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Abstract. Examples are presented of potentials V for which — —j + V(r)

inZ?(0, oo) has singular continuous spectrum, and the physical interpretation
is discussed.

1. Introduction

Corresponding to the decomposition of a measure μ on R into pure point,
absolutely continuous (with respect to Lebesgue measure) and singular continuous
parts, in Quantum Mechanics one has a canonical decomposition of the underly-
ing Hubert Space ffl into the direct sum of mutually orthogonal subspaces Mp(H),
Ma c (H) and Ms c (H) [1] defined by the total Hamiltonian operator H.

In most cases, Mp(H) may be taken to be the subspace spanned by the bound
states of the system, and Mac(H) the subspace of scattering states (i.e. states
which, in the limit as ί-» + oo, are asymptotically far from the scattering centre).
For a more detailed discussion see [2,3]. For a potential which is highly singular,
and which gives rise to absorption at local singularities, Mac(H) may itself be
decomposed into the subspaces respectively of scattering states and of states which
are asymptotically absorbed [4].

The remaining subspace M S C ( H ) has usually been supposed to admit no
physical interpretation (see for example [5], p. 23). Indeed, in non-relativistic
potential scattering theory, considerable attention has been given to the derivation
of conditions under which MSC(H) = {0}. From the extensive literature on this
subject we refer to the work of Weidmann [6] and Lavine [7, 8]. Weidmann has
proved the absence of singular continuous spectrum for (non-singular) spherical
potentials V=V1 + F2, with Vί of bounded variation and V2 of short range. Lavine
has proved the same result for potentials satisfying a so called "no bump"

r dV
condition -—- + V<const. (These results apply in greater generality, e.g. to non-

spherical potentials.) By classical analogy, this condition means that an incoming
particle will encounter no effective obstacle and will ultimately recede to infinity
having been scattered by the potential.
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14 D. B. Pearson

These and other results suggest that one may associate singular continuous
spectrum with potentials having infinitely many "bumps", provided their height
does not diminish too rapidly with distance. The present paper is devoted to
justifying this view by presenting a wide range of potentials giving rise to singular
continuous spectrum, and, finding a physical interpretation for them.

It is already known from the inverse method of scattering theory [9] that
singular continuous spectrum can occur. Aronszajn [10] has constructed an
example giving rise either to a dense set of eigenvalues or to singular continuous
spectrum, depending on the boundary conditions. However, in the inverse method
one arrives at the potential indirectly from the solution of an integral equation.
One has no control, for example, of the behaviour of the potential for large r, and a
physical interpretation is lacking. We shall start from the potential and determine
the spectrum from estimates of the associated spectral function. (For definition
and properties of the spectral function associated with a second order differential
operator see [11].)

Using the Cantor measure [12] as a starting point, Section 2 concerns the
generation of singular continuous measures from limits of absolutely continuous
measures; the measures here do not necessarily come from any problem with
differential operators, though this provides the motivation. The main results are
Theorem 1 and its Corollary, which are applied in Section 3 to the spectral
measure corresponding to a potential made up of an infinite sequence of bumps,
their separation increasing rapidly with distance. The potential is spherically
symmetric (or one dimensional), bounded, and locally non-singular. It is even
possible to have lim F(r) = 0, in which case the condition for singular continuous

r->oo
oo

spectrum is (roughly) £ g* = ao, where gn is the height of the rc'th bump. (The
« = ι

shape of individual bumps and the size of "coupling constant" are both arbitrary.)
This is exactly the condition for the particle, after possibly a large number of
transmissions and reflections at successive bumps, ultimately with probability 1 to
be reflected back to a neighbourhood of the origin. Although the particle will
subsequently be at a large distance from the origin, it will return arbitrarily often.
(C. F. in the classical theory of stochastic processes [13], the property of
recurrence.) This semi-classical analogy is justified in Section 4 by an analysis in
terms of wave-packets. Thus for these potentials giving rise to singular continuous
spectrum we have the physical interpretation that they are to be regarded as
presenting to the particle a totally reflecting barrier, into which the particle may
penetrate arbitrarily far but must eventually be reflected. (On a more mathematical
level, let us note that, for non-singular long range potentials, compactness
arguments imply [2] that for a state in the continuum subspace to move
asymptotically, with probability 1, to infinity, one has the necessary and sufficient
condition w-\ime~ίHtf = Q. This asymptotic condition, which follows from the

f->oo

Riemann-Lebesgue Lemma under the assumption M s c(/f) = {0}, need not apply
in general. However, for feMc(H\ the mean-squared probability of finding the
particle in any fixed bounded region converges to zero.)

In Section 5 we present a more general analysis based on the asymptotic
behaviour of products of transfer matrices. This enables us to construct examples
of singular continuous spectrum arising from perturbations of both periodic
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potentials and (highly singular) short range potentials. For example, to any
^(0,00) potential may be added an arbitrarily small (in the sense of L°° norm)
perturbation converting the spectrum from absolutely continuous to singular
continuous. From the more general point of view of Section 5, singular continuous
spectrum appears in a wide variety of contexts as a "small" and not particularly
pathological perturbation of absolutely continuous spectrum. Potentials which
give rise to this phenomenon are, in some sense, "everywhere dense" in the set of all
potentials.

