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The Singular Holonomy Group
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Abstract. The "fibre" of the extension of the frame-bundle of a space-time
over a 6-boιmdary point p is a homogeneous space &/Gp. It is shown that
Gp can be found by a construction like that for a holonomy group, and that
it contains a subgroup determined by the Riemann tensor. Near a curvature
singularity one would expect Gp=<£.

1. Introduction

A singular space-time is one in which there is a curve y (not necessarily causal)
that cannot be extended further in the direction of increasing parameter—i.e. it
does not stop at a point in space-time—and that has finite (Euclidean) length
measured in a frame parallely propagated along it [6]. At the time when Hawking,
Penrose and Geroch showed that being singular could be a general property of
space-time, attempts were made to define singular points, endpoints of such
incomplete curves, that formed a boundary to space-time. In particular,
Schmidt [6] produced the elegant construction of the b-boundary involving
a natural Cauchy completion of the bundle of all (pseudo-)orthonormal frames
(i.e. frames with respect to the Lorentz metric). The usefulness of this as a means
of providing a canonical boundary has been disputed; but it certainly can
provide valuable insight into what is going wrong at a singularity, into why a
curve is forced to be incomplete.

We shall see that a particular group arising in the course of Schmidt's
construction contains information about the unbounded part of the curvature,
and about the "topologicaΓ peculiarities that can complicate a singular situation.
We thus have a tool for separating and classifying different aspects of singulari-
ties, a necessary step towards understanding their physical significance.

In forming the ^-boundary one first forms the closure ClbL(M) of the
(pseudo-)orthonormal frame bundle L(M) with respect to a positive definite
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Riemannian metric gb on L(M) [6]. Then the Lorentz group <£\ (we assume
full orientability) acts on this closure, defining a projection

π:C\bL(M)^ClbM: =C\bL(M}/^\

that extends the bundle projection L(M)-»M.
This paper analyses the structure of the "fibres" Lp(M):=π~1(p) for

pedbM: =ClbM\M. It is well known ([8] and Theorem 1 below) that Lp(M) is
a homogeneous space of the Lorentz group, of the form ££\/Gp. The group Gp is
the singular holonomy group at p (determined up to conjugacy), whose construction
is the subject of this paper. It will be shown to be the group of Lorentz trans-
formations that can be generated by parallel propagation round "arbitrarily
short" loops near p [see the definition of Gp(κ) below].

The group Gp contains a subgroup Gp (which usually is the whole of Gp)
generated by groups that are completely determined by the Riemann tensor.
When p is a curvature singularity [2, 3] then, except under very special conditions
that are discussed in §4, Gp = Gp = £?\ and Lp(M) is a single point.

2. Definition and Basic Properties

M is a fixed space- and time-orientable Hausdorff space-time.
The metric will be assumed to be at least C2, although all the results can

without difficulty be reformulated in the C2~-case, using the techniques of [1].
Throughout we shall be considering a fixed horizontal curve κ:[0, 1)->L(M)
ending over a point peClbM; i.e. K extends to curve with κ(l)εLp(M\ All curves
are assumed differentiable except where specified.

is the loop space at xeM.
For y:[0, 1]-»L(M), l(γ) is the b-metric length of y.
If ceΩ(x) and ueLx(M), then we can lift c to a horizontal curve cu with

πocu = c, cu(0) = u. Thus we can define

For fleIR , ue L(M), we define

Φa(u) : - {L(u9 c)\ce Ω(π(u)) Λ /(M, c) ̂  a}

(the part of the holonomy group accessible along curves of length ^ α).
Finally, we define a set Gp(κ) that will be shown in Theorem 1 to be the

singular holonomy group.

