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On the Zeros of Absorptive Diffraction Cross Sections
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Abstract. Distribution of the zeros of absorptive differential cross section is
studied. Several rigorous bounds are deduced on the slope and curvature of
diffraction peak. Energy dependence of the slope of diffraction peak and
location of zeros of the cross section impose a constraint on ratio of curvature
and slope of diffraction peak.

1. Introduction

The purpose of this note is to study the distribution of zeros of absorptive elastic
differential cross sections and to deduce bounds on the slope and curvature of
diffraction peak (whose precise mathematical definition will be given later). It is
shown that the sufficient condition for scaling can be obtained if the zeros are
distributed in a specific manner in the complex cos0 plane, Θ being the centre of
mass scattering angle.

Let us briefly recapitulate some of the properties of two body scattering
amplitude which follow from the assumptions of axiomatic quantum field theory
[1, 2],

i) Analyticity in s and t. The scattering amplitude F(s, t) is analytic in the domain
(|ί|<ί0®

 cut s-plane), where ί0 is some positive number (threshold for ί-channel
reactions). Here s, denotes the square of the centre of mass energy and t the square of
the momentum transfer.

ii) Polynomial Boundedness [1]. For |ί| < ί0 and some constant N, F(s, t) satisfies the
inequality \F(s, t)\ < \s\N.

in) Analyticity in the Lehmann-Martin Ellipse. For fixed real s above threshold,
F(s, t) is analytic in an ellipse in the cosθ plane with foci at cosθ = +1 and — 1 and
semimajor axis of the form 1+α/s for large s. Consequently, the partial wave
expansion for F(s, ί) converges inside this ellipse.
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iv) The Froissart Bound [3]. The total cross section is bounded from above as

4π
(In(s/s0))2. (1)

t0 — ε

Here and everywhere ε denotes an arbitrarily small positive number.

The distribution of zeros of the scattering amplitude has been studied for the
general case by Auberson et al. [4] in connection with violation of the
Pomeranchuk theorem. In [4], it was shown that when the Froissart bound is
saturated that is σtot(lns)~2-> const, s-κx), then the function /(s, τ)
= F(s, -ί0τ(lns)~2)/F(s,o) has the limit

/(M) = /(τ) (2)

for at least one sequence {sj->oo. Furthermore, is an entire function of order 1/2
and the forward slope fe(s)~ (Ins)2. The scaling properties of the diffraction peak
have been studied by several authors following the work of Auberson et al. [4].

Recently, it has been shown [5, 7] that the elastic differential cross sections for
pure absorptive amplitudes are functions of positive type. This result holds good for
external particles with arbitrary spin as a fundamental consequence of unitarity.
Mahoux [7] has further shown that the elastic differential cross sections can be
expanded in Legendre polynomials with positive coefficients. Thus

r (s? °} = (2n + ι)

where — - — (s, ό) is the differential cross section in the forward direction and the
at

coefficions αM(s)^0. Here the superscript A denotes that the cross section is purely
absorptive. Recently, Roy [8] has extended this result to inelastic reactions.

2. Bounds on Slope of Diffraction Peak

Let

,t)(s9o). (4)

The function f(s, t) has following properties
a)/(s,o) = l.
b) |/(s, ί)|rg/(s,o) = l due to positivity of αn(s).
c) For complex values of |ί|<£0, f ( s , t ) is founded from above as

|/(S,ί)<exp[L(5)(|ί|/(ί0-β))1/2], (5)

where L(s) = In I s2 /— — - (s, o) .
\ I dt I

Note that is follows from the Froissart bound and the Jin, Martin lower bound

that - ,
dt
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The bound (5) is due to Auberson and Roy [6]. We define

Now we proceed to derive a bound on the number of zero s of /(s, ί) inside a disk
of radius r in complex t plane. Thus we arrive at

Lemma 1. The number nr(s) of /(s, ί) within the disk \t\<r<t0 — ε = Ris bounded from
above by

, x ^/ 21 -nr(s)<—=rlns. (6)
~2]/R

Proof. According to Jensen's theorem [9] nr(s) satisfies the inequality

f(s,r/δ)

f(s,o)
(7)

nr(s)<^^Max\lnf(s,r/δ)\,

since /(s,o) = 1. Using (5) in (8) we obtain

Optimizing (9) with respect to δ we deduce the desired result (6). Q.E.D.

