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Abstract. The stability of the free energy is proved for complex values of the
coupling constant by the way of a convergent expansion. As a consequence, one
obtains the Borel summability of the perturbation series.

I. Introduction

Since the proof by Glimm and Jaffe [1] of the positivity of the φ4 Hamiltonian in
three dimensions, many other results have enlarged our knowledge on this model.
Its present status is quite similar to that of P(φ)2 theories ([2, 3]) : the Wightman
axioms with mass gap were proven by Feldman and Osterwalder [4] and Magnen
and Seneor [5] for the weak coupling region, the existence of phase transitions were
shown by Frόhlich et al. [6], also Park has shown the convergence of the lattice
approximation [7], and Burnap has investigated the particle structure [12]. To
complete the analogy with two dimensional theories and in particular with the
corresponding φ\ theory, one would like to know the connection of the φ\ theory
with its perturbation expansion. From this arises the question of extending the
proof of [1] to complex values of the coupling constant. On the other hand, a
simplification of the proof given in [1] can allow a better understanding of the ideas
introduced and their application to other types of problems. This article presents a
contribution in these two directions. In particular, we solve the first problem and
prove as a by-product the Borel summability of the theory and its uniqueness with
respect to perturbation theory. It is left to the reader to judge if our modified proof
of [1] is simple enough!

We want at this point to emphasize the fact that all the results quoted above
were obtained using Euclidean space methods. The control of the φ\ theory goes
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through a bound on the partition function Zλ j y l > κ associated with an interaction
Vλ Λ>κ = λ J :φ*: + counterterms where λ is the coupling constant, φκ a cutoff

A

Euclidean field and A the volume of localization of the interaction. In [1] it was
proved that for suitable counterterms, λ ̂  0

\Zλ,Λ,κ\^ec^ (1.1.1)

for some constant C independent of TC, \Λ\ being the volume of A From the methods
involved in proving such an estimate, Feldman [8] proved bounds on the finite
volume Green's functions (the so-called Schwinger functions), which were extended
(in [4] and [5]) to the infinite volume case. The restriction λ real is a deep
consequence of the methods used in [1] and of the nonlinearity in λ of the
counterterms in the interaction.

The modification we propose keeps in essence the arguments used in [1] in the
framework of an algebraic convergent expansion. The expansion contains no
intermediate bounds. This allows the extension of the proof to complex λ.

1.2. Schematic Description of the Expansion

The introduction of functional techniques simplifies considerably the exposition.
The Euclidean field φ is considered as a (generalized) Gaussian random variable
and the partition function takes the form

where Fis the Euclidean interaction and dμc is a measure associated with the field φ
(see the next chapter for more details). The formal expansion of the exponential
generates the (formal) Euclidean perturbation expansion which is known to diverge.

We now give a schematic description of the expansion. The expansion is based
upon a truncated perturbation expansion of the exponential. The truncations are
necessary to keep control over the numbers of terms produced (to be compared with
their increasing convergence : a feature proper to the superrenormalizable character
of φ\). These expansions are performed in cells of phase space. These cells are
defined by giving momentum intervals defining upper and lower cutoffs for the
fields and cubes A of smaller and smaller sizes forming uniform covers of R3. For a
given size of the cubes, the perturbation expansion tends to lower the upper cutoff
of the fields in the exponent. The cubes for which the upper cutoff in the exponent
has not been lowered enough are then subdivided into cubes from another cover
and then the perturbation expansions are applied in the smaller cubes.

For fields of upper momentum cutoff Mu and localized in A, the interaction
V(A,MU) is bounded from below by —O(1)M^\A\ for some positive constant 0(1)
and thus
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The purpose of the expansion is to arrive at cells such that M^ \A\ ̂  1 (saturation of
the Wick bound) so that the exponential is bounded by a constant.

The control of the resummation of the expansions is obtained by the fact that
each high momentum perturbation of the exponential produces, after some
renormalization cancellations, a small factor. But this only occurs if the perturbated
terms produced during the expansion (for instance, a: φ4: term) have at least one of
their fields which is properly localized (i.e. Mj^\A\~l, M£ being the lower cutoff
and A the localization cube: see [1] and Chapter II.2 for the importance of this
notion). Therefore the perturbation expansion has to be stopped for an upper cutoff
somewhere between \A\~1/2 and |zJ|~1 / 3 (for φl both reduce to |JΓ1/4).