G,0c):= Π U
αeIR + ί e [0 , l )

Proposition 1. // peM then Gp(κ)= {1} (1 = identity in
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Proof. For any u and ceΩ(π(u)\ the point c(t) will always lie in a normal
neighbourhood of π(u) provided l(u, c) is small enough. Since the connection
coefficients are bounded in such a neighbourhood we have, for L(u, C)E Φa(u\
that \\L(u, c)\\ ^/(α, u) for small enough α, where /(α, w)-+0 as α->0. By continuity
the range of t can be extended to [0,1], if peM, so that /(α, κ;(ί))-»0 (α-»0) uni-
formly in ί. Thus the result follows. Π

Corollary 1. For any peClbM and K ending over p, choose O r g w < l and define
κu(t): = κ(u + t(l - u)\ Then Gp(κu) = Gp(κ).

Proof. Define K" by κ"(t}\=κ(ut). Clearly

Gp(κ}=Gp(κ^Gπ(κ(li)](κ"}.

But, by Lemma 1, Gπ(κ(u))(κ")={l}cGp(κ»). Π

Proposition 2. Gp(κ) is α closed subgroup of ££\.

Proof. The only non-obvious requirement is closure under multiplication.
Let αeIR+ and Ll,L2eGp(κ). Choose u so that, with κu as in Corollary 1,
/(κ")^α/4||L1L2||. Since by Corollary 1 L^L2εGp(κu\ we can choose
ί/,c/(i=l,2;7=l,2,. . .) so that ίfe[ιι, 1), c/efl(π(κ(ί/))), /
/(κ<ί{), c{)^α/4||L2||, and L(/c(ί/), cb-+Li{j-+<X)', ί= 1, 2). Then define
by

c{(4s-2)

π(κ(ί{+(ίi-ί{)(4s-3))) Jg

By construction l(κ(t{\cj)^a and L(κ(t{\cj) ^LlL2. Thus L1L2EGp(κ). Π

Proposition 3. If κlyκ2 are two curves ending over p, then Gp(κ:1) am/ Gp(κ2) ar^
conjugate in «£?+.

Proo/. There is a Lorentz transformation L such that κ± and κ'2:=Lκ2 end at
the same point in C16L(M). Hence there are connecting curves ^(1=1,2,...)
joining κί(tίi) and τc2(f2ί), where (ίlf) and (ί2ί) tend to 1 and /(^)->0; indeed,
we can take y f to consist of a horizontal part y£ followed by a part yf in the fibre
of κ'2(t2i), with yf connecting frames differing by a Lorentz transformation
Z,f-> l(ΐ->oo).

Let αeIR+ and LoeG^ q). Choose AT so large that for i^JV, |IAII^ 2

?

/(yf)^α/12, /(^i10^^/12; then choose ίj, tu^t <l, so that there is a c^Qί*:^))
with Lίκ1(ί5),cί)-*L0eGl,(Fc1

l') = Gp(ιc1) and l(κl(tf

i),c)^α/U. Define cίeί2(π(κ(ί2ί)))
to consist of the following curve segments (reparameterized as in Lemma 2):
(i) Cl =π°y?~, (ii) C2 = π°(κ:1|[ί1/, ίj), (iii) c f, (iv) c2 , (v) c\ where the superscript "
denotes describing a curve backwards.

This will give L^^t^c'^L ̂ L^, I(κr

2(t2i)9c'^α. As i->oo, L^L^-^L^
and so L0e Gp(κ2). Thus Gp(κ2) = G^K J.
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But note now that, for any t and CE Ω(π(κ2(t))\ L(κ2(t\c) = L~lL(κ'2(t\c)L.
Hence Gp(κ2) = L~lGp(κl)L. Π

In view of this Lemma we can usually drop the explicit reference to /c, and
speak loosely of Gp as being "the" singular holonomy group at p.

Theorem 1. Lp(M) is ίsomorphic (as a homogeneous space) to £?\/Gp.

Remark. The spaces ^f\./Gp(κ) for different K are isomorphic.
Proof. By construction ϊ£\ acts transitively on Lp(M). Any point ueLp(M) can
be represented as the limit of a sequence (fc(ίf)) (£f-»l), where K: is a horizontal
curve ending over p. Moreover, for any geGp(κ) we can choose (ίf) so that there
are curves ct e Ω(π(fc(ίf))) with the transformations gt : =L(κ (ίj, xf)->^ and
/(κ(ίf), cf)-»0. Thus the sequence (gκ(t^)^u, and so gu = u.