2. Generation of Singular Continuous Measures

One of the classic examples of a singular continuous measure is the Lebesgue-
Stieltjes measure generated by the Cantor function [12]. The support of this
measure is the Cantor set C, consisting of all points x in [0, 1] have a decimal
expansion to the base 3,

in which each xf is either 0 or 2. The Cantor Function may be defined on [0, 1] by
00 x

and

where n(x) is the smallest integer for which xn = 1 ψ is then continuous and non-
decreasing and generates a singular continuous measure μ on the Borel subsets of
[0, 1].

An alternative approach, which we shall adopt, is to define a function /,
periodic with period 1, such that

/(*) = !

Then the characteristic function of the Cantor set is given by

k = l

and the Cantor function may be expressed in the form
x n

ψ(x)=1im Jώ
H-»OO o Λ = l

where

For any subinterval Σ of [0, 1] we have, then,

μ(Σ)=lim$dxf[fk(x). (1)
Π-+COΣ k=l
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There are pitfalls for the unwary! Note that (1) does not hold in general if Σ is an
arbitrary Borel subset. Moreover, one cannot interchange limit and integral in
(1), and indeed

= co9 xeC
k = l

= 0 xφC.
The idea of generating in this way a singular continuous measure μ from a

limiting sequence of absolutely continuous measures may be considerably extend-
ed. From this more general point of view, the principal properties of the fk which
we shall retain are

_ i
a) mean (fk} = fk = j/k(x)ώc = l, and

b) as fc->oo, the/k oscillate increasingly rapidly.
(Throughout this paper, means are denoted by bar and complex conjugates by

star.)
We shall, however, differ from Cantor measure in that the/k will be taken to be

continuous (even differentiable) and bounded away from zero, this being more
appropriate to applications in potential scattering.

With the above properties in mind we can now state

Theorem 1. Let the functions fn(k, y)(tt^k^β, —ao<y<cQ,n = l,29...)be periodic
in y, with period c, continuously differentiable, and satisfy

i) fn(k,y)^ const >0,

i i) f n ( k ) ^ - f n ( k ,
c o

00

iii) Σ -mn(k)=
n=ί

where

(2)

iv) For N sufficiently large, fn(k,Nk) is an analytic function of
Given a sequence {7VJ, z' = l,2, 3, ..., of increasing positive numbers with

lim NI = oo, define the Lebesgue-Stieltjes measures μn by
i-»oo

μa(Σ) = ί d k f [ f J i k , N i k ) , (3)
I i=l

for every subinterval Σ of [α, /?].
Then the sequence {JVJ may be chosen such that lim μn(Σ) = μ(Σ) exists for

n-> oo

every subinterval Σ of [α, /?] and defines a singular continuous Lebesgue-Stieltjes
measure on the Borel subsets o/[α, /?].

The proof is in five stages.
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Step I. Given any ε>0, 3N0 (which may depend on n) such that, for every
subinterval Σ of [α,β],

<ε (4)$fn(k,Nk)dk-μ0(Σ)
Σ

for N > N0, where μ0 denotes Lebesgue measure.

c

Proof. Let gn(k, y) = fn(k, y) — 1, so that J gn(k, y)dy = 0. Choose N0 sufficiently large
o

£
that — max \gn(k, y)\<ε/2, and

Now subdivide Σ into r intervals /ί? with μ0(/.)= — (i=l 52, ... (r— 1)) and

(If μ0(Γ) ̂  c/]V, there will be only a single interval.)
If ΛΓ^IV0, we have

lgn(k,Nk)dk
Ir

and

S[gn(k,Nk)-ga(k,,Nk) }dk

provided i<r and fc^e/^.
Moreover,

< Ϊ-

so that summing over all subintervals /; we obtain

ε ε
1n(k,Nk)dk

2 2

Step II. Given {ΛΓJ (/ = 1, 2, . . ., n) and ε > 0, 3 N0 such that, for every subinterval Σ

Proof.

Writing

d k

— l
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where inϊΣ = aί9 and integrating by parts, the result follows from I, since both

Π fi(k9Ntk) and J- Π fi(k9Ntk) are bounded.
i=ι dki=ί

Step III. The sequence {Nt} may be chosen such that, for every subinterval Σ of
[α, /?], μ(Σ)= lim μn(Σ) exists and defines a continuous measure.

/ From II, we can take each Nn+ί sufficiently large (in comparison with the
00

Nt for i^ri) that the series Σ (l^ί+i^ — μJίΣ)) is absolutely and uniformly

convergent for subintervals Σ. Hence μ(Σ) exists, and defines a Lebesgue-Stieltjes
measure. If we now take n such that \μn(Σ) — μ(Σ)\<ε/29 for given ε>0 we can find
(5>0 such that μ0(Σ)<δ=>μn(Σ)<ε/2 (since μn is absolutely continuous).

