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Abstract. First we derive stability properties of KMS states and subsequently
we derive the KMS condition from stability properties. New results include a
convergent perturbation expansion for perturbed KMS states in terms of
appropriate truncated functions and stability properties of ground states.
Finally we extend the results of Haag, Kastler, Trych-Pohlmeyer by proving
that stable states of L'-asymptotically abelian systems which satisfy a weak
three point cluster property are automatically KMS states. This last theorem
gives an almost complete characterization of KMS states, of L'-asymptotic
abelian systems, by stability and cluster properties (a slight discrepancy can
occur for infinite temperature states).

1. Introduction

Let (2, 1) denote a C*- (or W*-) dynamical system composed of a C*- (or W*-)
algebra 2 and a strongly continuous (o-weakly continuous) one-parameter group
of *-automorphisms 7 of 2. If § is the generator of T and for P = P*e A one defines
3, by 0,(A)=i[P,A] then one can introduce the automorphism group t*
generated by d+90, and compare the structures associated with (2,7) and the
perturbed system (21, t%).

There are two approaches to this study. The first is a “time-independent”
perturbation theory pioneered by Araki [2,3], and relying on results of Connes
[8]. This method is designed for comparison of t-KMS states and t¥-KMS states,
i.e. modular states over (21, t), and (2, t"), respectively. The second approach is a
“time-dependent” perturbation theory introduced by Robinson [16]. This second
method allows comparison of more general states for systems satisfying suitable
ergodicity hypotheses, e.g. conditions of asymptotic abelianness.
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The primary object of these investigations is the set of “stable structures” and
various notions of stability are possible. The method of Araki and Connes
establishes that there is a one-to-one correspondence between (t, f)-KMS states
and (%, B)-KMS states for all R and that every extremal (z*, f)-KMS state is a
vector state of an extremal (z, f)-KMS state. This normality is a natural form of
stability. On the other hand Robinson [16] remarked that a t-invariant state w”
evolves to a unique t-invariant state w, i.e.

o(A)= lim o (z(4)
for all Ae?, if, and only if]
T
lim [ dtw"([P,7(4)])=0
— 00 “r

for all Ae . Now if w” is contained in a family of states w**, 0 <A=1, for which
o’ - in a suitable sense as A—0 then one formally obtains the “stability
condition”

Jim f dto([ P, ,(A)] =0.

This form of stability was introduced by Haag, Kastler and Trych-Pohlmeyer
[10]. These authors proved that if the condition is valid for a dense set of P, Ae U,
and if (U, 7, w) satisfy certain ergodicity assumptions, then w is automatically a
(t, B)-KMS state for some fe RuU{+ oo} (see also [6, 12, 13]). This striking result
showed that stability and the KMS condition are to a large extent equivalent.

Since these early works there have been two types of investigation of stability.
The first derives stability conditions for special states, e.g. KMS states or ground
states, and the second aims at deducing the KMS condition from stability and
ergodicity. Although the initial investigations were quantum-mechanical sub-
sequent studies have examined the classical case [1, 14]. We give various results of
the first kind in Section2, and a general theorem of the second kind, partially
based on a technique of [11], in Section 3.

2. Stability Properties

Let BeR®. A state w over the C*-(W*-) dynamical system (21, 7) is defined to be a
(7, B)-KMS state if

o(At;y(B))=w(BA)

for all 4, B in a norm (¢-weakly) dense t-invariant *-subalgebra of the *-algebra
2. of entire analytic elements for 7 (and e is normal in the W* case). It follows that
 is t-invariant when f+0, and we let (%,,11,, U,, Q,) denote the covariant
cyclic representation generated by w. Moreover Q, is separating for 1T ()" and t
is the modular group associated with the pair (I7,(2)", Q) if = — 1. For any pair

! In the arguments of the rest of this section it is implicitly assumed that > 0. The case § <0 can be

treated analogously, while Theorems | and 2 are trivial in the case f=0
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A, Bell (N)" there exists a complex function F, p which is analytic on 2,
={z;Imze(0, f)}, bounded and continuous on ,@ﬂ, and satisfies

Foslt)=(2,, AU, ()BQ,)
F st +i6)=(2,, BU(~1)AQ,).

If A, Be U, then F 4 4(z) =w(At,(B)) and by “abus de notation” we will consistently
write

F . 4(2)=(Ar,(B).
These results extend to several variables [2,3]. If

PP ={z=(zy,....,2,), Imz,€(0, f),Imz,€(0,Imz;_,),j=z,...,n}
and 4, B, ..., B,eIl ()" then the function

F 1 5,(0)=(Q,, A%, (B,)...%, (B,)Q,),

where £, (B)=U,,(t;) B,U,,(t))*, has a holomorphic extension to the tube 2 which
is contmuous and umformly bounded on 2. We also write

F 4 py(7)=a(Az, (B,)...7, (B,)

for this function and this is consistent if By, ..., B,e 2. The bounds

90 [F. @ =141 T 13

j=1

are valid.

Next define the perturbed group t¥ as the group with generator § +J, where &
is the generator of t and §,(A4)=i[P, A] for P=P*c A and all AeA. Thus 7” is the
unique solution of the norm (g-weak) differential equation

dzf (4)
dt

for Ae D(6). This can be solved by integration and iteration and one finds

=17;(8(4) +5p(4))

th-1

TA=5 A+ T 7] dtlg dty.. | dt, [, (P)L... 5, (P) (A1

n=1
This is the original definition given by Robinson [16]. There is an alternative
formulation of 7, which was independently derived by Araki [2], Connes [8], and
Robinson [16]. First one defines I,”e A as the unique solution of Iy =1 and
drf
dt

Thus

=il;’7(P).

ln—1

=1+ ) i"}dtltjldt2 j dt,t, (P)...t, (P).
0 0

nz1
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One then finds that I;? is unitary, it satisfies the co-cycle relation
Iy, =I"t(Iy)

and
(A= (AT,

If w is a (z, B)-KMS state then t+~w(AILF) has an analytic extension to the strip
9, which can be constructed via the functions F, p(z) and the perturbation series.
One has in particular

O(ATE)  =o(A)+ Y (—1y[ds, [ds,... | ds,o(Azy (P)...7, (P))
n=1 0 0 0
for ae[0, B]. The bounds on F, , then establish that AeR—w(AI};?) is an entire
analytic function. A key result of Araki is that w(I;5)>0 and the state " defined
by

o”(A)= (AL o)

is a (zf, f)-KMS state. Moreover w is an extremal (z, f)-KMS state if, and only if,
" is an extremal (=%, B)-KMS state. A simple proof of this is given in [17].

