
Communications in
Commun. math. Phys. 57, 165—171 (1977) Mathematical

Physics
© by Springer-Verlag 1977

Correlation Inequalities and Equilibrium States.
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Abstract. The hierarchy of some relevant correlation inequalities is settled,
together with their relation to equilibrium conditions.

I. Introduction

Recently it was proved that the Roepstorff upper bound [1] for what we call the
Duhamel two-point function, defined for a time invariant state, is equivalent with
the KMS-condition for equilibrium states [2]. Along the same lines Sewell [3] used
an other inequality for correlation functions and proved that it yields the KMS-
condition. This technique showed to be a powerful method to prove the equivalence
of KMS with local variation principles.

Here we give a proof of the equivalence of the two inequalities for time invariant
states (Theorem II.4). Therefore for practical services the one or the other may be
used. The Roepstorff upper bound seems to be more directly connected to physical
quantities [4] whereas the other inequality looks interesting as it is linear in the
Hamiltonian.

Furthermore recently a bunch of correlation inequalities has been derived for
KMS-states [1-6]. Theorem II.4 yields now more elegant and more direct proofs of
these inequalities. In this note we consider more five inequalities. It turns out that in
general they are not equivalent to KMS or to the other conditions in Theorem Π.4.
Therefore the question of hierarchy between these inequalities is raised and solved.

II. Equilibrium Conditions

Let Ji be a Neumann algebra on a Hubert space ffi. Let if be a self-adjoint operator
on Jf and Ut = exp it H, ίeIR such that ί-> Ut U* is a group of automorphisms of
Ji. We consider the vector state ω(x) = (Ω, xΩ) xeJί with Ω a cyclic element of J f,
such that
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Furthermore suppose that JtΩ belongs to the domain @{At/2) of
ίe[0,l].

Definition II. 1. The state ω on Jί is called KMS if ω satisfies: for all pairs x, y in ^ :

= (x*Ω, y *Ω). (1)

Definition II.2. The state ω o n l satisfies the Roepstorff inequality if for all
xeJί.ω satisfies:

{TxΩ, TxΩ)SF{ω(x*x\ ω(xx*)),

where

Definition 113. The state ω o n j satisfies the autocorrelation lower bound if for all
x in @(H\ domain of H :

xΩ, [tf, x] Ω) ̂  ^(ω(x*x), ω(xx*)), (3)

where

ίu In u — u In υ if v > 0, u > 0

[0 ifu^y^O.

Theorem Π.4. The following conditions are equivalent :
(i) ω is KMS.

(ii) ω is stationary (i.e. UtΩ = Ω ίelRj and satisfies (2).
(iii) ω is stationary and satisfies (3).

Proof (i) implies (ii) see [6]. Now we prove (ii)->(iii):

Define implicitly the function g: xe]R+ ->g(x)eIR by

Let Γ(x) = ί ~ e then T~ι = g.
X

Furthermore

T(x)=\dte-χt

o

hence Tis a decreasing convex function on IR with range IR+, therefore g shares this
property.

Let xΩ be an element of the domain S){H) and {E(λ\λeΊR} the spectral

resolution of H then μ(λ) = —„ ^,, 9 — is a probability measure denoteX = ———-
\\xΩ\\2 ω(xx*)
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then the inequality in (ii) reads as:

J uμyΛ) - ^ — —.

Applying the function g yields:

Using the convexity of g and Jenssen's inequality we get

(xΩ, HxΩ)

G)(χ*X)

Using the in variance of the state one gets (iii).
Finally (iϋ)->(i) is proved in [3].

III. Hierarchy of Correlation Inequalities

As it is possible to settle this question for matrix algebras we limit ourself to this
situation. The statements below can be generalized to the general situation.
Therefore let Mn be the set of all n x n complex matrices ne 2,3,4,..., H = H* eMn

and let ω be any state on Mn, i.e. ω(x) = Tτρx, xeMn, where ρ is any density matrix
on Cn such that [_Q,H']=0.