Corollary. f(s, t) has no zeros inside a shrinking disk

r"<^ (10)

Remark. r0 shrinks as (Ins)"2 this result is similar to that of Eden and Kaiser [10]
who studied distribution of zeros of the scattering amplitudes that violate
Pomeranchuk theorem.

Definition. We define the slope of the diffraction peak, b(s), and the curvature of the
diffraction peak, φ), as follows.

b(s)=— /(s,ί)|ί=0 (lla)

Lemma 2. The slope and curvature of the diffraction peak defined through Equations
(lla) and (lib) respectively, are bounded from above as

(12)

(13)
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Proof. Let us apply Cauchy's inequality to b(s). Then

6(s)glMax|/(s,ί)|. (14)
μ| iίi<Λ

Using (5) in (14) and then optimizing with respect to ί, we arrive at (12).
Moreover,

Optimizing with respect to |ί| we have

Thus

. Q.B.D.

In what follows, we shall show an intimate connection between distribution of
zeros of f ( s , t) and the slope of the diffraction peak and its curvature. It is possible to
improve (14) and (15) if f(s91) is zero free inside a disk around t = o. The result is
stated below as

Lemma 3. // f ( s 9 t ) is free from zeros inside the disk t<r(s)9 then the slope of the
diffraction peak, b(s)9 is bounded from above as

21ns

(λΊ\(17)

Proof. Before proceeding further one has to consider two cases (a) r(s) < t0 and (b)
r(s) ^ ί0 . Let us proceed with the first case.

Define

Note that

Dl(s) = b(s). (19)

Since f(s9 1) is free of zeros inside the disk \t\<r(s)9 f(s, t) is holomorphic in this
domain. Applying Cauchy's inequality to Dn(s) we get

Dn(s) ^ ̂ - max |ln/(s, ρ)|, |ρ| < φ) < ί0 . (20)
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In order to determine max|ln/(s,ρ)| for |ρ|<r(s) we apply Borel-Caratheodory
theorem [11] to f(s,t).

|ln/(s, ρ)| ̂  -i- Max |ln/(s, r)| (21)
r-\Q\ |ί| = Φ)

since f(s,ό)= 1. Using (5) in (21) we get

»"^S

Thus upper bound (20) on Dn(s) is

2|/φ) jnj (23)

"

Optimizing with respect to ρ we get

21ns

(b) If r(s) ̂  ί0 then we can apply Borel-Caratheodory inequality to the bigger circle
\t\=R and obtain bounds better than (24) and (25). Q.E.D.

Remarks, (a) If r(s) is independent of s then b(s) and c(s) are bounded by Ins.
(b) However, if r(s)>(lnsΓ2 + <5, £>0 then (24) and (25) will be improvements

over (12) and (13).

Corollary. // r(s) is independent of s the Froissart bound can be improved as follows

, , . Ins

Vx v ί )

Proof. We follow the method due to Eden and Kaiser [10] to prove the above result.
It follows from (21) that

II f( }\< ^ 11 f( }\ (21}
~ r ~ \ Q \ \ Q \ < y

For ρ<0, therefore,

^— (s, ί)> ~(s, o)QXp2t(rRΓ1/2 Ins (28)
at at

for r>\t\/2 which follows from standard theorem [12]. Therefore

,dσA ° dσA

tot el ^ at -r/2 dt
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Hence

since -r— (s, ί) ̂  σt

2

ot. Therefore

σtot^lns/(r£)1/2 (29)

for large enough s. Q.E.D.