It follows from the above that A—w**(A4) is analytic in a neighbourhood of the
origin and our first result concerns the coefficients of the Taylor series expansion of
this function and its radius of convergence. The coefficients are identifiable as
integrals of truncated functions and we must first recall the definition of such
functions.

Let 3 denote an arbitrary index set and F a function from the non-empty
ordered finite subsets of I to the complex numbers. The truncation Fy; of F is
defined recursively by

FI=) [] Fi(),
PrJePr

where the sum is over all partitions £, of the finite set I, and the elements of each
Je P, retain the order of I. If « is any point in I one then has

F)= 3 F(DF1\).
JcI,Jsa

This follows directly from the recursion relations by noting that the coefficient of
an arbitrary term F,(J) in these relations is given by

Y Il FAK)=F1\).
P10 Ke?115
These definitions can now be applied to a state o and a set A, of elements of A to
define truncations wp(A4,; 4,;...; 4,) of w(A4,4,...4,).

Theorem 1. Let (2, t) be a C*-, or W*-, dynamical system and w a (t, §)-KMS state
over 2.
It follows that for each Ae U and P=P*ecA the truncated function

Fulty,.t)=oi4;1,(P);...; 7, (P)



Stability Properties and the KMS Condition 213

is the boundary value of a function F ,(z) (=wp(A;7.(P);...; 1, (P)) which is
holomorphic in the tube @‘ﬁ"’, continuous and uniformly bounded on its closure 97,
and

sup [F ,(z)| <2"n! [Pl llAll.
ze@;

Moreover if 2llP|l <1 the perturbed (¥, )-KMS state w® given by
w"(4)=w(ALR)/o(L)
is determined by the uniformly convergent series
B Sn—1
of(A)=w(A)+ Y (=1 fds;... | ds,op(A;1,(P);...; 1,(P)).
nz1 0 0

Proof. The truncated functions are finite linear combinations of the non-truncated
functions and these latter are holomorphic in 2§ etc. If we define F, as the
appropriate combination of these holomorphic functions we obtain the first

statement.
To derive the bound on F, we first note that wy satisfies the KMS condition

wr(4; Ttn(P)§ s thH(P); Tt)«+iﬁ(P); s 7t1+ip(P))
=wT(Tz,-(P)§ T, (P)s AT (P Ty (P)).

This follows from the definition of w; and the KMS condition for . But the
Phragmen-Lindelof theorem implies that F, attains its supremum on one of the
edges Imz, =Imz,=...=Imz;=p, Imz;, , =Imz,;, ,=... =Imz,=0. Hence

sg;} IF ,(z)| < Sup sup lwp(z, (P); .. s 7, (P); A5 o5 7 (P
But a function F and its truncations F are related by

F)=F D)+ Y F(J)HFI\J).
aedJcI
F
Thus if [F(I)| £ 1, and |F(I)] <2'" = (1| — 1) for |I| <n where n>2 (|I| denotes the
number of points in I, then for |I|=n+1

IF(D|<1+ Z "C,_, 2" m—1)!

m=1

n 1 1
=2utd(2ruH~ 1t
2 n.{(2 a7t Y PE——TY 2,,_,,,“}

m=1

S2'nl{E+et?—1)<2mn!

We can apply this result to wg(4,;4,;...;4,) with 4,1 <1. One has
[w(Ay,4,... A) =1 and o (4)| =1, lo(4;; A;)| =2 and hence

(A5 4,55 A) 2" (n—1)!

for all n=1 by induction.
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Combination of these results immediately yields

sup |F,(z) £2'n! IPl™[lAll.
ze@f';

Next suppose AeR—w** has the power series expansion

w?(A)= Y 1&P(A).

nz0

Define wf(A4) by wf(4)=w(A4) and

P (4)= jdsl "1 ds oAy (P)...7i (P).
0
Hence
w”(A)=<ZOwﬁP(A)>/< Z,Owﬁp(ﬂ))-

Multiplication by the denominator on the right and term by term comparison of
power series then gives

ol(A)=d Z (AP @). (x)

In particular @f(4)=w(A4) and
OT(4) =P (4) — o A) (1)
== fdsz(A Ti(P)).

0

Now for I={i,, ...,i,} adopt the notation
o(d; 1) = o(Ay, (P)... 7, P))
or(A; D+old; 7, (P); ... 7, (P)

and assume that

v

B Sr—1
d)P(A)z(—l)(f)ds1 g ds,or(A;{1,2,...,r})

for r<n—1. But then

Sn-1

n—=1p
of (A)=df(A)+(=1) ZO (f)dsn_,ﬂ. j ds,op(A; {n— s 1))

Sn-r-1

B ’
fdsy .. | ds,_, 0@ {,...,n—r1})
0 0
by (*) and the definition of wf(1). By change of integration variable this gives

w,,P(A)=d),,”(A)+(—1)”fds1 snf_ldsn Y wp(A4; No(l; 1\),

0 J;I
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where I={1,...,n} and the sum is over the strict subsets of I. But the relation
between a function and its truncations gives

Y. on(A; Na(l; I\N)=a(d; D) —o(A4; 1)

J;I

and hence
Sn-1

dF(A)=wf(4)—(— 1)"jlzds1 o | ds{o(4; D) —w(A4; 1)}
0 0

B Sn-1
(1) [ds, .. | ds,an(A; ).
0 0

This establishes the correct identification of the perturbation series for w® by
induction.

Next consider the orbit of w under the evolution t*. The time dependent
formalism developed in [16] indicates that under certain general ergodicity
hypotheses w evolves into a (%, B)-KMS state. If w is extremal, it is natural to
define the system as stable if the evolved state is the unique (%, §)-KMS vector
state w” of w. Explicitly this definition of stability requires that

wP(4)= lim o(tP(4)).
t— T
But it then follows from the t-invariance of w and the iterative form for ¥ that

OF(A)= lim o(c_cf(4)

o)+ tim ¥ (=i fde . [ dyolls, (P[P AT 1D,

th-1
Thus one obtains a series for »® which is seemingly different to that of Theorem 1.
The identity of these series, term-by-term yields a set of stability conditions which
we next derive for strongly clustering w.

