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Abstract. It is shown that by a small C2 (resp. C00) perturbation of a quasi-
periodic flow on the 3-torus (resp. the m-torus, m>3), one can produce strange
Axiom A attractors. Ancillary results and physical interpretation are also
discussed.

1. Statement of Results

The main purpose of this note is to prove the following fact.

Theorem 1. Let a = (a1,... ,an) be a constant vector field on the torus Tn = W/TLn.
If n — 3, in every C2 neighborhood of a there is a vector field satisfying Axiom A

and having a non trivial attractor.
If n §:4, in every C00 neighborhood of a there is a vector field satisfying Axiom A

and having a non trivial attractor.

We say that an Axiom A attractor is non trivial (or "strange") if it does not
consist of a single periodic orbit (for general definitions, see Smale [7]). The above
theorem improves a result of Ruelle and Takens [6], and can be obtained by
simple modifications of the proof given there. We nevertheless give here a complete
proof, based on the following result which is of interest in itself.

Theorem 2. Let M be a C00 compact manifold of dimension m.
(a) // m —2, in every C1 neighborhood of the identity there is an Axiom A

diffeomorphism with a non trivial attractor.
(b) If M = T2, in every C2 neighborhood of the identity there is an Axiom A

diffeomorphism with a non trivial attractor.
(c) // m^3, in every C°° neighborhood of the identity there is an Axiom A

diffeomorphism with a non trivial attractor.

The proof of these theorems is given in Sect. 2. In Sect. 3 we discuss non trivial
attractors for Axiom A diffeomorphisms of two-dimensional manifolds. Section 4
is devoted to physical interpretation of Theorem 1.
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2. Proofs

To prove Theorem 1 notice that a can be approximated in the C°° topology by a
constant vector field b = (k 1 c , . . . ,k n c)φ0 with c>0 and the k e Z. One may assume
that l / c j , . . . , |kj have no common divisor. There is then an automorphisms of Tn

which transforms b to (0,..., 0, c). It suffices thus to prove Theorem 1 for a of that
form.

Choose a diffeomorphism φ of T""1 according to Theorem 2 (b) or (c) and let
φ be the diffeomorphism of IR""1 close to the identity which induces φ on
jj^i-i^n-i Let α ̂  a £oo function wjth compact support in (0,1) such that α^O

and Jα(ί)dί= 1 define β(u)= Jα(ί)dί.
o

Observe that β(u) = β'(u) = Q for w^O; j8(w) = l and j8'(u) = 0 for w^l . Let (x,u)
be coordinates on R""1 xR with xeR""1, weR The mapping

F(x\(x + (φ(x)-x)β(uϊ

\u) \ u

is a diffeomorphism from R"~1 x [0,1] to R"~1 x [0,1] which is as smooth as φ.

Ά A^ ^1 :Λ:^Λ M .Λ /ΦW\For each x, the curve WH»F j , O gtί^l, joins A ) to 1 . The vector fieldor U
F^ —- on R" 1 x [0,1] is given by

for xeIR"-1 and 0<κ<l. Since β'(tt) = 0 for w<0 and u>l, F ^ — ] may be"
.

periodically extended to a vector field on IRn 1 x IR which projects down to one on
Tn~1xT1 = Tn. Call this last vector field X. The Poincare map of X - or
equivalently cX - from Tn~ 1 x {0} to itself is φ, and cX is near (0, . . . , 0, c), so cX
satisfies the conditions of Theorem 1.

We shall see in Sect. 3 that there are Axiom A diffeomorphisms on
2-dimensional manifolds, which are isotopic to the identity, and where the non
wandering set consists of a non trivial attractor and a finite number of periodic
points. For the 2-torus we can in particular construct a diffeomorphism viewed as
a map φ :IR2-+IR2, such that the square [0, 1] x [0, 1] is preserved, its boundary
modZ2 containing one source (at (0, 0)), two saddle points (at (0, ̂ ) and (̂ , 0)), and
no other point of the non wandering set. This situation is depicted in Fig. 1.

The fact that φ is isotopic to the identity reflects itself in the existence of a map
£-»φf of [0, 1] into C00 diffeomorphisms of IR2 preserving the square [0, 1] x [0, 1]
such that, for all /c, t-*φt is C°° from [0, 1] to the Ck diffeomorphisms. We can also
arrange that (φ,), restricted to a neighborhood of the boundary of the square
[0, 1] x [0, 1] satisfies the flow condition

We shall now use the existence of the family (φt) to prove Theorem 2.



Occurrence of Strange Axiom A Attractors 37

(10)51

Fig. 1 Fig. 2

(a) It will be convenient here to identity IR2 to C so that φ becomes a complex
function. For any integer N ̂  2, and real ε > 0, let a map of the annulus

to itself be defined by

2π ί

'Iv 1M ̂

This map turns the annulus by — , transforming the "square"

by a map related to Λ The effect of the N-th iterate of fN in each
N \ N

one of the above "squares" is thus conjugate to φl = φ. It is now easy to extend fN

(defined in a local chart) to an Axiom A diffeomorphism of any 2-dimensional
manifold M (see Fig. 2). If ΛΓ-xx), then the differentiability oft-+φt shows that fN

tends to the identity in C1 the same can be obtained of its extension to M, proving
the first part of Theorem 2.