Theorem III.l. (i) Inequality (3) implies: for all xeMn:

[#,*] ] ) . (4)
QjyXX j

(ii) Inequality (4) is equivalent to: for all x,yeMn:

(iii) Inequality (4) does not imply inequality (3).

Proof (i) Inequality (4) is obtained from summing the inequalities (3) for x and for

(ii) (4) is obtained from (5) by putting y = x.
Now we prove the converse.
From (4): for all x, yeMn:

defines a positive sesquilinear form (•,•)„ on Mn.
Let L be the Liouville operator: Lx = [H,x\ xeMn.
One checks that for all x, yeMn:

(χ*,y*)~=(y,χ)~
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We use the following observation. Any element xeMn can be written as:

x = a + Lb

a, beMn, La = 0. In this finite dimensional case such a decomposition is possible e.g.
with respect to the trace (for the general case a more detailed analysis is needed). Let

then Jί is left invariant by L, as:

Let Jf be the Hubert space MJJί with scalar product ( , )~ and [•] the canonical
map of Mn in Jf.

a) Suppose yeJί.
Remark first that if Ly = 0 then ω([x*, j]) = 0 for all xeMn. Indeed from (4):

ω(y*y) = ω(yy*).

By polarization

ω([x*,y]) = 0 for x.yeJf.

If La = 0, then a*eJf and hence ω([y,α]) = 0 for yeJί.
In general let xeMn then

x* = a + Lb with La = 0

and

the first term vanishes by the argument above, the second term vanishes because:

b) We have to treat the cases ω(x*x)>ω(xx*) and ω(x*x)<ω(xx*). We give in
detail the first case. The second one is obtained by substituting x into x* step by step.
The case ω(x*x) = cφcx*) is obtained by continuity.

As L is self-adjoint invertible on Jf, for any element xeMn we can write

O]= Σ M
/ c = l

and

r

χ= Σ χk+χo
fc=l

with Lxk = λkxk, λk Φ 0, λk Φ λι for k Φ /
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It follows that

and therefore

ω(xx*) =
k

Remark that by a) ω(x%xo) = ω(xox$).

For any element yeMn: by a) and Schwartz inequality:

| ω ( ^ x ] ) M ( [ > ] ) , L - ^

Remark that

and

From (4) applied to xk:

From the positivity of the right hand side, it follows that

Dividing the inequality by this factor:

%xj) < ω([x?,xk])

\nω(x%xk) —

After the summation over fc, using the joint convexity and the homogeneity of the
function

I n n - lnz;
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we get

/ r _ l r -. τ-ir^ ^ ω(x*x)-ω(xx*)

ω{xx*)-ω(xox$)

x) — In ω(xx*)

(iii) Let ω be the trace state, then ω is a solution of (4), but in general not of (3). It is a
solution of (3) if and only if if is a constant.

Theorem III.2. (i) Inequality (5) implies:
for all x, yeMn:

(6)

(Bogoliubov inequality).

(ii) Inequality (6) is equivalent to: for all xeMn

MIX x*])|2 ύ \ω{x*x + ;oc*)ω(|>*, [if, x]]). (7)

(iii) Inequality (6) does not imply inequality (5).

Proof (i) and (iii) is proved in [1] and [6].

The proof of (ii) is completely analogous as the proof of Theorem III.l (ii).

Finally we discuss the relation of the inequalities of above with the following
well known upper bound of the Duhamel two-point function: for xeMn.

\ (8)

Theorem III.3. (i) Inequality (2) implies inequality (8).
(ii) Inequality (8) does not imply inequality (7) and vice versa.

Proof, (i) is proved in [1].
We prove (ii) by an explicit computation on M 2 .
Take

Inequality (8) is satisfied for :

(e-3/21 ^ e

and inequality (7) is satisfied for

and
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The results of this section can now be summarized in the following scheme, the
numbers refer to the inequalities, the arrows are implications and the bared arrows
are implications which are in general not true.

T π
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