A general term in the expansion is then estimated using the Wick bound to
control the exponential and using graphs estimates to bound what remains.
However each perturbed term contains localized fields with some range of
momenta corresponding to an improper localization. Control of the number of
terms produced by the Gaussian integration of these fields is lost if the cubes in
which they are localized are too small. To avoid that, one has to use the fact that the
integration measure (the free measure dμc times the exponential) converges faster
than the Gaussian one (it corresponds to a quartic and not a quadratic interaction),
i.e. one dominates the improperly localized parts of the field using the formal
positivity of the φ4 interaction. It is really after this procedure that one uses the
Wick bounds and the estimates on properly localized fields after a Gaussian
integration.

On the technical level, this expansion is only a reordering of the methods and of
the concepts introduced in [1]. Most of the estimates are proved in [1], and we do
not repeat them.

As a result of the modification introduced, we have been able to eliminate all the
regularity conditions of [1], This allows us to give a purely algebraic definition of
the expansion, the main difficulty being the proof of a bound in the general term
ensuring the convergence. At this level, it seems to us that the method of the
combinatoric factors is the only one practicable. We apply it following the lines of
[1]. In the same spirit we have extensively used the notation 0(1) for any finite
positive constant larger than 1 and independent (if not specified otherwise) of the
parameters of the theory (the mass m of the free scalar field is not considered a
parameter).

1.3. The Main Results

Our results are

Theorem I. Let AeC, |ArgA|<π/2, then there exists C(/l)^0 such that

Theorem II. In the region weak coupling region (λ/m small enough) the Schwinger
functions of the theory satisfy the Osterwalder-Schrader axioms with an exponential
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clustering. They can be analytically continued in λ (in the domain of Theorem I) and
are C°° at λ = 0.

Theorem III. Under the above conditions, the perturbation series of these Schwinger
functions at λ = 0 are Borel summable.

Theorem II has been proved from Theorem I in [4] and [5], and we do not
repeat the proof. A proof of Theorem III is sketched in the Appendix (a more
detailed proof is given in [9]). Theorem I is proved in the next two chapters. The
cutoff theory is defined in Section ILL The phase cell expansion is given by formula
(2.2.4) and is explained in Sections II.2 and II.4. A general term (2.3.6) of the
expansion is bounded by Proposition 2.3.2 which is the main proposition. The proof
of Theorem I follows directly from it (Section II.3). Proposition 2.3.2 is proved in
Chapter III. In Sections III.l and III.2 we bound the general term as in formula
(3.3.1) using positivity arguments. The number of terms produced by the expansion
is given in Sections III.2 and III.4 by Lemma 3.3.1 and Proposition 3.4.1. The final
bound on each term of the expansion is given in Section III.5 by Proposition 3.5.2,
and we show in Section III.6, Proposition 3.6.1, that this bound implies a small
factor for each perturbation step. Proposition 2.3.2 then follows from Propositions
3.6.1 and 3.4.1.

II. The Expansion

I I.I. Introduction

Let φ (the "field") be the Gaussian process of mean zero and co variance

for x, yelR3. Let dμ be the associated Gaussian measure and let Tce^IR3) be some
cutoff and φ(κ) = φ * K be the associated cutoff field.

The renormalized Euclidean interaction (action) in the volume A is given by

λ2

V(λ;Λ;φ(κ)) = λ^ :φfκ):(x)χΛ(x)d3x- — $δm2(x):φ2

κ}:(x)χΛ(x)d*x

-ί(:φ^:(x)χΛ(x)d3x)3dμ (2.1.1)

with χΛ the characteristic function of the volume Λ9
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and

- J φκ(x)φκ(y)dμ .

The partition function Zλ Λ κ is then given by

The structure of phase space cells is given by two sequences of nonnegative
numbers

M0=0,M1,M2,...,Mi,... Mi_ί<Mi

The first sequence is associated with a partition of the momentum range and a
decomposition of the field φ as

<P=Σ<Pi>

where φ is, roughly speaking, a field of high momentum Mt and low momentum

Λίi-i
More precisely, let ηeC™(R) be such that

^(ρ) = l for |ρ|^i

0^(ρ)^l for i

) = 0 for

Then one defines

ηβ)= Π l(W/Mj) for /c-(fe(°U(1

*?=o

and

where ~ indicates the Fourier transform.