Theorem 2. Let w be a (t, f)-KMS state over the C*-, or W*-, dynamical system
(A, 1) and assume that w is strongly clustering, i.e.

i (Ar,(B) = o(4)w(B)

for all A, Be .
It follows that
T T,

lim .. lim i [ de [ dt. Ty dt, o[z, (P),[...,[x,,(P), AT...]])
n 0 0

T,»to T t bt

1

B Sn—
=[ds,... [ ds,0p(A4;7,(P);...;7;,,(P))
0 0
for all A,PeW and in particular
T
(*) Tlim | dto([4,7(P)])=0
— 00 “r

for all A, Pe.
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Proof. Let Pe¥_ and introduce P(s,, ...,sj)=risj(P)

Tj+1 Sj-1

f d;, j ds, ... f ds;o[z,,, (P), Bl (P(sy, ..., 8)))

7,, (P). We first argue that

tsl

=—ijdsl...fdsjﬂw(Brt)(P(sl,... i+ 1)) —Btp  (P(sy,..8504)))-
0 0

This follows from the KMS condition and contour integration. The KMS
condition allows one to re-express the left hand side as the difference of two terms
L, and L,, where

Tj+1

B Sj-1
| dtjﬂgdsl... (j) ds;o(Bt,,, (P(B,sy5 .., 5)
I.

Ty+1 Sj-1

f dtjﬂfds1 f ds;(Bt,,, (P(sy, ..., 5, 0))).

Next by a change of variable s, =5, —s,+B; k=1,...,j—1land s;=f—s, and a
subsequent shift of the contour of integration one finds

Tj+1

B Sj-1
L,= | dtjﬂjdsl... [ ds;o(Br,,, (P(B—5;55,=5}...,5;-1—5,0))
0

4y

I
OL—u‘Q

f ds; . {(Bt, (P(B—5;+ 51 1 s S5 = 8,451 1,5541))

—a)(BrT A PB=8;4 85415 Sj- 1 =880 184 D)}
+L,.
Another change of variable gives the desired identification of L, — L,. A similar

identity is valid for a general PeQ by approximation with analytic elements.
Next define C and X by

Cltys o t,) =Lt (P) [ons [70,(P). AT...]
X(Tyy s T)= § dt, [ dty... | dt,o(Cley,rt).
0 ty

n-1

Application of the above identity and strong clustering gives

n—1 Ty T
; _ An—j : dt,... | dt.o(C(t,...t)
Tl...l%,fx}'in(Tl"..’n)_jzl _(—l) JT]...lTlfr—{i-oog ! tjj—‘1 ! ( (1 J)
B Sn—j-1
~§dsl... [ ds,_;o(P(sy, .5, )
0
B

=iy sy [ ds,(AP(s s ns,)
0 0

for n=2 and

lim X(T —lfdsl{co(Ar,sl(P)) w(A)w(P)}.

T—>=+
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The proof is concluded by induction. The last equation establishes the case n=1.
Suppose the result is true for j=1,...,n—1, then the above identity gives

lim  X(T,,..,T)

Ti..Thy—>t 0

n—18 Sn-;-1
= (= L s ] ds, o, (P)n,(P)

B Sn-1
Jds, g [ ds,op(A; .57, (P)
) 0

B Sn—1
+(=ifds,... | ds,o(At, (P)...7,(P))
) 0

Sn-1

=(—1)" Ijj dsy... | ds,op(A;1,(P);...; 74, (P)),

where we have changed the integration variables and used the general relation
between a function and its truncations as in the conclusion of the proof of
Theorem 1. This completes the induction.

The last statement of the theorem follows by subtracting the two limits
T— + oo in the case n=1.

Next we examine stability and instability of ground states, and ceiling states.
There are various equivalent definitions of such states. We define w to be a t-
ground state of 2 if

—iw(A*6(A4))=0
for all Ae D(0) where 6 is the generator of 7. Similarly w is called a t-ceiling state if
iw(A*6(4))=0.

These states are also called (r,+ 00)-KMS states, and (r,— 00)-KMS states,
respectively. This is motivated by the fact that if a sequence w, of (z, $,)-KMS
states converges weak* to a state w as §,— oo (f,— — o0) then w is a t-ground state
(z-ceiling state). This convergence property is an easy consequence of an in-
finitesimal generator characterization of KMS states given by Sewell [187], see [7].

Alternatively, and equivalently, w is a z-ground state if @ is t-invariant and if
the corresponding unitary representation U (t)=e"" given by

U,0II(A4)Q,=1I(t(A)R2,

has the property H,, = 0. If this is the situation then U (t)e IT ()" by the Borchers-
Arveson theorem [4,5,7].

Furthermore w is a 7-ground state if, and only if, for each pair A, Be2l there
exists a function F, 5 which is continuous in Imz=0, analytic and bounded in
Imz>0 and such that

F 4 p(t) = (A7/(B)).

Again we will write F 4 4(z) =w(At,(B)) even if B¢..

Similar characterizations of ceiling states are possible but in the first one has
H_, =<0, and in the second Imz <0. We will concentrate on ground states and omit
further reference to the entirely analogous ceiling states.
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There are several distinct notions of stability for an extremal (z, §)-KMS state.
The strongest notion is the existence of a (t¥, §)-KMS vector state. But it was
shown in [16] that the ground state of the ideal Fermi gas does not have a t-
ground state as a normal state for a certain class of perturbations of the form
P=a*(f)a(f). [We use the standard notation a(f) etc. for the annihilation
operators etc. which generate the CAR algebra describing the Fermi gas.] The
failure of this form of stability has a clear physical origin. The perturbation causes
the formation of an infinite number of infra-particles, i.e. particles with in-
finitesimally small energy, whenever f fails to vanish on the Fermi surface p>=p
and the ground state of the perturbed system has infinite density.

A second notion of stability is given by the condition

() Jim [ dtofA,5(P)=0

for all A, Pe®U, derived in Theorem 2 for (t, §)-KMS states. If w is a strongly
clustering ground state, and the Arveson spectrum, [4], of P does not contain zero,
then the condition (%) still holds, but it does not hold for general A, P in this case
unless the Hamiltonian has an energy gap at zero energy. This is a consequence of
the following theorem. In particular, condition (x) fails to hold generally for the
free Fermi sea, as one can also verify directly for A =a(f), P=a*(f), where f is an
I2-function such that f(r) is sufficiently ugly near the Fermi surface p?>=p. Thus
the infra-red divergence is the sole root of instability of this second type for
strongly clustering ground states.

Theorem 3. Let (,7) be a C*-, or W¥*-, dynamical system and w a strongly
clustering t-ground state. Let U (t)=¢e" < be the unitary group which implements t
in the cyclic representation {#,,II, Q_}.