3. Distribution of Zeros of /(s, ί) and Scaling of Diffraction Peak

In this section we investigate how the energy dependence of b(s) affects the
distribution of zeros of f(s9 ί). Let us assume that /(s, ί) has no zeros in \t\ <r,r being
independent of 5, and b(s) behaves as

b(s) = C(lns)« 0<α^2 (30)

C being a constant. Then it follows from (16) that

2(1-α)

For α>l this is in contradiction with the s-dependence of r. Thus when 1 <α^2
/CM) must have at least a pair of zeros in the disk

r < ( l n 5 ) 2 < 1 ~ ° ° - (32)

Note that the radius of the disk tends to zero for s-» oo. Further, one can follow the
argument due to Kinoshita and Martin [13] that all zeros of /(s, t) cannot lie in the
region Reί>0. In that case unitarity bound will be violated.

Therefore, it is very interesting to note that energy dependence of b(s) and
unitarity provide useful information regarding location of zeros of /(s, t).

The following theorem provides an interesting relation between b(s) and φ) if
the zeros of f ( s , t) are located in a specific manner.

Theorem. // b(s)^(lns)α such that 5/4 <α^ 2 and all zeros of /(s, t) lie in a domain
εj ί f l 2 , εί being an arbitrarily small positive number, then

Proof. We shall prove the theorem in several steps.
i) Let us consider a disk of radius r in the ί-plane. The function

(34)

is free from zeros inside the disk \t\ < r where tt are the zeros of /(s, ί) in that domain
and nr denotes the number of zeros in that disk. Note that if t{ is a zero of /(s, ί) so is



Diffraction Cross Sections

if. Let us define

201

(35)

Then

(36)

ii) Since f ( s , t) is zero free inside the disk |t| < r we can deduce following bounds
on Ca(s)

1
-Max|ln/(s,ρ)| (37)

which is analog of (23). We have to deduce an upper bound on ln/(s, ί).
iii) Let n'f denote the number of zeros of f(s, ί) within the disk r/2 <\t\<r. Our

purpose is to find an upper bound on [14]

11*
-f(s,t) for |ί|<r.

Max
|ί|=r + ί

Π; (38)

where the product is over the zeros in the region r/2<|ί|<r. For the zeros in the
region 0<|ί|^r/2 we have

Π;
tff

r/(s,ί)

S exp-

Thus

rnr

Max |/(s,f)|£ - exp (Ins)
Iί|=r+e \e/

Optimizing (40) with respect to ε we get

' r \ l / 2

Max|ln/(s,ί)|^kln{|- Ins

(39)

(40)

(41)
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If we apply the same technique to (37) as applied to (23) we arrive at

,
n — 1\

r
n

+ r1/2ir1/2lns]. n^2. (42)

iv) From (42) we note

(43)
ns).

Rewriting Equation (36) for n = 2 gives

nr +2_i_t*2

C2(s) = D2(s)+ ΣJ^- (44)
i = ι 2 l ri l

Under the assumption of the theorem the second term of the right hand side of (44)
satisfies

(45)

where as the left hand side is bounded from above by (43). Thus, in order to satisfy
(44) D2(s)<0 and should be 0(ln5)4(α"1}. Since fo(s)~(lns)α is follows that

-4>. (46)

This completes the proof of the theorem. Q.E.D.

Remark. Note that 5/4 <α^ 2. Therefore i) c(s)/b2(s)0(lns)~3/2 when α~5/4 and ii)
c(s)/b2(s)~Q(l) for α = 2. c(s)/fc2(s)-»0 in the first case and it is bounded by a
constant in the second case. It has been pointed out by Cornille and Martin [5]
that a sufficient condition for scaling of diffraction peak is c(s)/b2(s)< const with
the scaling variable τ = tb(s). Here by scaling we mean that

f(s9τ/b(s)) - >/(τ) (47)
s-»oo

for at least one sequence {sn} -» oo and τ = tb(s). We mention here that the hypothesis
of our theorem provides a sufficient condition for scaling of diffraction peak.

To summarize we have deduced several bounds on the slope of the diffraction
peak, b(s\ and the curvature of the diffraction peak, φ), and have investigated the
distribution of zeros of f(s, ί). Finally, we have shown that energy dependence oΐb(s)
and the location of zeros of f(s, t) in complex t plane impose constrains on ratio
between curvature and slope of the diffraction peak for absorptive scattering cross
sections.
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