The second sequence is associated with a set of partitions {̂ } of R3. Each Q)f is
a cover of 1R3 with cubes Δf of volume \Δ^\ and is obtained as a refinement of the
"earlier" cover 2^_v For simplicity we choose the cubes of these partitions to be
given by 2~jA0 + 2~sz for zeZ3, A0 being the unit cube centered at the origin. It
follows from this assumption that for each *fe2Z+, there is an integer n(f) such that
μ,l = 8--«>.

From now on in the definition of the Model (2.1.1) we can assume without loss of
generality that
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1) the volume A is a union of cubes of ̂ 0

2) the cutoff field φ(κ) is of the form

K

Ψ(κ) = Σ <Pi
ί=l

for some integer τc^l. The upper cutoff is therefore Mκ.

One now introduces a mapping a:Z+ -*TL+ which associates the index f of a
cover Q)£ with the index α(/) of a momentum cutoff. It will be used as a stopping
index for the expansion in the cubes of Q)e. As a consequence, for the expansion, one
needs only to know the following two finite subsequences :

M0=o,M1,...,MJC

with /max being the smallest integer such that α(^max) ̂  K. The finest cover of IR3 to be

considered is thus 3), and we define 2= 1 1 3f,.
frmax vy <>

0^^<fmax

Finally let us introduce for each cell of phase space [Mf_ 1? MJ x A, A G^ an
interpolating variable ίfitA) 0^^ ^^1, and define

)= Σ Σ Π (^^^WM W (2-1.2)

Replacing φ(κ} in (2.1.1) by φ({£f}\ one defines an interaction

Before going on to the next section, let us remark that due to the local nature of

the interaction, if one writes φ — Σ φχA = ]Γ φΔ for some cover ,̂ one has

V\λ\Λ\ Σ φλ= Σ V(λ\Δ\φΔ)= Σ V(λ\φΔ)= Σ VΛ

with an obvious definition of the counterterms (see [1]).

71.2. Preliminary Definition of the Expansion

The expansion is generated by repeated applications of the following two formulae:

1) The perturbation formula

where

dσi>A.
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The operation I ( i > A ) has the effect of eliminating from the exponent the field φi

localized in A. The operation P(ίiΔ} has the effect of creating a Pt ^-vertex:

-- - - . A P(ί ^-vertex is a φ4-vertex and its counterterms. It is localized in A
"σi, A

and one of the fields is a φrfield (we will say a c^-leg).

Notice the following properties of / and P

2)P(M.,/(M) = ° if Δ'^Δ

From 1) and 2) follows in particular that (applying the identity only on the
exponential and omitting indices)

_ _

(2.2.2)

2) The contraction formula

J:<^(x)Ke-^=ίί<«p(x)«p^

for n = 1, 2, 3, 4 and K a Wick polynomial in the fields. This formula will be used to
exhibit the renormalization cancellations and to perform the Gaussian integration
of Wick polynomials.

In (2.2.3) we say that for the first term of the right hand side, a leg of the φ"- vertex
has contracted to an old leg, and for the second term, that it has contracted to the
exponent and created a new vertex : a C- vertex. Now we introduce an order relation
on Z+ x@ by

M)^Ov,zΓ) if \A\ = \A'\ and i^ΐ

or if \Δ\>\Δ'\

and specify completely the algebraic character of the expansion by giving us a
mapping A from TL+ x 2 to the nonnegative integers. We choose A to be constant
on the cubes of Q)f

Ai,A = Ai,S if
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The expansion is now formally given by

I e-v(λ ,Λ ,φ((mdμΞΞ J γi [_IίίΔ + PίίΔY^e-v(λ^(^dμ . (2.2.4)
i,A

This formula needs the following comments :

1) The product [~[ runs over all coupled (/, z l)eZ + x^ and has to be
(i,Δ)

understood as a successive application of the identity I(ifA} + P(ί)A) as defined in
(2.2.2) in decreasing order in (i, A).

2) After each application of operation P, one has to apply the contraction
formula a certain number of times in order to perform some renormalization
cancellations.

3) Because of the order convention, each time one deals with a couple (i, A),

A e ̂  , one has to consider the interaction VΛ as £ VΔ. In particular if a field φ is
Δe®f

contracted, because of the renormalization conditions, during the "step"
(z, A\ Δε®£, one has to localize its contraction in ̂ , replacing the right hand side
of (2.2.3) by

f f iφ"-1 :(

We remark that if R is a term resulting from previous steps of the expansion, then all
fields in .R are localized in cubes belonging to 3)€ or earlier covers.