The following conditions are equivalent

T
(*) L. lim | dto([4,7,(B)])=0
T— o0 “r
for all A, Be .
2. T11_1:n f dt{w(At,(B))—w(4)w(B)} =0
© T
for all A, Be .

T
© —T
Sor all ye .
4. There exists an ¢>0 such that
o(H,)S{0}U[e, 0>,
where a(H ) denotes the spectrum of H .

Proof. 3=>2=-1 trivially. We next prove 1=3. It evidently suffices to consider y
such that (p,Q,)=0. Now, as o is strongly clustering it is pure and (#,, IT,) is
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irreducible. Therefore one may use the Kadison transitivity theorem (see, for
example, [9, p.44]) to construct an Ae A such that IT,(A4)Q, =1 and II,(4%Q =0
Therefore
T T
lim | di(p, U, ()p)= lim [ dtw([4* 1,(A4)])
T-w “p Tow ‘g
=0.

3=4. Let H be the restriction of H, to a closed separable U -invariant

subspace # of #,,©CR,, H= [ rdE(r) the spectral decomposition of H, and dv
0

the measure in the corresponding spectral representation. Then for v, pe # we
have

T
[ de(y, e )= [ dt y1(t) (p, " @)
=T

-

Hence, assumption 3 implies that

% 2sin(Tp)
r

250D 4 Ep) o).

lim |

T-w g

g(r)dv(r)=0

for all ge L'(dv). But the uniform boundedness theorem then implies that the
functions

e 2sin(T,r)
r
are uniformly bounded in I°(dv) for all sequences T, such that T,— 0. It follows
immediately that v([0,e>)=0 for some ¢>0, or

o(H)E[e,00).

A priori, ¢ depends on the choice of the separable U -invariant subspace # of
#,0CQ,, but as the closed subspace generated by a countable number of such
subspaces is still a separable U -invariant subspace, it follows by an ad absurdum
argument that one may choose an ¢>0 independent of the subspace.

4=-3. By restricting to a separable, U -invariant subspace we may assume that
A, is separable. Keeping the notation above, the strong clustering assumption
means that

tlilglw £ e f(r)dv(r)=0

for all fe L(dv).
But if ge L(dv) then f(r)= @ is an L!-function since ¢ >0, and hence

lim j2s1n(Tr)

T— o

g(r)dv(r)=0,
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that is

T

Tlim | di(yp,e™p)=0

for all p, pe #,0CQ,,.

Note that the implications 1<>2<>3<>4 in Theorem 3 remains valid when the
strong clustering assumption for w is replaced by the assumption of extremality
among the t-ground states on W=C1+A. We preferred the strong clustering
hypothesis because this is sufficient to derive condition 1 for (z, f)-KMS states with
peR.

Although the stability condition (x) is not valid in general for ground states it is
possible that it holds for all 4, P in a norm dense *-subalgebra 2, of 2A. We have
not been able to establish this except for C*-dynamical systems which satisfy a
strong condition of asymptotic abelianness.

A C*-system (2, 1) is defined to be L'(2,)-asymptotically abelian if

{ dt|fA (B <+ o0

for all A, BeA, where A, is a norm dense *-subalgebra of A. This type of
condition first appeared in [16] where it was used to establish the existence of the
Mgller morphisms

Y. (4)= t_l}ig_rnoo 2 1(A)

for PeU,,. It was verified in [16] for the CAR algebra over Z*(IR") and the free
evolution.

Theorem 4. Let (2, t) be an L(A,)-asymptotically abelian C*-dynamical system.
It follows that

@) [ @A @)=0

for all A,BeN,, and for all (t, §)-KMS states where fe RuU{ + c0}.
Proof. First adjoin an identity, if necessary. One can extend 7 to A =C1+ A by

(o )=t (A); (o A)ed

and a straightforward argument with an approximate identity gives a one-to-one
correspondence between the (z, f)-KMS states of (2, t) and the (7, f)-KMS states @
of (2, %) with ll@|All =1. Thus we can assume that 2 has an identity.

If =0 then w is a trace and (x) is trivially true.

Next assume felR\{0} and w is an extremal (t, §)-KMS state. Therefore w is a
factor state and as (%, 7) is asymptotically abelian in norm it follows that it is
strongly clustering, [7]. Thus the stability condition (x) follows from Theorem 2
and it extends directly to finite convex combinations of extremal (z, f)-KMS states.
Finally because the L'(21,)-asymptotic abelianness provides a uniform bound one
can extend (), for 4, Be A, to all weak* limit points of finite convex combinations
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of extremal states. But the Krein-Milman theorem allows any (z, §)-KMS state to
be approximated in this manner and this completes the proof for finite f.

The cases f= + oo are identical so we assume ff= + oo.

First for ¢>0 define y, by specifying its Fourier transform %, through #.(p)
=(2m)~ 1%/¢ for pele,2¢] and #,(p)=0 otherwise, i.e. by Fourier transformation

2¢ ) ) . ¢ ¢
1) = { dpelpt/8=e3tat/2 (Sln %)/(%)
Hence
lim 7, (6)=1.

But it then follows from the Lebesgue dominated convergence theorem, L'(21,)
asymptotic abelianness, and Fourier transformation that

T drola qan=tim | der@o(t; 5 (49)

2e
= lim [ d(I1,(4%)Q,, E,(p)T1,(4%)2,,)

v

0

for all Ae A,. We have used E, to denote the spectral measure associated with the
unitary group U, which implements t and the second step follows because the
support of E_ is in [0,00). But an identical argument with 7, supported by
[—2¢,¢] gives

T dioCa (=~ lin [ A0, EMIAHR)

IA

0.

Therefore

Of dtw([A,7(4%)])=0

for all AeA, and the general result follows by polarization.

We end this section with a discussion of the stability condition proposed in
[10]. If (A,7) is an asymptotic abelian C*-dynamical system and w is a -
stationary state of 2, this stability condition is that for P=P*e?, and AcR
sufficiently small (depending on P) there exists a t*’-stationary state w*” on A
such that

3 AP, _
11_1}(1) ' (A)=w(A4)
for all Ae?, and the stability property
lim ™(z(4) =o(4)

holds for all Ae . If w is a strongly clustering (7, §)-KMS state these conditions
are satisfied with w*” equal to the normal state of Theorem 1. Next assume that
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is a strongly clustering ground state satisfying the stability requirements of
Theorem 3, i.e.

a(H,)S{0}ule, 00)

for some ¢>0. It follows easily from resolvent identities that H + AIT (P) has a
unique normalized eigenvector y** (up to a phase) of minimum energy for small
enough 4, and one may verify that the corresponding vector-states w*” satisfies the
stability properties above. ‘

In the case that w is a strongly clustering ground state, but H,, has no energy
gap at zero, the existence of normal perturbed ground states w?*’ does not
necessarily follow. We have already remarked that the free Fermi sea is an example
of this, [16]. However, the ground state of the free Fermi gas is unique [7]. It
follows from the next Proposition that this ground state is stable in the sense of

[10].