Hence μ0(Σ)<δ=>μ(Σ}<ε, and the measure μ is continuous [i.e. μ([α, λ)) is a
continuous function of λ.~]

Step IV. Given {JVJ (z = l,2, ...,ra), and ε,c'>0, 3rc>ra and {JVJ
(i = m +1, m + 2,..., n) such that

c'l <ε.
i = l

Proo/ Let Λπ(fe,);) = log/π(fc,3;) = log(l+gfπ(fc J3;))5 so that from (2) we have
hn(k) = mn(k). First observe that from the inequality

(6)

we have

hn(k9y)^gn(k,y), (7)

so that iϊ)=>hn = mn^Q.
00

Since the mt.(/c) are continuous, iii)=> ]Γ — mt(k) = + oo uniformly in k, by a
i = l

compactness argument. So without less of generality we can assume

n

Σ -m.(k)^ const >0.
i = m + l

We further take n sufficiently large that

I Σ mi(fc)<log(|-), (8)
i = m + l \m/

where

M = supf[fβ9Ntk).
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Now

Writing /ί?(/c) = - 1 /ι?(fe, y)ίfy, we have

19

(9)

- - J [Λfίfc, N(fc) - Λf (fefldfe ,

and as in II above we may integrate by parts to show that, for large {JVJ (z = m+ 1,
m + 2, . . ., n\ and fixed «,

becomes arbitrarily close to

\

[Note that the m.(/c) are continuously differentiate.] Integrating with respect to x
the inequality

log(l

(1+x) -(1+x)

we have

which for x ̂  const > — 1 implies, for some K > 0,

Hence [hi(k,y)']2^k[_gί(k,y) — hi(k,y)']9 which on integrating with respect to y
becomes

(10)
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We take n sufficiently large that

LΣ+IW
Σ ^(

<ε/4,

and the {JV(} (ί = m+l, m + 2, ...,n) sufficiently large that

Σ Λfft
Λ

Σ mβ)

In the same way we can take each Nt sufficiently large, in comparison with the
preceding {N;.} that

becomes arbitrarily small, and each Nt sufficiently large that

lάk\

1 y
2 L

has an arbitrarily small upper bound. Bounding these terms by ε/2 we have finally,
for suitable {ΛΓJ,

Π /Λ
ί = l

V. The measure μ is singular, for suitable {AΓJ.

• Given ε>0, let

and use IV above to choose {ΛfJ (i=l,2, ...,n) and π such that μ0(Sε)<ε.
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n n

Since iv)=> ["J /.(/c, Λ^/c) is analytic, the equation Y[ /.(/c, A/\./c) = ε/(β — α) is either
i = l ί = l

an identity or is satisfied at only a finite number of points, so that Sε consists of a
finite number r of intervals. (This is the only use of analyticity in the proof of the
theorem.) In choosing {JVJ for i>n, use III above to ensure that, for every
subinterval Σ of [α,j8], \μn(Σ)-μ{Σ)\<ε/r. It follows that \μn(Sε)-μ(Sε)\<ε.

Again,

μn(Sε) = μjίfa β]) -μn\k;f[ fβ, Ntk) < -?—\ * μM([α, β]) - ε
( i=ι Ψ~~ α JJ

on using (3).
Hence μ(Sε)^μ([α,β])-3ε.
Continuing in this way, we may choose the {Nt} such as to construct a

sequence {SJ of subsets of [α,/?], with ε->0, for which lim μ0(Sε) = 0, whereas

ε->0

It follows that μ is singular with respect to Lebesgue measure, and this
concludes the proof of the theorem.

It will be noticed that the proof of Theorem 1 has somewhat a probabilistic
flavour. For large Ni9 ftf(fc,JVffc) behaves in many respects like ht(k,u\ where u
represents the value of a random variable uniformly distributed in an interval of
length c. For large Nt and Nj/Nt the "independence" of ht(k, Ntk) and hj(k, Njk)
then follows from Riemann-Lebesgue type arguments and Step IV follows the

oo

standard proof of the weak law of large numbers to show that ]Γ hn = — oo "with
ιι=l

probability one". The singularity of μ is a consequence of the fact that, whereas
n

Y[ f.(k, Ntk) converges to zero in Lebesgue measure as n-»oo, the limit vanishes
ί = l

only on a set of μ-measure zero. (For convergence in measure and related concepts
see [14], Chapter 7. Convergence in measure implies the existence of a sub-
sequence converging almost everywhere.)