113. Choice of the Parameters of the Expansion

In this section we discuss in a heuristic way what are the relevant choices of
sequences {MJ, {\Aj\} and of mappings a and A defining an absolutely convergent
expansion. This part is to show what are the degree of freedom one has in the
definition of the expansion. It can be omitted in a first lecture.

Remember that the principle of the expansion is to apply a truncated
perturbation expansion to the exponential in smaller and smaller cubes in such a
way that, if at the end of the expansion a field localized in A and of high momentum
M remains in the exponent, then one has M2 |zJ|^ΞO(l). The possible choices of
parameters defining the expansion have to ensure the control and the convergence
of the series of produced terms. We will first discuss the problem of controlling a
generic term of the expansion, postponing the question of the convergence.

Anticipating the next chapters, the control of a generic term is mainly governed
by the following facts:

1) A "convergent" Pt Δ-vertex will produce a convergent factor M/lfiJ or \A |ε° for
some ε0 > 0.

2) The contraction of a field φ localized in A and with low momentum M with a
field φ' localized in A' with low momentum M' gives a convergent factor
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cnd(Δ, Δ')~n, neZ+ being as large as we want (see [1]), where d(A, A'), the scaled
distance is defined as

d(A, d') = sup(l, dist(J, Δ'\ M dist(J, Δ'\ M'dist(J, A')) (2.3.1)

dist(zl, A'} being the Euclidean distance between A and A'.

In 1) the field, let us say φ, is such that

AΓ^μil1'3 (2.3.2)

and if A e 2f and zΓ e ̂ r , /' ̂  /, the factor d(Δ 9 Δ ' ) ~ n allows us to take account of all
possible choices of A'tQ)€, since for n^4 (see [1], Lemma 4.2a))

Σ d(A,ATn£0(ΐ). (2.3.3)
Δ'e2f

3) The interaction F(l \A φ) is bounded from below

if the high momentum is M.

Moreover, the dominant part of the interaction is its quartic part φ4 and one has

4) Among all possible "elementary" graphs produced during contraction steps,
there are logarithmically divergent ones which cannot be eliminated by re-
normalization cancellation rules.

5) The number of terms produced by the contraction of n φ4-vertices is of order
of2rc!

6) In 2), if none of the fields satisfies Condition (2.3.2) the choices of ΔΈ3}g, lead
to a factor \Δ \ ~ 1/2 per field. This factor cannot be compensated by a convergent \Δ |ε°
(see [1]).

We first discuss the arbitrariness in the choice of the mapping a.
As explained in the introduction, the size of a cube Δ being given, Δ e @)^ we have

to lower the high momentum in A at least up to MM such that M2

U\A\ ^ 1 [from now
on the 0(1) of this condition is taken to be 1]. On the other hand, in order to control
the phenomena described in 6), it is necessary for at least one field of a P- vertex to be
properly localized, i.e. Mj^\Δ\~l (here M, is the highest lower cutoff) in VA.

The possible choices for a are then among
a) a(f) is the largest integer for which M ̂ Jzy rgl 1; the condition on proper

localization meaning that M^)_1^\A^\~1.
b) a(ί) is the smallest integer for which M ̂  _ 1 Ξ> \A€ \~

 x but in order to saturate
the Wick bound, one has to have M^\A^\ ^ 1.

c) Any intermediate situation between a) and b).

1 In [9] it is shown that using the \Δ\ε° convergent factor per P-vertex, it is possible to extend the
control of localization up to momenta such that M (̂(f) ̂  \Δ^\ ~1, that is to say for Mf ~ Δ ~1/3(1 ~ε), ε being
small enough with respect to ε0
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We remark that all these conditions imply that Mβ(^)_1^M^(

//) whatever the
sequence of |zl/s. It follows that the most rapidly increasing regular2 sequence of
Mt is given by M^M^1"1, ί=l, ..., for M^l, v<£.

From now on we assume that the sequence {MJ satisfies

M;_^MP, i = 2,3,.... (2.3.4)

Let us make a remark depending only on (2.3.4) and independent of the specific
choice of α.

Suppose as in Case 6) we have to control a factor |zl |~1 / 2 coming from the
contraction of improperly localized fields, and suppose that the vertex of one of
these fields is a "convergent" Pt Δ- vertex. Then, if the volume of the localization cube
is not too small with respect to the high momentum Mί? we can dominate this
divergent factor using the convergent factor Mrε° of the P- vertex. This is what
happens if

\Δ\-l/2£Mϊ (2.3.5)

for some ξ, £>0, small enough with respect to ε0.