Proposition 5. Let (U, 1) be a C*-dynamical system where W has an identity and
which is LY )-asymptotic abelian. Assume that (2, t) has a unique ground state .

It follows that for each P=P*eW,, there exists a ground state o for (W, ). If
{w?Y is an arbitrary family of such ground states, then

3 AP, _
1111_{13 ™ (A)=w(A)
and

lim of(1(A))=w(A)

t>t oo
for all Ae N, P=P*eN,,

Proof. Since H,+1II,(P) is bounded below for all P=P*e%, the existence of a
ground state for t* follows by taking a weak* limit of a sequence of vector states,
where the H  + IT (P)-spectrum of the vectors tend to the infinum of the spectrum
of H,+1I,(P), [7]. Let o be an arbitrary ground state of (2, %) for each P.

The assumed asymptotic abelianness ensures that the Mgller scattering
morphisms

yh(4)= tlirinw ™ 7(A)
exist for P=P*e,, [16]. y, define *-isomorphisms between A and y%(2A)
satisfying the intertwining relations

y}-)_k = TtP 'YI-)_!-

for all telR. Hence the C*-dynamical systems (y%(20),77) have a unique ground
state o%, which are defined by ¢% «y%. =w. Since w®|yL() is a ground state, it
follows that

a)Po’))i =
and hence

oA =0’y (4)= lim ol (4).
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Now, by the estimate

lpAP(4)— All 2] | dsl[P,z(A4)]ll
0
which is valid for 4e U, it follows that
1 AP _
}l_rf(l) Y5 (4)=4
for all AeA. Combining this with w**(y*F(4))=(A), it follows that
lim o (A)=w(A).

Later on, in Corollary 7, we will discuss a fourth stability condition which is
equivalent with the one considered in Theorem 4.

3. Stability and the KMS Condition

In the previous section we studied various stability properties of KMS states and
our next aim is to derive a result in the converse direction, i.c. we establish a result
of the Haag, Kastler, Trych-Pohlmeyer type. Roughly we deduce that the extremal
T-invariant states of asymptotically abelian systems which are stable under local
perturbations are necessarily extremal KMS states at some value of fe RuU{+ c0}.
In fact we assume L'-asymptotic abelianness and a three point cluster property.
Within the framework of L'-asymptotic abelianness the following theorem essen-
tially characterizes extremal (t, f)-KMS states with a slight discrepancy if f=0.
This discrepancy arises because the extremal (z,0)-KMS states, i.e. the extremal
invariant traces, are not necessarily factor states, but this discrepancy is absent if 2
has a unique trace state. (This theorem was claimed to be true in [11], but the
proof was not completed. For elementary results of extremal invariant states over
asymptotically abelian systems etc., see [7].)

Theorem 6. Let (U, 1) be a C*-dynamical system which is L'(2)-asymptotically
abelian, and o a t-invariant state over N. Assume that

1. Either
inf |t-—t |—>oo w(ftl(Al)th(A2)1t3(A3))
= (A ,)o(4,)o(A5)

forall A, A,, A;e U, or w is a factor state.
2. o satisfies the stability requirement

[ deoCP,z(4)])=0

for all A, PeU,.
It follows that w is an extremal (z, §)-KMS state for some fe RU{+ c0}.

Proof. As t—1(B) is uniformly continuous for each Be,, it follows from the
LY(A,) asymptotic abelianness that

Jim IL4,7(B)] =0
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for all A, Be,, and hence for all A4, Be . Thus if w is a factor state it follows that
igf_lti—tj[*oo w(Tt’(Al).“TI"(A”))
=w(A,)...o(4,)
for all neZ, and all 4,eN. Therefore it suffices to prove the theorem under the
three point clustering assumption.
If {E,} is an approximate unit on it follows that
lim I7(E)2, = Q,
and using this one easily proves the two point cluster property

tligrnw w(At,(B))=w(A)w(B)

from the corresponding three point property. Also, we may assume that 2 is
closed under regularization by L!-functions.
Let us define

F)=F 4, p(0)=(P;7,(4))—o(P)o(4))
G()=G,, p(O)=0(1(A)P)—o(A)w(P)
for 4;, P,e¥,,.

Observation 1 (Haag and Trych-Pohlmeyer [117]). t—F () F,(t)— G,(t)G,(?) is an
L'-function, and

T de{F (0 F 0)— Gy (0G0} =0.

Proof. By the stability requirement we have

0= Of dt([P,t(P,),1(A;1(A4,))])

=1,(s)+ I,(s)+ I5(s)+ 1,(s),

where

0= | dtolP, TP oA (A)
Ls)= | dtaP,(Ay) [t(Py). 7, dA)])

— 0

I(s)= _T dt ([P, 7 A)] s (A T(P)

1,(9)= _]9 dto(t(A;) [P, T, (Ay)]T(P5)).

The integrands of I, and I are dominated by L'-functions which are independent
of s, and using the two-point clustering and Lebesgues dominated convergence
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theorem, we obtain

tim (1,(5)+ L,(5)
= | dtolP,o(4,)o([P,r(4,))

+ T dteo([Py, 1)) ot (A,) P,)

= _of dt{F 4, p(OF 4, p,(0=Gy, p ()G 4, p,(D},

where the last step used the stability condition.
Hence it is enough for Observation 1 to show that
lim I, (s)= lim I,(s)=0.
§— 00 §— 00

But by a change of variable,

Li(s)= [ dto(t_(P;) [Py 1(A;)]7,4(A45).
Again the integrand is dominated by the L'-function ¢t—IlP, |- [Py, 74, LRZH
which is independent of s, and the limit of the integrand as s— oo is

(P ) o([P;, 7(A;))w(A4,)
by the three point cluster property. Thus, by Lebesgue theorem,

lim 1, =0(Pa(4y) | dioflP5(4,)])

=0.