The nature of the measure μ may also be determined in the case
00

Σ —mn(k)<ao. We assume the convergence to be uniform, and retain all other
n= 1 n

conditions of Theorem 1. In that case f| f^k.N^ is found to converge to a finite
i = l

but non-zero limit both in Lebesgue measure and in μ-measure. We omit detailed
00

proofs and observe only that (again for suitable { N t } ) : £ —mn(k)<oo=>μ is
n = l

absolutely continuous. Thus we have identified a "borderline" between absolute
/ 00

continuity and singular continuity. By taking Σ —mn(k)<co and
oo \ n— 1

Σ —mn(fc)= oo respectively for fe in disjoint subsets of [α, /?] we can arrive at a
n = l

more general class of measures which may include both a singular and an

absolutely continuous part.
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Some of the various possibilities which may occur are illustrated in the
following example, for which the /.(k, y) are taken not to be explicitly dependent
on fc:

Example. Let

μn(Σ)=$dkfl(l+gίsm(Nik)),
I i=l

and assume 0 < 0. < 1, lim g. = 0.
ΐ->oo

Define μ(Σ)= lim μn(Σ) for subintervals of [0, 1], say.
«-* 00

Then, provided the Nt increase sufficiently rapidly (in a manner defined more
precisely by the proof of Theorem 1), it follows that

00

i) ^ g* — oo=>μ is singular continuous.
n = l

00

ii) ]Γ g^<co=>μ is absolutely continuous. Moreover,
n = l

00

iii) Σ #n < oo^μ is absolutely continuous for ei ery sequence {ΛfJ, the infinite
π = ι

product

/=!

then being both -absolutely and uniformly convergent.
Theorem 1 may be generalised in various ways for example by weakening the

regularity assumptions on the ft however condition iv) is found to hold in most
applications to potential scattering. A more useful generalisation, which will be
needed in Section 3 is to allow ft to depend explicitly on {Nj} for j < L This gives

Corollary to Theorem 1. Let the functions fn(k \y\Nl\N2\...Nn_λ)be periodic in y,
with period c, and for fixed {ΛΓJ be continuously differ entiable in k and y and satisfy
i)-iv) of Theorem i, where i) holds uniformly in the {N^ (as well as in k, y) and mn(k)
is assumed independent of the {N^. Define a sequence of measures μn by

μn(Σ) = $dk\fi(k,Nik;N1,N2,...,Nί_1). (3')
Σ ί=l

Then the conclusion of Theorem ί holds.

Proof. Follows closely the proof of the theorem.

3. The Spectral Function of — =- + V in L2(0, oo); Examples of Singular
dr

Continuous Spectrum

We consider first a potential V(r) vanishing except on an infinite sequence of
intervals of length α, on each of which Fis given by some prescribed L1 function W.
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Let {JVJ (z=l,2,3, ...) be the separation between consecutive intervals, and
suppose that

= W(r-ai), α ί<r<b ί (i = l,2,3,...) [, (11)

= 0,

where

bt<r<ai+l

and (12)

J = l

Here J/Fand a are given and the sequence {JVJ is to be chosen. Setting W(x) = Q for
xe(0,α) we have, then,

V(r)= £ W(r-a?).
i=l

The spectral function ρ(λ) of the differential operator — —^'+ K(r) in [0, GO),

with the boundary condition ψ(0) = 0, defines a Lebesgue-measure μ which may be
derived from the limit, as n->oo, of the measure vn corresponding to the same
differential operator in the interval [0,απ+1] [with boundary conditions 0(0) = 0
and φ(an+i) = Q say].

Restricting attention to subintervals Σ of (0, oo), in which case μ will be found
to be continuous, we have

μ(Σ)=limvn(Σ). (13)

For given N1,N2,...,Nn, and in the limit NM + 1->oo, vn(Σ) itself approaches

μn(Σ), the measure derived from the spectral function of — —^ + Vn(r) in [0, oo)

with boundary condition 0(0) = 0, where

Vn(r)=V(r), Q<r<bn

= 0, bn<r<ao' ( '

Since μn is continuous (on ]R+), for given N1; N2, . . ., Nn the convergence of vn to
JUB is uniform over subintervals Γ of any fixed finite interval, and by successively
choosing the Nπ + 1 sufficiently large such that

for subintervals of [n-1,n] we can ensure that (13) implies

μ(Σ)=\imμn(Σ) (15)
H-+00

for finite subintervals of R+ not having the origin as endpoint.
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For /c>0, let φ(r fc) be the solution of

- φ"(r k) + V(r)φ(r fc) = k2φ(r fc) (16)

subject to the initial conditions

«θ;*)=oi
0'(0;fc) = lJ l / j

and define #(r; k) and θ(r; fe) by

φ = Rsinθ J

with θ = π/2 when r = 0.
More exactly, θ = t&n~ί(φ'/kφ) is determined by the equation

and we can write

θ(r) - (π/2) - fcr -f f (kVφ2/R2)dr .
o

We shall have occasion to use the result — = — k wherever V(r) = 0. R(r) is most
dr

easily determined from the equation R2 = (φ')2 + k2 φ2 .
For λ>0 we set λ = k2 and

l ;

The spectral function ρn(k) associated with the absolutely continuous measure
μn is determined by the asymptotic behaviour, as r-»oo, of solutions φ(r fe) of the
equation.

- ψ»(r ' k) + Vn(r)ιp(r fc) = k\r fc) . (20)

With the initial conditions ψ(Q;k) = Q9 ψ'(0;k) = l9 (14) implies

Moreover, (ψ')2 + k2ψ2= const for r^bn, and using (18) and (19) we have the
asymptotic behaviour

as r-»oo, from which may be deduced

dQn(k) 2k2

dk πΓΛ.(fc)l2
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(δn is determined by the equation

kbn + δn = θn(mod2π)).