Let us now discuss the choice of A.

The a priori best choice for A would have been A(i, A) = l [for all allowed
coupled (ί, zl)] since, as remarked above in 5), the number of terms produced by
contractions increases factorially but the convergent factor (see 1) above) follows
only a power law. However, the vertices produced by the perturbation expansions
can, by contraction, generate uncancelled logarithmically divergent graphs. If these
logarithmic divergences are produced in cubes small enough they can be
compensated by the convergent factor due to the smallness of these cubes (see 1)
above). If this is not the case, one has to use a more subtile argument to compensate
them, i.e. to transform each vertex into a convergent vertex. A natural condition to
separate these two cases is given by inequality (2.3.5). Indeed if M^|zl|~1/2, then
given ε >0, as small as we want, InM^ ̂  \Δ\ ~ε iίM1 is chosen large enough in order
that lnMi^Mfξ. The argument to control the logarithmic divergences in the other
case, i.e. when M?^|zl|~1 / 2 is based on an accumulation effect. The expansion is
defined in such a way that to each convergent P- vertex is attached at most a finite
number of divergent vertices. Suppose that in a given cube A many uncancelled
logarithmic divergences have been created (more than the maximum number of P-
vertices allowed by the expansion), then this means that some of these divergences
have to be associated with P- vertices created far away from A. The idea then, to
compensate the divergences, is to use the decrease of the propagators with the
distance (see 2) above). To work out this argument, one needs two conditions

a) the number of uncancelled divergent graphs has to be less than the number of
convergent elementary graphs,

b) enough high momentum P- vertices have to be produced in large cubes;
roughly speaking, more than \A\~l (to have a distance effect), i.e. more than Mfξ.

A sequence is said to be regular if Mi=f(Mί_l\ i = 2,... for some /
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Condition a) is satisfied as explained in [1] because of the renormalization
conditions (see Section 4 below). As a consequence, equally distributed logarithmic
divergences are easily controlled and one has only to take care of local
accumulation (see Proposition 3.6.1).

Condition b) will be imposed through the definition of A.

Finally, in choosing A we have to take account of the fact that we need to control
the number of terms produced during the perturbation expansions (see 5) above) i.e.
these expansions have to be stopped at some order n~M] for some ε, ε>0, ε<ε0.

We then set

Definition 2. 3.1. Let β, ε>0, be small with respect to ε0. Then the mapping A is
defined by

1) A(i,Δ) = A(i\ί) for

2) ΛKi OΦO, only for 0^/^/max and ΐ^sup(2,α(<0)

for lA^-^Mf (Caseα)

for \A,\-l>Mf (Case β)

Here \_ά] means the entire part of a (we omit this symbol from now on). For
simplicity, we have taken 2ξ = ε/2.

Remarks. 1) The expansion applies only on fields with high momentum at least M2

(in order to get a convergent factor, at least Mp°. independent of the value of the
mass).

2) Supposing from now on Mv > 1, notice that all the couples (i, A 0), A 0 e ̂ 0

 are

in Case α.

The last part of this section is devoted to the conditions to impose on the
parameters in order to insure the convergence of the expansion.

A general term is given formally by (according to Section II.2)

I Π ι^-^p^e-v^dμ^Rae-v»dμ (2.3.6)
(M)

for some a(i, A), 0:g0(z, A)^A(i, A).

Suppose that for a suitable choice of the parameters defining the expansion one
has

Proposition 2.3.2. Independently of the numbers {a(i, A)}, there exist constants 0(1)
and ε0 such that

\\Rae-v«dμ\ ̂  0(1) uι Π (Mrε°)^) f] (|j|"°y(^) . (2.3.7)
(i,Δ) (M)

of Case α of Case β
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Then, Theorem I follows if, in addition, the parameters satisfy the following
(sufficient) conditions :

1) μUJUU '

2a) (Mpo/2)^!

2b) eMΓ^d^

2c) M r ε o / 2g const Γ 2, / = 1,2, ..., T C .