One shows that hm I,(s)=0 by a similar reasoning, and this ends the proof of

Observation 1.
Now, from the relations

Fyap)=Gp 4(=1)
F, 4 p()=F 4 p(t+5)
and Observation 1 it follows that
[dt{F (1) G,(s—t)— G (t)F,(s—1)} =0.
Define H, =H 4, p, by
H,(t)=F,(t)—G(1).
Then H, is an L'-function, and from the relation above we get
[dt{H ()G, (s—t)— G () Hy(s— 1)} =0
[dt{F () H,(s—t)— H,(t)F5(s—1)} =0.
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If U, (t)= [ dE,(p) is the spectral decomposition of U, let
Hi=Raipp>  Vi=Va,p,

be the measures defined by
dp(p)=(P}Q,, dE (p) 4;Q,) — 0(P) »(A;)é(p)dp
dv(p)=(4}Q,,dE,(—p)P;2,)— w(4)w(P)d(p)dp.

Then
Fi(t)= [ e" dup)
Gi(t)=[ "7 dv{p)

and thus
dup)—dv(p)=H{p)dp,

where H; is the Fourier transform of H,. From the convolution relations above we
now obtain

Observation 2.
H(p)dv,(p)=H,(p)dv,(p)
H,(p)dp, (p) = H,(p)dp(p)
for all 4;, P,e,.
Next, define a subset SCIR by
S={peR; IA{;LP(p)#:O for some A, PeU,}.
Observation 3. S is an open set, S= —S and 0¢S.

Proof. S is open since each H 4.p is the Fourier transform of an L'-function, and
thus is continuous. The symmetry follows from the relation

dpH , p(p)=(P*Q,,dE (p)AQ,)
—(4* Q. dEw( —p) PQw)
= —dpH, ((—p)’

and H, ,(0)=0 by this same relation (or stability).

Observation 4. There exists a well defined pair y, v of o-finite measures on S such
that

dﬂA, #p)= 7 4, pp)du(p)
dv, p(p)=H , p(p)dv(p)
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for pe S, and, furthermore

dp(p)= —dv(—p).

Proof. Since S is open, S is the union of an increasing sequence of compact sets, and
as each H, , is continuous it follows that there exists a countable partition
{S,,5,,...} of S into Borel sets, and elements A4;, P,e A, such that

H, p(p)z1
for peS;. Now, define
duy, p D)
du(p) = —=AeLoes
HAl,P,(p)

)= GerD)

for peS,, i=1,2,.... Then p, v are well-defined o-finite Borel measures on S, and
Observation 2 implies that

dps p(p)=H 4 p(p)d1i(p)
dv . o(p)=H 4 (p)dv(p)
for all 4, Pe, and all peS. Finally
dpy, p(p) dvp, 4(—D)
du(p)= L A A pAi =—dv(—p).
Hp) HAL,P,(p) _HP,,A,(_p) (=)

Now, the Radon-Nikodym theorem implies that there exists |u|+|v|-
measurable functions y; on S such that

du(p) =y (p)d(ul+v]) (p)
av(p) =y, (p)d(lul+v)) (p).

Since du(—p)= —dv(p) we have d(ju|+ V) (p) =d(lul+V]) (= p) and p,(—p)

=—y,(p).
Define subsets S, S, and S, of R by

So={peS; y,(p)=0}

S =1{peS; w,(p)=0}

S,=R\(S,uUS,,).
Since y,(p)=0 if, and only if, y,(—p)=0, we deduce immediately
Observation 5.

So=—S S,=-8,

in the sense that the sets differ only on a set of |u|+|v|-measure zero.

0
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Define a Borel function ¢ on R\S_ by

v,(p)
qo(p)={w2<p) on 5\,
1 on RR\S.

Observation 6.

duy p(p)=(p)dv 4 p(p)

on R\S_. Furthermore ¢(p)>0 and ¢(—p)=¢(p)~ ! on S  (except for a set of
|u| + [v|-measure zero).

Proof. 1t follows from Observation 4 that

duy ()=, (p)H . p(p)d(lul + ) (p)
v, p(p) =, () H o p(p)d(lel + V) (p)

for pe S, while

dﬂA,P(P) - dVA,P(P) = I:IA,P(p) dp=0

for pe §°. As dp 4« 4(p)20and dv 4. 4(p) =0 for all p+0 and all Ae A, it follows that
¢(p) 20 and since ¢(p)=+0 for pe S, one has ¢(p)>0 for peS,. p(p)=(—p)~ lisa
consequence of p,(p)= —y,(—p).

Observation 7. If E,, is the projection valued measure corresponding to H,, then
E,(S0)=0

and, consequently
E,(S,uS,)=1.

Proof. From the relation
s, p(p) =101 (0) H 4 p(p) (Il + 1) (p)

it follows that

ta,p(So) =0
and hence, as 0¢S, by Observation 3,
(P*Q,, E(S0)AQ,) = 1y, p(S0) =0
for all 4, Pe,,.
Observation 8.
(P*Q,, E,(S,)AQ,)
=(p(=H,)'"?4*Q,, o(—H,)'* PQ,)
for all A, Pe#,=1II ()"
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Proof. By Observation 6, one has
(P*Q,,dE (p)ALQ,)
=dp, p(p) + (P)w(A)d(p)dp
=@(p)dv 4 p(p)+ (P)(A)S(p)dp
=(p(p)'? 4*Q,, dE (—p)o(p)"* PQ,)

for peR\S_, and A, Pe U, where we have identified U and I (). Integrating
over R\S_ =S,0S,, we obtain from spectral theory that

W Q, ED(p(—H ) 2 E (—(S,US,))
and
(P*Q,, E,(S,)AQ,)=(P*Q,, E, (S ;US,) AQ,)
=(p(—H,)"?A*Q,, o(—H,)'>PQ,),

where we have used E(S,)=0 and E_(—(S,US,)=E(S;US,) which follows
from Observations 5 and 7.
Since A, is strong *-dense in .#,, this relation extends to all 4, Pe./Z,,.
Next define

E =[/,2,].
Then E e.4,,.
Observation 9.
E(S)=E(S)E,=EE,(S,).
Proof. Since
eith%r e—"H“’zﬂ/
for all teIR, it follows that. E, commutes with ¢"”~, and hence
E(S)E,=E ES,).
By Observation 8, one has
(Ey(S,)(@—E)P*Q,, E,(S,) 1 E,)AQ,)
=(p(—H,)"*A*1~E)Q,, o(—H,)' > P1-E)Q,)
=0
for all 4, Pe ./, and hence
E(S;)1-E/)=0.