Hence,

We shall evaluate the r.h.s. by relating Rn to Rn_1. Consider further the
solution θ of (16) and (17).

Now — - = — fe, (bn_ 1 < r < bn\ so that

Again — =0, (bn.ί<r<bn)9 so that

We have then,

φ(an fc) = £„_ Λ/φin (θn_ ,(k) - Nnk) .

Now define the matrix M(k) by

for solutions of — u"(r) + W(r)u(r) = k2u(r) (0 ̂  r ̂  α).
Then,

(24)

( 'Using (23) and (24) to evaluate φ and <^>' at r = bn and noting that

n(/c) = ίφ'(ba fe)]2 + k2[_φ(bn fe)]2 we find

R ίfel
" ' 2 - 2 2 2))2 + fe-2(M21(fe))2]cos2(0n_1(fe)-Nnfe)

(fe))2 + fe2(M12(/c))2]sin2(θπ_1(fe)-Nnfe)

+ 2[feM11(fe)M12(fc) + fe-1M21(fc)M22(fe)]

We shall denote by fn(k, N n k ; θ n _ 1 ( k ) ) the inverse of the r.h.s., so that

= (fn(k,Nnk,θn_1(k))Γ1 (25)
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with

fn(k, y,ΘΓ1 = A(k) + B(k)cos 2(θ -y) + C(fc)sin 2(0 - y), (26)

where

C = (/cM11M12-/c-1M21M22).

These coefficients are not independent, since we find

A2 - B2 - C2 = (det M)2 = 1. (28)

Using the formulae

2π dz 2π

J α + bcosz ya

2-b2

and

2π

ί
0

we find

1 π 1

and

Using (22) and (25) we have

2/c2 n

μn(Σ) = j dk— Π fβ> N& θt-it*)), (3°)
i; π ί=ι

where/f, through 0._ 1 5 depends on JV 1 5 AΓ2, ...,Ni_1.
We first note that mn(fe), which in fact in this case is independent of n, cannot

vanish identically.

m(/c) = 0=>A(k) = 1 =>5(fc) - C(k) = 1 =>/„ Ξ 1.

We have, then, Rn(k) = Rn_1(k), so that (22) implies

Qn(Q = Qn-i(Q, (λ = k2>Q).

By analytical continuation to λ= — fc2^0, the solution ψ of

- \p" + Vnψ= - k2ιp
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with initial conditions v?(0) = 0, t//(0) = l, satisfies (ψ'(bn))2-k2(ψ(bn))2 = l. But for

λ= -k2 to be an eigenvalue of - —τ + Vn would require (ψ'(bπ))2 - k2(ψ(bn))2 = 0.

Hence — —j + Fn has no eigenvalues /l^O, and dρn = dρn_ί=0 for λ<0.

It follows that ρn = ρn_1. But the potential is uniquely determined by the
spectral function, and we must have Vn = Vn_l, which is only satisfied when F^O.

Since m(k) is analytic, it follows that m(k) = 0 at only isolated points which, it

may be verified, do not belong to the point spectrum of ——=- + F The corollary
dr

to Theorem 1 may now be applied. Note that i):

m(k) = — oo
«Ξ~I

except where m(k) = 0.
ii): Proofs are unaffected by the factor 2/c2/π on the r.h.s. of (30).

We have, then,

Proposition 1. Let V(r) be defined by (11) and (12). Then, provided the {Nt} increase

sufficiently rapidly, the differential operator — —j + F in [0, oo) has singular

continuous spectrum for λ>Q.
Equations (11) and (12) define, then, a simple class of potentials with which we are

able to associate a singular continuous spectrum. The potential consists of an infinite
sequence of "bumps" of identical (but arbitrary) shape, with separation increasing
rapidly with distance. This is the basic idea of what in Section 4 we shall set in a more
general context. Here let us note that a class of potentials for which lim F(r) = 0 is

obtained by decreasing the height of bumps with distance.

Let

F(r) = 0 0<r<aί

= gίW(r-aί), at<r<bt (31)

= 0, bt<r<ai+1,

where the sequences {αj, {&.} are again given by (12), and assume lim gn = 0.
n-+ oo

The treatment of this case is essentially as before, except that the transfer
matrices M at the n'th bump, and the coefficients A, B, C, now depend on n. From
the perturbation series for An, we have

^2 f / c \2 tc \ 2

J dx W(x) cos 2kx) + J dx W(x) sin 2kx
\o / \o /

According to (29), this gives

l]dxW(x)sm2kx] }. (32)
\o / /
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From the Corollary to Theorem 1, the nature of the measure μ depends now on
00

the convergence or divergence of ]Γ g2, and we have
n=ί

Proposition 2. Let V(r) be given by (31), with l imgn = 0. Then for λ>0 the
n~* oo

differential operator — —^ + V in [0, oo) has singular continuous spectrum if
oo "Γ

Σ 2 ^g <c oo.
n=l

4. Interpretation of Singular Continuous Spectrum

From Equation (29), one finds that mn(k) is exactly the logarithm of the transition
probability of a particle through a single bump, in the absence of other

00

contributions to the potential. The condition £ —mn = co thus corresponds to
n = l

the vanishing of the infinite product of successive transition probabilities and
expresses the certainty that the particle will ultimately be reflected from a bump.