Proo/ o/ Theorem I. Define for i = 2, ..., K:

then by Proposition 2.3.2, Definition 2.3.1, and Formula 2.2.4,

1 ( π (i+Mr ε°+... +(Mί~
e°y4(ί

J . I J . J . V I v I /

Π . Π + I / Ί lε° Π Π + M lε° ΓΊ Π 4- (2 3 9Ϊv1 ' l^b(ί)+ιl 11 v1 '1^(0 + 21 l l v 1 ^ - - - - {ί.j.7)
Ab(i)+ lC ^b(t) + 1 ^b(i)-f 2C ^b(i) + 2

^b(i) + lC -^b(i) ^b(f) + 2 C / l b ( i ) + 1

Now

Π (i+|zi/o)<^ π (i+β|zi/0)^ [] ^ι^^εo

using (2.3.8), 1).

Also for i^2
:n/2 , , (Mrεo/2)M]

by (2.3.8), 2a)

^^, by (2.3.8), 2b)

and

Π J Π (l+Mrεo+...+(Mrε°)[M^)l
i^2 iJoe^oπ^l J

^ Π{ Π β "'"""!, by (2.3.8), 2a)
i^2 Uoe^oπyl J

g ]-j gμι*MΓ o/* ggeμiΣMr«o/2 £jχu\Λ\9 by (2.3.8), 2c),

i^2

which proves the theorem.
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II A. The Definition of the Expansion Completed '

The formula (2.2.4) defining the expansion will be meaningful only after one has
described the contractions which have to follow each application of the P-
operation. The procedure, similar to the one of [1], depends on whether the couple
(i, A) of localization of the P- vertex belongs to case α or β.

Case α: Each time a P(itΛf vertex (Pα- vertex) is created, one contracts all its legs,
creating possibly Cα-vertices. One then contracts all legs of these new Cα-vertices
with the following exceptions :

oq) If the Pα- vertex is a mass counterterm, then one does not contract the legs of
the new Cα-vertices it has created.

α2) If the Pα-vertex contracts three times to one new Cα-vertex and once to a
second new Cα- vertex forming a mass sub-diagram, then we contract the fourth leg
of the first new Cα-vertex but do not contract the three remaining legs of the second
new Cα-vertex.

α3) If the Pα-vertex contracts three times to old vertices and once to a new Cα-
vertex, then we undo the last contraction using formula (2.2.2) in reverse.

Case β: Each time one has produced in Δe2f a P(M)-vertex (P^-vertex), one
decomposes each of its legs φasφ = φ^-\- φp, where φ€ is the part of φ which contains
only fields φt with i < a(£) and φp, the "properly localized" part, is the part of φ which
contains only fields φt with i^α(^). The rule is now to contract all the φp legs.
However one does not contract the legs of the new Cβ- vertices.

Let us now comment on the renormalization cancellations. In Case α), as in [1],
the contractions are to exactly cancel the vacuum energy diagrams formed from a
Pα-vertex and one or two new Cα-vertices

with the energy counterterms. In the same way, one combines the mass counterterm
with the mass diagram formed from a Pα- vertex which contracts three times to a
new C- vertex :

— P = C— + — δm2— .

Condition α3) is to prevent the formation of chains

P C C P C C P C C P

Remark. As noticed before, case α, i.e. \Δ\ * ^M\ !2, is defined in such a way one can
compensate the factors |z1|~1/2 necessary for the sum over the localizations of
improperly localized legs. In Case β\ the contractions are just introduced to
compensate the linearly divergent vacuum diagram generated by contraction of



250 J. Magnen and R. Seneor

properly localized legs (the logarithmic divergences are compensated by the size of
the cubes).

To conclude this chapter we propose a specific choice for the parameters of the
expansion. The next chapter is entirely devoted to the proof of Proposition 2.3.2
under this choice.

Let us first see what is imposed by Conditions 1) and 2) following Proposition
2.3.2. If we look for a regular sequence {\Aj\}9 Condition 1) imposes that \Aj\~1

cannot grow faster than

for any \Δ±\ < 1. Condition 2a) is satisfied for ε <ε0/2 and Mί > 1 sufficiently large
depending on e, whatever is the increasing sequence {MJ. Condition 2b) is a
consequence of these two conditions for

°/2 μg-1, for S=l.

Now being in Case α), \Δf\~l ^Mf2, thus

MΓβo/2|J,

and

for MA large enough.

The growth of the sequence {MJ has to be, by Condition 2c), quick enough :

for some constants 0(1) depending on ε0. The last condition imposed on the
parameters depends on the choice of the mapping α, but as explained in any case, the
main limitation implied is a limit on the growth of the sequence {MJ.

