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Abstract. Within a precise differential geometric setting we prove that the
renormalized, scalar Euclidean functional determinant in an external Yang-
Mills potential is bounded below by 1.

This reflects the stability of the vacuum under perturbations by external
potentials. The proof is based on Kato's inequality and Seeley's analytic
extension of the trace formula.

The old problem of controlling the vacuum polarization in an external field by
using the functional determinant [14] has received renewed interest (see e.g. [1, 3,
5]). Within a precise differential geometric context we will prove that the
renormalized scalar determinant on IRm, given formally by

| f (1)
with Zl(e) = det(p — eA)2, satisfies the estimate

ΔnJe)*l (2)

for all real e. A is an external Yang-Mills potential. Formally Δ(e) is the product of
the eigenvalues of (p — eA)2 and therefore appears in the Euclidean (functional
integration) approach through the Gaussian integral over a bose field φ as

A(ey' = jexp - l/2φ*(p-eA)2φdφ* . (3)

Relation (2) therefore states the stability of the vacuum under a perturbation by an
external Yang-Mills potential [14]. In case of a spinor field in an external
electromagnetic potential the corresponding stability condition

* * < * > ' > ! (4)
det(p-eA)2 =

has been proved in the relativistic context by Schwinger (see Relation 112 in [14]).
Presently the methods presented here do not extend to this case (for a discussion of
the Spinor Laplacian in the context of Kato's inequality, see [7]).
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Our proof will be based on Kato's inequality [8] for Laplacians in external
Yang-Mills potentials [6, 7] (for the case of electromagnetic potentials see also
[16,17]). This inequality reflects the diamagnetic influence of A and its con-
sequences have been analyzed in various aspects [2,4,13]. Our precise setting and
generalization of estimate (2) will be as follows. First we will replace IRm by a
compact Riemannian manifold M (with metric g) in order to be able to work with
a discrete spectrum of the (elliptic) differential operators involved. To avoid zero
eigenvalues, we will assume M to be a manifold with boundary dM and impose
Dirichlet boundary conditions. — (p — eA)2 will then be a special case of a so called
Bochner Laplacian Dv given by a connection V on a vector bundle V over M. The
rank of V will be denoted by n (in physicists terminology the dimension of the
internal symmetry space). Thus Dv acts on elements of C°°(F)} the set of C00

sections in V as

where V1 is the connection on T*M®V induced by V and the Levi-Civita
connection Vg on TM given by the metric g.

In this differential geometric context, eA corresponds to the Christoffel symbol
of a connection. Now in physical applications A is hermitean. In our general setup
we will therefore require V to be a hermitean vector bundle, which by definition is
given by a smooth hermitean structure

The connection V is then required to respect this hermitean structure such that
Dp^O is symmetric (for details in this context see [7]). Let furthermore Δg^0 be
the Laplace-Beltrami operator on the tangent bundle TM, defined in terms of the
Levi-Civita connection Vg. Finally we will define the determinant of an operator
with help of the analytic extension of the trace as given by Seeley [15]. Ray and
Singer have used this definition to define the analytic torsion [11]. Hawking has
recently used the same definition in a context similar to ours [5]. Our main result
will now be given by

Theorem 1. With the notations and conventions as above the following uniform
estimate holds

The superscript D refers to taking Dirichlet boundary conditions.

The remainder of this note will be devoted in proving this estimate. We start
with a proof that Dp and AΏ

g are related by Kato's inequality in such a way, that
the result of [6] may be applied. In particular this will result in domination of their
semigroups and resolvents.

In the case of compact manifolds without boundary, Kato's inequality was
proved in [7]. In our case with Dirichlet boundary conditions on dM we proceed
as follows. For αeC°°(F) and xeM set

|α|(x) = <α(x),α(x)>y2, (6)
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where <, }x is the hermitean form restricted to the fibre Vx over x. This gives a map

| | :ΠF)->C°(MxIR)

denoted by α*-»|α|. As in [7] the following relation holds for any αeC°°(K)

Re<DFα,α>g|α|βJ,|α|β (7)

with

Next let |dvol| be the volume element in V and let <^,» denote the induced scalar
product in L2(V) or L2(M xIR), the space of square integrable sections in V and
M x IR respectively. Thus for αe C°°(F):

«α,/?» = J<α,i8>|dvol|. (8)

By CQ(V) we denote the C00 sections in V, which vanish on δM. Let aeC${V) and
MxR). Performing a partial integration twice, Relation (7) gives

Λ . (9)
Here 0{ε) is a surface term resulting from the fact that |α|£=e on dM. Thus in the
limit ε-*0

j 8»^«^h, |α | » . (10)

Here

Also

β = signξah (11a)

ί α
— on suppα

with

(lib)

where ξ is an arbitrary measureable section in the sphere bundle of V. In particular,
by Relation (11) α and β are absolutely pairing in the sense of [6]. Now ΔΌ

g is
essentially selfadjoint. Its selfadjoint closure, the Laplace-Beltrami operator with
Dirichlet boundary conditions will also be denoted by Δ®. The resulting semi-
group exp£zl̂ (ίΞ>0) and hence the resolvent (~Δ^ + λ)~ι(λ^Q) have positive
kernel so they are positivity preserving. Zero is no eigenvalue of A%. All these
properties are stated in e.g. [10]. In particular (10) holds for

^ (12)

with O^/ceC^MxIR), since then O^/
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Therefore the essential Kato's inequality (Theorem 2.15d in [6]) holds if we
can show that the symmetric operator Dp ̂ 0 is essentially selfadjoint. For this it is
sufficient to show that for some λ^0 (-Dv + λ)C$(V) is dense in L\V). We will
choose λ = 0. For this to hold it is again sufficient to show that the differential
equation.