For the classical probabilistic stochastic process of a particle meeting an
infinite sequence of barriers, let pn be the probability of transmission and qn of
reflection (pn + qn = ί). The process is said to be recurrent if the particle returns to
the origin, with probability 1, on infinitely many occasions, and transient
otherwise. (In both cases, unless some pw = 0, the particle will ultimately be
transmitted at least once through each barrier.) The condition for recurrence is

00

found to be Σ (<ln/Pn)=co> which corresponds exactly, for the potentials defined
n = l

oo

by (31), to the condition ^Γ g* = co. That is, one has singular continuous spectrum
n = l

if and only if the classical process is recurrent. The physical picture is then of a
particle performing a kind of (quantum!) random walk, in which however great
the distance from the origin, the effect on the particle of the potential at finite
distances cannot be ignored. (This classical analogy becomes appropriate in the
limiting case as the {AT.} increase arbitrarily rapidly, since in the limit successive
transition probabilities are "independent".)

Let us examine more closely the quantum mechanical aspects of this phenom-
enon. Let Vs c (r) be a potential giving rise to purely singular continuous

spectrum for the differential operator — —^ + Vs c ( r ) in L2(0, oo); (the argument

may be generalised to allow a discrete or absolutely continuous component) and
let

in L2(IR), where

TO=^8.C.(*)»

= 0 x<0.
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d2

We may also define the self-adjoint operator H = — —^ + V0(x) acting in L2(IR)

= L2(IR+) + L2(]R~) with the two regions "decoupled". [I.e. with boundary con-
ditions /(O +) = /(O -) = 0 here

L2(R±)Ξ{ f f 6L
2(R); f lf(x) = 0 for x^O}.]

Then standard arguments based on trace conditions ([4], p. 649) show that

i) slim e

i&te~iHt exists on M a c (H) and has range in M a c (H) = L2(]&-)ι

ii) 5-lime ime~ ίΆt exists on Ma (H);
ί—> + oo

iii) 5-lim eimEx<0e~iHot exists on Jf, where H0=- j-j in L2(IR) and £x<0 is

the projection onto L2(IR~); moreover

5-lim e™Ex <0e~ίHot = 5-lim eiSte " 'Hoί£ _
t->oo ί->oo

and

5-lim eiHtEx<0e-iHot= 5-lim eiβte-iHotE+ ,

where E± are the respective projections onto subspaces M+ of positive and
negative momentum.

Transitivity now implies the existence, on M+ and M_ respectively, of the

wave operators Ω + (H,H0)= 5-lim e

iHte~iHot and
ί—>• — oo

Ω_(H,H0)= s-\imeίHte-ίHot.
ί-* + 00

These wave operators are complete; i.e. range (Ω + ) = range (Ω+) = Ma<Cι(/ί). An
incoming particle from x= — oo will be reflected with probability 1. Thus F s c(r)
represents a totally reflecting barrier. We can confirm this interpretation in the

d2

case H= — -^ + V(r\ acting in L2(0, oo), with V given by (11).

Using (26) and (30) with the method of Section 2 we find

limjV^μπΦθ (xn = 2Nn). (33)
n —>• oo

/ 2π dze~ίz \

This uses the fact that f Φ 0.
\ o α + DCosz /

If the {Nn} increases sufficiently rapidly, this implies that

lim j£Γ ί k*"4uφO. (34)
«-» oo

A similar result holds for each of the sequences xn = 2cNn (c = ± 2, + 3,...), and for
integer linear combinations, such as xn = 2(Nn + Nn+ι). So the spectral measure μ

-d2

dr2for the differential operator H = Λ 2 + V in this case does not obey the Riemann-
Lebesgue Lemma.

Consider now a normalised wave packet / having a narrow range δE of total
energy [for the time intervals in which we are interested we shall suppose
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(δk)2t<ζl, where δE = δ(k2) = 2k0δk; this ensures that the wave packet does not
spread too much. But we can allow (δE\ £> 1].

We have, for some peL2(IR+,dμ),

'ik2tdμ. (35)

Making the change of variables k = k0 + q and neglecting terms of order q2t we find
that (f,e~iHtfy is appreciably different from zero for the sequence of times t = tn

given by k0tn = Nn. Each instant of this sequence corresponds physically to the
time taken for the wave packet to return to its original position and direction of
motion after a single reflection at the n'th bump and at r = 0. (Note that we have
units in which m = \, so that with fc0 = mv0 we have v0tn = 2Nn.) Moreover, £ = + ctn

corresponds to multiple reflections at the n'th bump, and integer linear com-
binations relate to the possibility of successive reflections at a number of different
bumps. This is confirmed by a detailed analysis, using the appropriate generalised
Fourier transforms, of the development of a wave packet in position space. The
method of stationary phase exhibits, for example, components of the wave packet
centred around

Since it is known ([2]) that the mean squared probability, for feMc(H\ of
finding the particle in any fixed bounded region, converges to zero, the wave
packet will ultimately be at a great distance from r = 0 "for most of the time", but
will always return for a limited interval of time, to a neighbourhood of the origin.
A similar interpretation holds in the case of the potential V defined by (31).