In order to simplify the presentation of the next chapter, we summarize these
conditions in the following definition :

Definition 2.4.1. 1) The sequence {M;} is given by M^M^^", Mt

2) The sequence {|̂ |} is given by |zl;| = 8~nω, n(j)eZ+ defined by

3) a is any integer valued increasing function on TL+ such that
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4) τ is small enough and M1 is large enough depending on τ.

Comments. With the above definition of the relation between the two sequences, if
MIτ ^ 8 then a field φjt Δ,AtQ)f will be properly localized i f / ̂  £ + 2 and improperly
localized otherwise. From now on we suppose that this is the case. The condition on
a(f) in 3) comes from the necessity for a(f) to be such that M^\A^\ g 1 for / g: 1 and

at some time to correspond to a proper localization. If τ ̂  1 — 1/3/2 (we will take τ
much smaller later) this condition can be satisfied. Finally, we remark that

III. Estimates

The purpose of this chapter is to prove Proposition 2.3.2, i.e. to bound the general
term

of the expansion. This is done in three steps. In the first step, one bounds the
improperly localized legs of jRα using the formal positivity of the interaction. One
then applies the Wick bound to estimate the exponential e~Va. It remains then in the
last step to bound a standard Gaussian integral.

These steps bound a single term in j Rae~Vadμ (which is a sum of terms) by a sum
of terms, and we use the method of combinatoric factors to perform the
computation, as applied in [1]. In the same way, the technical estimates we need are
essentially those of [1]. We therefore do not repeat them, and refer the reader to the
aforementioned reference for more details.

///./. The Control of the Improperly Localized Legs

Improperly localized legs appear in Case β during the contraction procedure
following a perturbation step. They cannot be controlled by the final Gaussian
integration 3. They will be dominated by what remains of the exponent at the end of
the expansion. That this is possible is due to the fact that the level of proper
localization is below the level we choose to stop the application of the perturbation
expansion [superrenormalizability see the discussion on a(f) above]. In other
words, if in a given step of the expansion corresponding to a cover 3)e, the
improperly localized part of the field φ in Je®, is φ^A9 then it will remain
unchanged by the following steps of the expansion. We can therefore hope to
dominate such φ^Δ, using the formal positivity of what remains from the
interaction at the end of the expansion (quartic "integration").

Let φ be a leg of a β-vertex (Pβ or Cβ) at a step (step/) of the expansion
corresponding to a cover 2^ and let ΔeSf^ be its localization cube. One writes

A (*) P 1 1)

We remark that a contraction is a partial Gaussian integration
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where the improperly localized part φf A is given by

^+ι

Ψfjx)= Σ Ψt.A .M and φ,.4;ί(*)

At the end of the expansion, the interaction in A is

(3.1.3)

where φ^Δ is the high momentum part (relative to A) of the field φ in A.

Let, as in [1]

x) (3.1.4)

with

^Δ= ~\A\$φ*Wdx'

We want to use (Holder's inequality)

^ Ml3'* I φfrOdx4 = ί φί(x)Λc . (3.1.5)

Consider now a β-vertex produced at a step f and localized in A e .̂ Writing each
of its legs as (3.1.1), the vertex is decomposed in a corresponding sum of vertices.
One then can undo the Wick ordering of the φ^Δ legs in each of these vertices. One
has the following bounds (easy to prove) for the Wick ordering terms

I ί φ,,A(x)φ^(x)dμ\ ^ 0(1)\A \~^ί 0(1)(\A \ ~ ̂ )2

I ί <Pt.A(x)<Pt.A(xW\ ^ 0(1)\A \~v^ 0(1)(\A \ ~ 1/4)2 .

Each β- vertex is decomposed as a sum of vertices. In order to compare the
improperly localized leg with the exponent, one performs another decomposition
and writes

where φΔ is the field in A in the exponent at the end of the expansion, and where one
used (3.1.2), (3.1.3), (3.1.4), and δφitA(x) = φ^A;i(x)-φ^.iχΔ(x). Thus each φ^A is
replaced by ( 4-3 fields. Using the fact that / + 3^|zlzf|"

ει, £{ as small as we want,
provided Mί is large enough4, and that each β-vertex has at most 4 fields, one
obtains the result that each initial vertex is replaced by a sum of at most 0(1)|̂ | ~ 3ει

vertices made from δφi>A, φ^Δ, and φΔ fields. Each new vertex has at least one

Remember that |zJ,|
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properly localized leg (by construction for a P^-vertex and by contraction with a
properly localized leg for a C^-vertex).