Now, Q, is cyclic and separating for the von Neumann algebra #p=E ;.4 E,
on #p=E A, Define H=H_,E ,=E H, and let 4, J be the modular operator
and modular conjugation associated with the pair (.#, 22). Then

Hy={pdEy(p)=|pdE (p)E,
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is the spectral decomposition of Hy. As ¢"* leaves Q  invariant and defines an
automorphism group of ., it follows that

JH J=—H,
and hence
JEKB)J=Ey—B)
for all Borel sets BCIR. In particular it follows from Observation 7 that
E;=JE J=JEKS,;US,)J
=Eg(—(S,0S,)).
But
Ey(—S,))=E4(Sy)=0
by Observations 5 and 7. Thus
EszE(—Sf)=Ew(Sf)Ef
and Observation 9 implies:
Observation 10.
E,=E,S,).

Now, by extremality and asymptotic abelianness E, =E_({0}) is a one-
dimensional projection, and as Q,, is separating for .#j it follows that

B’eél;lfm(B) |w(AB'C)— w(B)w(AC)| =0
for all A, B, Ce M. As H and 4 commute strongly, it follows from [12,13] that

the joint spectrum X of (log 4, Hy) is a closed additive subset of R?. But since Q,, is
separating for .#y, X is symmetric, and we conclude:

Observation 11. The joint spectrum X of (log4, H,) is a closed subgroup of IR?,
We next show

Observation 12. 1f E,(S,) is not one-dimensional, then S, is dense in R and
o(Hp) =R

Proof. o(Hp) is a group by the remarks before Observation 11, and as 0 is a simple
eigenvalue of H, it follows from the assumption and E (S ;)= E; that o(H )=+ {0}.
But g(Hy) cannot have any nonzero isolated points because this would imply that
H , has a nonzero eigenvalue 4 with a corresponding eigenvector y such that

U, (p=e*yp.



Stability Properties and the KMS Condition 231

But then

(. 1 (t(B)) Q) =(U,(— )y, [1,(B)2,)
=e™(p, I1,(B)R,)

for all Be . Therefore choosing B such that
(p,1,(B)Q2,)+0

this contradicts the fact that
tlirg I (t(B))=w(B)1

in the weak topology. It follows that
o(Hg)=R.

Observation 13.
o(Hp)+o(H_p)So(Hy_g).

Proof. This is demonstrated as in the last part of the proof of Proposition 4.2 in [15].

Observation 14. The restrictions of the measures du, p and dv, p to S,US,, are
absolutely continuous with respect to Lebesgue measure and

0 5 DPES,

d = A
Harlp) {HA,P(p)dp; PES,,

v, A= {—ng,P(p)dp;' iigo |
Proof. This follows from the relation
dpty, p(p)—dv 4 p(p)=H 4 p(p)dp

together with the equations

dﬂA,P(p)=0§ peSs,
dv, p(p)=0; pes

0 *

Next, define subsets S, CIR by
S, = m {r; ﬁA,A*(P)EO}
AeUgp

S_= ﬂ {p; gA,A*(p)éo}-

AeUy

Then S, are closed sets, and since

S= L% {p; H, 4(p)*0}

AeUy
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by polarization, it follows that
S.NS_nS=0.

But the measures du, 4.(p) and dv, 4(p) are non-negative for p+0, and hence it
follows from Observation 14 that

S,CS,, S,CS_

except for sets of spectral measure zero. By subtracting the latter sets from S_ and
S, we may assume that the inclusions are strict and hence

S

1M

S.. 5

N

S_,

oo}

where the bar denotes closure. Therefore one has:

Observation 15.
S.NS,NSCS,NS_NS=0.
Now, by Observation 7 and 10, one has
E (S,)=1—E,

and thus

Observation 16.
o(H 1-p & S_oo— .

We now finish the proof of Theorem 6. We consider two cases

Case 1. E,(S ) is not one-dimensional. In this case o(Hg)=IR by Observation 12.
We show, ad absurdum, that E, =1 If not o(H,_z)=R by Observation 13 and
hence S, =R by Observation 16. But then S,= —S_ =IR by Observation S, and
hence S,NS,NS=S. But S=+@ since S, CS, and hence this contradicts
Observation 15. It follows that E,=1. Now E(S,)=1 by Observation 10, thus
E_(S,)=0, and we may assume that S_ =S,=0 by modifying y,, v, on sets of
|l + [v]-measure zero.
It follows from Observation 8 that

(A2 4*Q,, A'2PQ,)
=(P*Q ,AQ )
=(p(—H,)"* 4*Q,.p(— H,)"* PQ,)

for all A, Pe . As #,Q is a core for A*/?, and H, and 4'/* commute strongly, it
follows from this relation and a joint spectral representation of H, and A that
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It follows that

2C{(log(p(—p))p); peR}.

Now, X cannot have any isolated points by the reasoning used in Observation 12,
and X is a closed subgroup of R? by Observation 11. As o(H ) =R it follows that X
must have one of the forms,

1. 2=R2%

2. 2 is an array of equidistant straight lines, not parallel with the logA-axis,
one of which contains the origin.

3. X is a straight line through the origin not coinciding with the log4-axis.

In Case 3 there exists a feR such that X ={(—fp,p); pecR} and thus log4

—pBH

(L)’

A=e PHo

but then w is a T-KMS state at value . Hence to complete the treatment of Case 1,
we must eliminate possibilities 1 and 2 above.

There are now two possibilities
Case la. H, 4.=0 for all AeU,,. In this case

W(AA*)=F ; 1(0)+o(A)(A¥)
=Gy, 44(0) + (A)x(A*)
=w(A*A)

for all A€, and hence w is a trace, ie. w is a (z,0)- KMS state.

Caselb. H, 4+(Po)*0 for some A€, and p,eR. Since i, 4+ 18 continuous, we
may assume that p,=+0 and that H 4 A*( V%0 for all pe(po—s po+¢), where ¢ is
some positive number. From Observation 6 and the relation

ditg 4p)—dv,4 4(p)=H 4 o(p)dp
we deduce that

(@(p)— 1)dv 4 _iop)=H 4 4(p)dp

(1=0(p)~ ") dpg ap)=H 4 4(p)dp.