The argument can be reversed to show that if gu = u for some 0eJ2?τ

+, then
0e Gp(κ:). Thus Gp(κ) is the isotropy group of u. Whence the result follows. Π

3. The Generation Gp

The ordinary holonomy group Φ(u) contains various subgroups: Φ(u)3Φ°(u)
DΦ*(w)DΦ'(M) — the restricted (curves homotopic to zero), local and infinitesimal
holonomy groups, respectively [4]. In the singular case the situation is more
complex. In particular, while there are analogues of the infinitesimal group
generated solely by the values of the Riemann tensor and its derivatives at
points on /c, or by its unbounded components, these analogous groups are not
necessarily subgroups of Gp. The Riemann tensor can be unbounded, for
instance, without thereby producing a non-trivial Gp.

To overcome this we must examine an integral of the curvature, rather than its
values at points. This is reasonable on general grounds: one feels that the
"severity" of a singularity should take into account the extent, as well as the
intensity, of the curvature. With this in mind, we give a definition parallel to
that of G, but using only the l-valued curvature 2-form Ω (where I is the Lie
algebra of &\\ "Group S" denotes the Lie group generated by S and BE(u) is the
ε-ball in L(M) centred on u.
Definition /'. G'p(κ): = P) Group ί p) (J ί J Ω\Σ is a compact 2-surface with

JceIR+ L α e I R + ί e [ 0 , l ) l Σ

boundary, contained in Ba'(κ(ή) with l(dΣ)^2πaf.

sup \RΆβγ
Ba(K(t))

Proposition 4. Gp(κ) C Gp(κ).

Proof. The basis of the relation between curvature and holonomy is the formula

expressed in a suitable coordinate basis with u =

L(u9 dΣTβ = (l + 0(a2\\R\\)) f R*βyδdx* Λ d x δ

Σ

where a is the diameter of the region involved, the coordinate area of Σ is
bounded by a2 and \\R\\ is the supremum of the coefficient β0^. From the
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definition it is immediate that any element of G'p(κ) can be expressed as a limit of
multiples of Lorentz transformations of the above form, with arbitrarily small
total curve-length, and so is in Gp(κ). Π

The group G'p(κ) is defined from the unbounded part of the curvature, as seen
from K. The bounded part may also contribute to Gp, however, in the following
sense.

Let H be a subgroup of Gp(κ\ Analogously to the definitions of § 1, define

Φa

H(u) : = {Lε g\ \(\fhe H)(3ce Ω(π(u)) (L = L(u, c) Λ l(hu, c) ̂  a)} .

Φa

H(u) is, roughly speaking, the part of the holonomy group accessible along
curves whose length, even when boosted by heH, is <^α.

We convert Φa

H(u) into a subset of I by setting

φ"H(u) : = { λe I|0 ̂  ε ̂  1 => exp ελe Φa(u)}

and finally take the group generated by the superior limit of this as ί-»l on K,
for arbitrarily small a :

ΦH(κ):= Π Group [ Π U
αeIR+ l se[0, l ) ίe[s, 1

This definition is admittedly somewhat contrived, but in practice it could
well be simple to identify subgroups of ΦH. For example, if H acts only in a
timelike 2-plane, then we could examine curves c lying, as it were, "normal"
to this plane, unaffected by H: the components of the Riemann tensor
(whether bounded or not) in this normal direction could then generate a
subgroup of ΦH(κ).

Let G be a subgroup of ΦH(κ\ and g its Lie algebra.

Proposition 5.

K:=Group\\J Π
[φeg εeR

is a subgroup of Gp(κ).

Proof. Fix aeR + . Let k be an element of K for which there is a φ satisfying

(i) lδ>V,δ φef](jφa

ίί
5(κ(t)).

s t

(ii) Vε, 3ft = h(ε)εH such that

k = Exp Ad h(εφ) = h~1 (Exp εφ)h .