(b) Let hN :IR2-»IR2 be defined by

_i
N

^2,^1N N2/
For any integer N^2 a map fN of T2-IR2/Z2 is defined by

N2 N
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(1,0)

Fig. 3

Fig. 4

in the "square"

fc2-l ^2

NN - l~ N9 N ~ z N

for k1 ? /c2 = 1,..., N. The map fN permutes cyclically the above "squares", and the
effect of the N2-th iterate on each "square" is conjugate to φί — φ (see Fig. 3). Thus,
fN is an Axiom A diffeomorphisms, and the differentiability of t-*φt shows that fN

tends to the identity in C2 when ]V—»oo, proving the second part of Theorem 2.
(c) For every integer N ̂  2 there is an Axiom A diffeomorphism hN of the circle

S1 — 1R/Z with nonwandering set consisting of the attracting periodic orbit
' 1 J V - 1 Ί , , . . .. , . f 1 3 2JV-11

repulsive periodic orbit <——, — , . . . , -
N

assume that Λ U — —

and the

ί + fc
2N

We

i

N/ TV
C°° topology when JV->oo
now defined by

x
(x

and we also assume that hN tends to the identity in the

A map fN : [0,1] x [0,1] x S1^, 1] x [0,1] x S1 is

\ hN(y]

and the differentiability of t-+φt shows that fN tends to the identity in C°° when
N -> oo. It is easy to extend fN to an Axiom A diffeomorphism of any manifold M
of dimension m ̂  3, such that this diffeomorphism is close to the identity in the C°°
topology for large N. This proves the last part of Theorem 2.

Remark. It would be possible to modify the above constructions so that the Axiom
A diffeomorphisms constructed have only non trivial attractors.

3. Axiom A Attractors in Two Dimensions

An Axiom A diffeomorphism with a non trivial attractor has been constructed on
T2 by Smale [7] : The DA diffeomorphism. It is not isotopic to the identity, and its
existence is due to the particular topology of T2. It was not clear that a non trivial
Axiom A attractor could exist on the sphere S2 until Plykin [5] produced an
example. Plykin's example is orientation reversing, but its square is orientation
preserving and therefore isotopic to the identity. In general if an Axiom A
diffeomorphism of S2 has a nontrivial attractor, we can find a disc neighborhood
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Fig. 5 Fig. 6

Fig. 7 Fig. 8

D2 of this attractor which is mapped into itself and study the corresponding map
D2-*D2. If it is orientation preserving this map can be used to introduce a non
trivial Axiom A attractor into any compact 2-manifold. Figure 4 gives an example
of a non trivial Axiom A attractor different from Plykin's example. The shaded
area is mapped into the dark area in the manner indicated in Fig. 5. This map is
not orientation preserving, but its square, pictured in Fig. 6, is. The collapsing of
the shaded area of Fig. 4 to a line in Fig. 5 and Fig. 6 (more precisely a "branched
manifold") is an idea due to Williams [8]. Other Axiom A attractors are pictured
in Fig. 7 and Fig. 8, where Fig. 8 is in fact Plykin's example.

4. Physical Interpretation

Theorem 1 is relevant to the discussion of the bifurcation theory of turbulence by
Ruelle and Takens [6]. Let the time evolution of a viscous flow be described by a
differential equation

where μ is a parameter ("Reynolds number"). Suppose that xμ is a steady state
which is stable for μ<μc, and looses its stability as μ increases because pairs of

complex conjugate eigenvalues of -^(x^μ) cross the imaginary axis. Then
C/yC

Theorem 1 implies that when three pairs of complex conjugate eigenvalues have
crossed, a motion asymptotic to a non trivial Axiom A attractor may appear. The
time dependence of the flow then becomes chaotic, with sensitive dependence on
initial condition, a situation which one may call turbulent (see Lorenz [2], Ruelle
and Takens [6]).
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Theorem 1 is also relevant to another physical situation, that of a weak
nonlinear coupling between oscillators. A system of n independent oscillating
systems may be described by the equations

where x1elR/Z, ... ,xneIR/Z. Theorem 1 shows that if π^3, a weak nonlinear
coupling may produce a "turbulent" behavior. Theorem 1 fails for n^2. In fact
flows on two-dimensional manifolds have rather special properties for instance it
is known that their topological entropy always vanishes (see Young [9]).

The examples of non trivial Axiom A attractors discussed in Sect. 3 are
relatively complicated and would not occur in very simple polynomial maps of 1R2.
It is not known if "turbulent" behavior could be produced by non Axiom A
diffeomorphisms for instance the mathematical status of the "Henon attractor"
(see [1]) is in doubt.

A phenomenon which does appear quite naturally in diffeomorphisms of
2-manifolds is the persistent occurrence of infinitely many sinks (see Newhouse
[3], [4]). One has an open set in the Cr topology (r^2) and in this open set a
residual subset of diffeomorphisms which have an infinite number of attracting
periodic orbits. Such open sets can be found arbitrarily Cr near the time-one map
of a flow with a hyperbolic rest point whose stable and unstable manifolds
coincide. Thus they can be found arbitrarily near the identity. The method of proof
of Theorem 1 yields then the following result.

Theorem 3. Let a = (aί,a2,a3) be a constant vector field on the torus T3. In every
C°° neighborhood of a there is a vector field X with infinitely many attracting
periodic orbits. This situation is persistent in the sense that in some open Cr

neighborhood of X there is a residual set of vector fields with infinitely many
attracting periodic orbits (any r^.
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