5. General Framework for Singular Continuous Spectrum in Potential Scattering

The arguments of Section 3, relating the nature of the spectrum of the Hamiltonian
to asymptotic behaviour of solutions φ of the time-independent Schrδdinger
equation, make essential use of the behaviour of φ only at discrete sets of points.
Instead of having to discuss the manner in which φ varies continuously with r, one
determines φ at discrete sequences of points {«.} and {&.}, and estimates the
transfer matrices relating φ and φ' at points of these sequences. We now proceed to
generalise this approach in terms of transfer matrices to deal with a larger class of
potentials, including in particular singular short range potentials for which the
Hamiltonian has singular continuous spectrum.

Let {αj and {&.} (i^rx^; z = l,2,3, ...) be two such (increasing) sequences and
to each value of i associate a further increasing sequence {x^} (/ = 0,1,2, ...)
satisfying

χo = i - ι an m x = x , say .
j-xx) J

Let fl. = xj^., so that the sequence {xΦ} (/ = 0, 1,2, ... 9 N t ) defines a partition of
(fri_ 1, 0j) into N. subintervals. [Equation (12) corresponds to the case x^ x = x(f + 1
and bt — at + α, but other sequences may be appropriate, depending on the class of
potentials. As in Section 3, the JV/s are taken to be rapidly increasing with z.]
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The potential V(r) is to be given in terms of sequences {V(ΐ)(r)} and
(i=l,2, 3, ...) of real locally L1 functions, defined respectively on the intervals

and

ai<r<bi.

We take, then,

ai<r<bt (i = l,2,3, ...) (36)

Each Nt thus determines the distance in position space over which the
potential is given by F(ί)(r). [Equation (11) corresponds to the case 7(ί)(r) = 0,
W(l\r) = W(r — α ). In applications there will be some algorithm for inductively
specifying F(n)(r) an<3 the sequence {x^} once the potential is known in the interval
0<r<&π_ 1 .]

Let us denote by Mn(λ) the (2 x 2) transfer matrix satisfying

for solutions ψ(r) of — ψ" + W(n}ψ = λψ, and by tjίn(λ) the transfer matrix satisfying

tjt.

for solutions ιp(r) of

-ψ" + V(n+i)ψ = λ\p. (39)

"Discrete wave operators" may be defined for each n, which describe the

asymptotic behaviour of < /

ί n + ι κ ) in tne limit as j->oo. We suppose that there

exists some real matrix t(λ\ continuously differentiable with respect to λ in some
closed subinterval of 1R, and having complex eigenvalues exp(±ΐ/?(Λ,)) (jSreal), for
which the following uniform limits exist :

w(n\λ)= lim(t(n}ΓjtinJ-+CC J'

d d (40)
-

Let /+ be eigenvectors of ί corresponding to eigenvalues exp( + iβ) respectively,
and chosen to satisfy /_ =(/+)*. Denoting by f±. ( ΐ=l,2) the fth component of
/+, /+ι/-2~/+2/-ι ^s Pure imaginary, so that the /+ may be "normalised" to
satisfy

Aι/-2-/+2/ι = -i (41)
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A priori we could write only ±z — , but we shall subsequently confirm the sign of
dλ

the r.h.s.

We may now use the discrete wave operators w(n) to define, for real solutions
of — φ" + Vφ = λφ, discrete analogues of the R and θ variables of Section 3.

First write

p»f+ +qj- (p"=q*}> (42)

and then define real Rn and 6^(mod2π) by

Pn = ίRne
iθ», qn=-iRne-«» (43)

with Rn = +
As in Section 3 we shall assume that the JV f increase sufficiently rapidly that the

spectral measure of ——^ + V (in the interval [0, b\ where b = lίm bn\ may be
dr \ n^co "j

derived by a limiting argument as n->oo from the spectral function ρn of the

differential operator — —-̂  + Vn (in the interval [0, x(^})) where

= V(n\r)

[We take always the boundary condition of ψ(O) = 0.] For the solution ψ of — \p"
+ Vnψ = λψ with initial conditions ψ(O) = Q, ιp'(O)=l, (40) implies

as n->oo, where pn and ^fn satisfy (42) with φ(bn) = ψ(bn) and φ'(bn) = ψ'(bn).

r, , . , . f f lWl Ίda db
Employing the notation < 7 / . x > = / 7 - — — α-— ,we have

α/L α/i

(cf. [15], p. 133).

Using the estimates for ip and ψf, and for derivatives with respect to λ, this gives

*("} dβ
J (ψ(r))2dr = 2ίn^pnqn(f+1f_2-f+2f_ί) + o(l)

= 2ntRn^\ +o(l), using (41) and (43).