-Dvu = f

has at least one solution ueC%{Ϋ) for any /eC°°(F). By the Fredholm alternative

for elliptic boundary value problems this holds if the differential equation

-Dvv = 0 (13)

has no nontrivial solution υe CQ(V) (see e.g. Proposition 5.3, Chapter 2 in [9]). Now
let v be a solution of this homogeneous differential equation.

Then by Kato's inequality (7)

-Δg\v\ε^0. (14)

Let h be as in Relation (12) with λ = 0. Performing again a partial integration twice,
Relation (14) gives

Letting ε tend to zeros gives

Since 0^fceC°°(T0 is otherwise arbitrary, this gives v = 0. Thus Dy is essentially
selfadjoint and we denote its closure also by Dp.

We collect our result in

Proposition 2. The operators Dp ̂ 0 and Δ^O are essentially selfadjoint and satisfy
the essential Kato's inequality (10).

Corollary 3. The lowest eigenvalue of —Dp is strictly positive. If II II denotes the
norm of an endomorphism from the fibre Vy to the fibre Vx, then the following
estimates hold for the kernels of the semigroups and resolvents

x,);)

-\x,y)\\^{-ΔD

g+λy\x,y)

x,yeM, ί>0, λ>0.

The first part of the corollary follows from the proof of Proposition 2 or from
Corollary 2.13 in [6]. The remainder follows from Theorem 2.15d in [6] using
Proposition 2.

Remark 4. Apart from the first part of Corollary 3, the statements of Proposition 2
and Corollary 3 also hold with Neumann boundary conditions. Let D^ and ΔN

g

denote the corresponding selfadjoint operators. Then the following interesting
result is a consequence of Kato's inequality: If α satisfies

(16)
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then |α| = const, so a necessary condition for Dy to have a zero eigenvalue is that
the sphere bundle of V admits a C°° section (the same argument applies to any DF if
the manifold is compact and without boundary). In fact, assume (16) holds, then by
Kato's inequality

- Λ > | , g O . (17)

Now zero is a simple eigenvalue of Δζ with eigenfunction space consisting of the
constant functions. Let P be the projection onto this eigenspace. Then (17) gives

Therefore, by the Lebesgue dominated converge theorem

(1-P)|α|,= lim {-ΔN

g+δ)-\-ΔN

g)(l-P)\a\^0
<5->0 +

since (— ΔΉ

g + δ)~ ι is positivity preserving. This however, is only possible if |α|ε and
hence |α| is constant.

Note also that the dimension of the eigenspace of Dp with eigenvalue zero is at
most n. This follows directly from the estimate

Trace exp tD^ _̂  n Trace exp tAg

in the limit ί->oo which is again a consequence of estimate (15).
We turn to a definition of the determinant. Let

be the generalized Riemann Zeta functions associated to —Dp and — Δf
respectively. They are defined for Res sufficiently large and extend to meromor-
phic functions in the complex s-plane, analytic at 5 = 0 [15]. We set

(19)

~ζ 2 (s)| s = 0 .

Furthermore, the powers ( — £>p)~s and ( — Δ°)~s have kernels in a complex
neighborhood of s = 0 which depend analytically on s [15]. In particular we may
define

\n(-D$)(x,y)= - A ( _ Z ) β p ( x , j ; ) | s = 0

(20)

\Ά(-Δf)(x,y)= - Ts{-Δ°)-\x,y)\s=0 .

The case x = y is allowed such that

(-Z)£) = exp J Tracexln(-D^)(x,x)|rfvol|(x)

\n(-Δ°)(x,x)\dvo\\(x),
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where Tracex denotes the trace of endomorphisms of the fibre Vx. For arbitrary
λo>0 operator calculus gives

0

/ DD

-Trace^ln 1 -

I ΔD\
+ nln l-f-(x,x). (22)

Now by estimate (15), the first two terms on the right hand side of Relation (22)
combine to a quantity ^ 0. Hence

^ lim \nln(l-^](x,x)

I DD\ )
-Trace^ln 1 - - ^ (x,x)\ =0 .

Integrating out and using Relation (21) finally proves the theorem. The cases of
physical interest correspond to situations where for example

is considered say in the interior of a sphere with Dirichlet boundary conditions.
The above discussion thus applies to cases where the Λμ are C00. However, it
should be possible to extend the above result in two ways. First, it should be
sufficient to consider piecewise smooth boundaries. Secondly, extending results of
e.g. Schechter [12] for the electromagnetic case, more general Λ's should be
allowed.

We finally remark that results analogous to estimate (5) hold with Neumann
boundary conditions or on compact manifolds without boundary if to all
operators involved a mass term m2 > 0 is added. This is of course another way of
avoiding zero modes. In the formal limit m2->0 Relation (5) then again holds also
for these cases.
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