Chooses so that \\h(δ)\\Ί(κ^)^a/5. Then we can find a ί, s^t< 1, and a cεΩ(π(κ(t)))
such that L(κ(t\ c) = δφ, and l(hκ(t\ c)^a/6.

Since HcGp(κ) we can also find ^(1=1,2,...) with t^tt<l, so that

As in Proposition 3, construct the curve c consisting of (i) ci9 (ii) (π°κ) |(ί, ίt ),
(iii) c, (iv) (π°κ)\(t,ti), (v) cf". This generates a Lorentz transformation tending
to fc(i-»oo) and so keGp(κ).

The case where fe involves a product in G or a product of such fe's can be
reduced to the above case, showing that the entire group is in Gp(κ). Π
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4. Discussion

Various sources contribute to the group Gp that determines the degeneracy of the
fibres Lp(M\ We have just described the contributions from

(i) the singular curvature, via G'p

(ii) the whole curvature, via ΦH(κ) and K.

In addition we could have

(iii) "topologicaΓ contributions from accumulating singularities like those
discussed in [3]

(iv) non-local contributions, arising from null geodesies whose tangent
vector can be boosted to zero under Gp which link p with more distant parts
of space-time.

We shall conclude by illustrating the role played by Proposition 5
[item (ii) above] when we have already identified a subgroup H of Gp, arising,
say, from singular curvature or from topological effects, and a subgroup G of ΦH(κ)
arising from the whole of the curvature. Then one knows that Gp must contain
the group G generated by H and the "K" of Proposition 5. Table 1 lists the
relevant possibilities for the special case G^H, with H non-compact, using the
notation of [5]. It will be seen that a maximal Gp = ̂  is obtained in most cases
where the group G = ΦH(κ) = J£? (as would be expected in the presence of any
generic regular curvature), provided that the singular group H is non-compact
and not too small.

If a curvature singularity is to avoid being completely degenerate (Gp = JSf),
the groups involved must therefore be very specialised. We could compare the
situation with that of the ordinary infinitesimal holonomy groups of general
relativity, which should be analogous to ΦH. Here restricted groups arise only
when there are relationships between the principle pressures/density and
corresponding components of the Weyl tensor. These are physically reasonable

Table 1. The subgroup G of the singular holonomy group generated by groups H and K, in terms of H
(due to singular behaviour) and G (a regular part). K is given from H and G by Proposition 5.
The notation follows [5]

άimH H G G άimH H G G

1 Q P
D,K

<£
A Σ

K,A,D

^AQ J

Λσ J
Π P

Ω,SL(2,IR)
D, J£f, J

Q
K
£?
A
Σ
D
ΛQ

Σ

Π
Ω
D

2 Ω

Σ

P

3 J,K

A

SL(2,IR)

J,D
SL(2,IR)
=£?
J,D,A,K
g
D

D̂
J*?
D
&

J
Ω
D
Σ
se
D
3?
D
D
A

^D & J2?
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only in the vacuum case, when groups Σ and D are the only non-trivial
possibilities, with Petrov types N and III respectively [7].

One can thus expect that, in some sense, the "generic" situation for a
curvature singularity is a completely degenerate Lp(M); and that this will also
occur when the singular part of the Riemann tensor is specialised, provided that
the regular part remains sufficiently general.

Finally, we should note that the construction of the singular holonomy group
provides much information about the singularity-structure of the space-time,
which would be valuable in its own right whether or not one adopts the 6-boundary
as the "correct" boundary of space-time. Indeed, the degeneracy of the fibres
shown here implies that the 6-boundary is probably unsatisfactory, as was first
explicitly realised by R. Johnson [8]. If one adopts instead an "enlargement"
of the fo-boundary [9] that removes at least some of its unsatisfactory features,
then the construction described here transfers in an obvious and natural way to
give singular holonomy groups for the points of the enlarged boundary.

Acknowledgements. This paper grew out of discussions, prompted by [8], with B. G. Schmidt, for
whose suggestions I am most grateful.
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