As H 4,4+ 18 @ real function we have two possibilities : H, 4Po)20. If H 4,.44P0)>0,
then A 4.44p)>0 for pe(py—e, py+¢). We now deduce from the relation

dVA,A*(P) = HA,A*(p) dv(p)
that v is a positive measure on (p,—¢, p,+¢) and
(¢(p)—1)dv(p)=dp

on this interval. It follows that ¢(p)=1 for pe(p,—¢, po +¢) except for a set of |v|-
measure zero. But du(p)=@(p)dv(p) and so ¢(p)=1 for pe(p,—se, p, +¢) except for
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a set of u-measure, and hence spectral measure, zero. Thus we may choose ¢ such
that ¢(p)=1 on (p,—¢, po+e¢). But this means that the set

{(log(e(—p)), p); peR}

does not contain any point of the form (d, p) where d <0 and —pe(p,—¢, po+¢).
As 2 is contained in this set, this excludes possibilities 1 and 2. )
The case H 4Py) <0 is treated by noting that H s 4(—Po)=—H 4 4(po)

Case 2. E (S ) is one-dimensional. If E (S ;) =1 in this case, it follows that w is a t-
invariant character, and hence w is a KMS state at all values fe Ru{+ co}. If
E (Sf)#]l then E (S,)=1—E (Sf)=|=0 and S=+0 because S CS. We argue, ad
absurdum, that S +R. If not, then §;= —S_ =R and hence S NSyNS=S=+0in
contradiction Wlth Observation 15. Thus S, =|:]R, and by Observatlon 16

o(H,)SS u{0}+IR.

But since o(H ) has no isolated points it follows from [13] that ¢(H ) is contained
in one of the sets +[0, + o0, and thus w is a ground state or a ceiling state, i.e. ®
is @ KMS state at value + oo or — co.

By summarizing the results of the last two subsections, we obtain an almost
completely satisfactory theory for the connection between stability and the KMS
condition for C*-dynamical systems (21,t) which are L'(2,)-asymptotically
abelian.

Assume that 2 has an identity 1, and let w be a t-stationary state on 2. If
P=P*e,, it follows that the Mgller morphisms [16]

PP = hm P,

exist strongly for AelR. Furthermore one has the intertwining relations
T =¥
and

hm PiP(A)=4
for all AeU by the estimate
lyAP(4)— Al 4 ifo dls| I[P,z (4]l
0

which is valid for 4e2,,.
Now, there exists a unique state w** on y**() satisfying

o™ (M (A)=w(4)

and ! is t*P-stationary by the intertwining relations. But w*? extends to a state
of A, and applying an invariant mean to this extension composed with t** we
obtain a state w*? on A such that the relation above remains valid, and
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1. w*? is t*F-stationary
Next, it follows from the estimate
[w*(4) = (A)] £ [0* (A4 —y2(4))
<lAa—y* )l
that

2. A—w’? is continuous at =0 in the sense
AP
/lgr(l)w (A)=w(A)

for all Ae .

Now, define a state w*’ on A by
i F(A) = (y3F(4)).

From the relation
o™t (A) = (M 7,(4)

it follows that

3. The limits t _l)lf_n ™ (t(A)) exist for all Ac, and
lim o(z(A)=w(A)
tligrn o™ (t(A)=w?F(4).

We call any family {w**; P=P*eU,,|A| <e,} of states satisfying the require-
ments 1, 2, and 3 above (including the existence of ") a family of perturbed states

of w.

Corollary 7. Let (U, 1) be an LA, )-asymptotically abelian C*-dynamical system,
and assume that N has an identity. Let w be a 1-stationary state of U, and let
{0, P=P*eW,, || <ep} be a family of perturbed states of w.

Consider the following conditions
1y w is an extremal T-KMS state at value .
2. a) w has the three point cluster property

inf |t,—1,]— o0 w(Ttl(Al)th(AZ)Ttg(AS))
= (4 ) o(A,)o(43).
b) w satisfies the stability property
lim [7(A4) — ex(A4)|/A=0

Sor all 4.
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It follows that 2 implies 1, for some BeRu{toco}. Conversely 1, for
Be(RuU{ £ c0})\{0} implies 2, and 1, for f=0 implies 2 when 2a) is replaced by the
weaker cluster property

Mo(At(B)) = w(A)w(B)

for all A, Be W, and any invariant mean M on R.

In particular, 1, for some e RU{+ co} and 2 are equivalent if  is a factor state
or if U has a unique trace state.

Furthermore the family of perturbations {w**} can be chosen such that »*f =w
in the following cases

A) If 1. holds with felR.
B) If 1. holds with = + oo and there exists an ¢>0 such that

o(H,)<{0}ule, + 0.

C) If 1. holds with f= + o0, and (U, 1) has a unique ground state.
In these cases w*? can even be taken to be a t*"-KMS state at value p.

Proof. We first show that the stability condition 2b) is equivalent to the by now
familiar condition

() dollPe(A))=0
for all 4, Pe,. But this is a consequence of the relation
Taﬁf,(A):A—uidm“;([p, e (A))
which gives
w(A)=w*(*(4))
— P P(A)— A —(fo dsa ([P, 7 (4)]),
w*F(4) = (i (4))
=) =it ] ds ([P ().

and hence

(@*P(A)— o(A))/A
=] T dSUJAP([Pﬂ TS(A)]) :

The Lebesgue dominated convergence theorem and requirement 2 on the family
{w*"} now immediately imply that the two stability conditions are equivalent.

Thus it follows from Theorem 6 that 2 implies 1, for some feRRU{ + co}. But 1,
for fe RU{+ oo} implies () by Theorem 4.
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Now, 1, for BeR\{0} implies that w is a factor state and if 1, is true for
pe{+ oo} then w is pure. Thus w is a factor state in both cases, and it follows from
the asymptotic abelianness that

lim ('U(Tti(Al)' . Ttn(An))

ligf;l[,‘~tj|"'oo
=w(A4,)...w(4,)

for all neZ, and all 4,e¥, [7].
If 1, holds for f=0, i.e. w is an extremal invariant trace, then w is an extremal
invariant state by asymptotic abelianness, and thus

Mw(At(B))=w(A)w(B).

If w is assumed to be a factor state, one derives n-point clustering as above, and
hence 2 and 1, for some fle Ru{+ co}, are completely equivalent.

But if 2 has a unique trace state then every extremal (z, f)-KMS state @ must
be a factor state.

(If p=0 then w is the unique trace and is automatically a factor state.) The
equivalence and 2 and 1, for some fe RU{+ oo}, follows once again.

The last statement of the Corollary follows from combining the results of [2]
and [16] for feR and the rest follows from Proposition 5 and the preceding
remarks.
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