IEL(3)QIZC for all reR™.
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The proof of this theorem, which in turn demonstrates the Theorem VII.1, is
based on the fact that §(p?) is too singular to be a distribution in two dimensions
[3]. We need

VIL.6. Lemma. Let F(x) be defined by
Flx—y)=(j(x)2, E4j(y)€2).
Then F(x) has the representation

F(x)= [ ™9 P (a)do+ | €™ P,(a)da,
0 0

where P, and P, are analytic, in &, and odd.

Proof. Because of the positivity of the Hilbert space metric, F(p) is a positive
measure on {p*=0,p,>0}, the forward light cone. Introcuding the variables

- +
pozpl’pv: p02p1>puu+va:p‘x>

u=t+x,v=t—Xx,p,=

the forward light cone becomes p,=0, p,>0 and p,=0, p,>0. Then

F =[Pt PI[5(p )dvy(p,)+8(p,)dv,(p,)],

where supp v, SR* —0
+ o0 . + .
Fx)—F(=x)= [ e™du, )+ [ e™du,(e)=G(v)—H(u).

The signed measures y; are defined by

dufo)=dv(a), o>0

=—dvfo), o<0.
By locality (Property 4c) F(x)— F(—x)=0 for xe D which becomes
u>d v>d
Hu)=0 i +
G(v)+H(u) if veod O < g for some delR

We conclude that
Huw=C, if u>d and H@u)=C, if u<—d
Gv)=—-C, if v<—d and Gv)=-C, if v>d.

By the antisﬁymmetry of F(x)—F(—x) we have C; = —C,. Then we can write G(v)
=C,e(v)+ G(v), where G has compact support and
gv)=1 for v>0
=—1 for v<O0.
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The Fourier transform of G is u, but the Fourier transform of G is analytic while

the fourier transform of &(v) equals llsirr(l) 2i— P which is too singular to be a
-0 p

+62
measure.?

We conclude that C; =0. Thus G has compact support, and being C* by the
smoothness of j, we conclude that the fourier transform of G is analytic, in &, and
odd. Similarly for H(u). [J

Proof of Theorem VII.5. From Lemma VII.6 we have
IEGi(9,)R11> = [ dxdy3 (x)9,(y)F(x—y)

= [ o3, P, (e) + gdaiﬁ,(—aNZPz(a)
= [ dald()rp, ( )+ T dald@Pre, (3)
0 0 r
which converges as r—aoo to P’l(O)ojodoclg(oc)|2a+P’2(0)ofdoclg(—oc)lzoc (by domi-
0 0

nated convergence) which is <oco. [J

Appendix: N7, Estimates

loc

For any t<1, there are constants a,b (independant of g and V and depending on {
only through diam supp () such that:

Ni Sa(H(g)+b), (A1)
Ny Sa(H(g)y +b). (A2)
where H(g)=H(g)—infspectrum H(g).

Proof. We only sketch the proof following [29]. Let P(&,,¢,) be defined by
P(¢y,d,)=A:((9)*)?*: —0:(¢)*: —ug,. Let h be a function of compact support
satisfying —1=h=1 and suppose: 0= P(€,,,)g(x) + Py(€,, &), Py(E,. &) is a
polynomial (we only consider deg P+deg P,).

Ey(g, h)=infspectrum H(g), j (D 1y Pap):(X)(x)dx

Hy(g9)= Hov+NlocV+j:P1(¢1V7¢2V (X)h(x)dx.
E,y(g,h) and E 1V(g) are defined as above.

2 Defining T;=2i—— 7 52, take h,(p) a sequence of antisymmetric functions in & with

1
h,=1 for -<p<1, O0=h,=1 for p=0,
n

1
h,=0 for px=2, 0=Sp<—.
2n

2

146
Then |Ty(h,)| =1n +

;;+62
[T(h,)l = 2|ul([0,2]) < o0

. Since Td—a-—oi(p) it follows that |&(h,)|221nn—— oo. But for a measure
ind n-ao
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By using methods of [16] and of [29] we have: (¢’ bounds)

|Ey(g.h)— Ep(g)l =MD (A3)
M is a constant, D =(diam supp h)+ 1
|E,y(g,h)—E (g =MD. (A4)

(A2) becomes:

[E;p(9)—Ep(@)=C,

where C is independent of ¥V and g and depends only on { through diam supp (.
E (9)—E,(g) is estimed by application of the Duhamel formula:

e QT+ DHwy _ ,~THiv o~ Hy ,~THiv _ je THlve—sHy(Nfoc)e~(l~s)H1Ve—THVdS

the ay; and ay; of Ni,,, are then pulled through.

The terms produced are estimated by using cutoff-dependent bound (for
instance Higher order estimates) and with the “¢’ bounds” (A3) and (A4).

The remaining estimates on kernels carries over for periodic boundary
condition: they are based on Lemma 4.1 of [29] which becomes:

”#{;nchv’hﬂg” § Cnp(ll_‘ﬂ + 1)—n ’

Vv
nn;=0 and suppni,suppnj§l~5,5}

fis the same as in Lemma 4.1 of [29] and f,(x) Z fx+nV). O
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