[This justifies the sign of the r.h.s. of (41).]



Singular Continuous Measures in Scattering Theory 33

We can also estimate the distribution of eigenvalues of τ + V acting in
or2- n

L2(0, xf) and deduce that

(45)

Using β to parametrise the points of a subset Σ of IR, this gives for the measure
μn corresponding to ρn

W~V (46)< J 2π(Λ.
Σ

ndλ

where (21) and (22) correspond to the case β(λ) = λ1/2 = k. Again, we have

)= \im μn(Σ) (47)
-

for subintervals Σ.
Thus again Rn plays the role of determining the measure μn, and to complete

the analogy with Section 3 we need only evaluate Rn/Rn, r Now for solutions φ of
— φ" +Vφ = λφ we have

where as Nn is taken arbitrarily large, pn_1^pn_1 and qn_1^qn_1.
Hence

Let us write

w<">MH/+ = C/("ί/+ + ί7<">/J

w""Mn/_ = L/(2")/+ + t/^/-Γ l ^

Since detw(n)Mn = l, this matrix "conserves" /+ 1/_ 2— /+2/_1? so that again
[7("} = l.
We have, then,

Using (43) and writing pn_1 = —iRn_1e'S"'1,

we find

R.
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where

and
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cos 2(y + θ) + Cn sin 2(y + θ) (49)

2 1 2 2

Since Rn-ί->Rn-ί,θn_ί^θn_12iS each Nn is taken arbitrarily large (holding Af-
fixed for i<n\ we shall assume that the sequence {Nn} has been chosen to increase
sufficiently rapidly that the infinite products

and
ί = l

converge uniformly to limits which are bounded above and below by strictly
positive constants.

In that case, we may define a new family {μj of measures and a limiting
measure μ by

ί = l

= lim μn(Σ) for subintervals Z, such that the spectral measure μ associated
-

with the differential operator — -y + F is equivalent to the measure μ.

In particular, μ is singular continuous if and only if μ is singular continuous.
We are now in a position to apply the Corollary to Theorem 1. Noting that An,

Bn, Cn are real, we have

where

= (det[/(w))2 = l .

Hence /n = 1, and we also have

π _

so that mrt<0.
We now have



— -i-j + V -\ -- 2 — nas singular continuous spectrum for λ > 0. (I.e. the spectrum
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Proposition 3. Let V(r) be given by (36) and assume that discrete wave operators w(n)

00

exist, satisfying (40). Define mn as above and suppose that £ — mn = oo (uniformly
M = l

in β). Then, provided the {JV } increase sufficiently rapidly, the differential operator
d2

— — ~ + V has sinqular continuous spectrum.
drz

Proposition 3 extends the class of potentials with which we can associate
singular continuous spectrum. In any particular case it is necessary to obtain
estimates of transfer matrices in terms of which appropriate discrete wave
operators can be defined. These estimates can be carried out in the following cases,

where "sequence of bumps" means a potential given by (11) and (12) or more

00 \

generally by (31) and (12) in the case £ 0? = oo . It is always assumed that the
ί=l /

{Nt} increase sufficiently rapidly for Theorem 1 and its corollary to be applied.

Examples, i) Let V(r) be any l}(o, oo) potential plus a sequence of bumps. Then

-i-j + V -\ -- 2

is singular continuous for each partial wave.)
ii) Let V(r) be any locally L1 periodic potential, plus a sequence of bumps (a

d2

periodic lattice with impurities !) Then — — -j + V has singular continuous spec-

trum (for λ in the absolutely continuous spectrum of the unperturbed periodic
differential operator).

00 d2

iii) Let V(r)= £ W(r-JV-) for WεLV, oo). Then --^ + 7 has singular
i=ι dr

continuous spectrum for Λ>0.
iv) Add to the short range potential defined in [15] a perturbation

00

Σ δ(r — xNι). (For the definition of {xk} in this case see [15]). (Or the <5's may be
i = l

replaced by appropriate locally bounded ^-approximating functions). Then
d2 12

— -r-y + V acting in L2(0, b) has singular continuous spectrum in 0< λ< — -.

v) Let

V(r) = V(b-r)-l 0<r<b

= 0 r>b,

where V is the potential in iv) above.

Then — — j + V, acting in L2(O, oo), has singular continuous spectrum for

Here V is short range, but highly singular and oscillating ar r = 0. One may
show (cf. [4]) that the wave operators Ω±(H0 + V,H0) exist and are complete.
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In each of the preceeding examples i)-iv) a Hamiltonian giving rise to
absolutely continuous spectrum is perturbed by a sequence of potential barriers.
The effect of the perturbation is to change the nature of the continuous spectrum,
making it singular. The perturbation, which may be relatively compact, thus has a
profound effect on the spectral properties of the total Hamiltonian. The singular
nature of the perturbed spectrum may itself be extremely stable for a wide class of
"small" variations of the potential (e.g. change of coupling constant). Perhaps it is
absolute continuity that must be regarded as pathological, and singular continuity
as the norm!
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