Let now nt(A, A') be the number of φΔ legs obtained in this way from P(itΔ>)
vertices of type β. Since A(i, Δ') = 1, and since a P^-vertex generates at most 4 Cβ-
vertices, one finds that nt(A, A')^0(l). In order to compare φA with the remaining
interaction we bound it by an exponential factor using yn^nne\y\ for neZ+

nt(Δ,Δ'}
—4—

-εi ni(Δ,Δ'}

(3.1.8)

where d(Δ, A'} is the scaled distance of the contraction generating the vertex of φΔ if
it is a Cβ vertex and is 1 if the vertex of φΔ is a Pβ vertex the first 0(1) is a bound on

Σ d(Δ, zΓ)~4 since by definition of the Case β, the legs generating the Cβ vertices are
Δ'

properly localized, ε1 is a small number (ε^βo) and the second inequality is
obtained by using nt(Δ, Δ')^(

In the expression \Rae~Vaάμ, Ra is a sum of terms R'a each proportional to a
power of λ. Before applying the bound we use the Schwarz inequality

\e-2ReV"dμ)112 . (3.1.9)

Using inequality (3.1.8), the contribution of the factors φΔ is

Σ Σ Σ

the last two sums being the sum over all possible P(itΔ>) β- vertices which could have
generated φΔ.

One bounds it by

(3-1.10)

using first inequality (2.3.3) and the fact that in Case β

/2Γ^ (3.1-11)

for M1 large enough depending on εr
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Consider now the "pure" φ4 term in Re Va. One has, using (3.1.11)

\Δ\3sι $ φA(x)*dx
A

and from (3.1.5)

from which follows the domination of the improperly localized legs. The remaining

Re A J φ(xfdx in e~
2ReV^ will be used to control the Wick ordering (Wick bound).

A
The coefficients in front of the exponential in (3.1.8) are considered as combinatoric
factors. We attribute them in the following way :

— the 0(l)|zί|0(1)ει factor is assigned to the new β- vertices (see below);
— d(Δ, A') is a combinatoric factor for the contraction generating the C- vertex.

The factor \Δ\~ 1/4~ει replacing a φΔ leg will not be considered as a combinatoric
factor. Each β- vertex after the undoing of the Wick ordering and the decomposition
of the improper part is replaced by a sum of jS-vertices. Including the |J|~1 / 4~ε ι

factor and the bounds on the Wick counterterms (3.1.6), one gets (see [1], Section
III.2) that each new β-vertex is composed of r, r^4, φ^A9 φ^Δ and δφiA legs with,
apart from the original coefficient, a new coefficient bounded by |zl|~1+r/4.

For the factor (Re λ)~ 1/4, we remark that each vertex has a factor \λ\ or |/l|2, and
M l ί

at most 3 improperly localized legs. The coefficient for a vertex is thus — — r-̂ -
(Re A)

= aij(λ)9 ϊ=l,2, 7 = 0,1,2,3 and is bounded in any domain of the form DQσ

= {λe<C\ \λ\^ρ, |Argλ|^ -- σ> for ρ< oo and σ>0. Fixing ρ and σ we attribute

to the new vertices.

1112. The Wick Bound

We now explain how to bound what remains in e~ 2ReVa after the domination of the
improperly localized legs. Before applying the Wick bound we need to describe the
precise structure of Va in momentum and space localizations. Remember that by
definition of the expansion, the perturbation expansion is applied in a cube Δ^+ί

obtained by subdivision of A£ (Af >Δ^+1) only if the highest momentum in Δ€ has an
index larger than or equal to a(f+l). One is thus led to define a partition
^ = [QA}AC A °f A inductively by

QΔ =
^^ίfmax

Γ 'max-l 1]

, C\Λ\ Γ l QΛ I.
('max \ W ^^j [

L J = 0 JJ
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In this way QΔ£ C Δf and \QΔ£\ ̂  \Δ€\ where \QΔί\ is the volume of ρAf. In QΔ£ the upper
cutoff MU(QΔ } is less than or equal to Mα(^, from which follows that M (̂ρ }\ρΔ/\ ̂  1
for if =1,2,-'-. "'

We write 2Re V± — Re λ J φ4(x)dx as a sum over ^ and bound each term,
Λ

localized in ρj? from below in the standard way (the Wick bound: see [1]) by
0(ΐ)Ml(QΔ^\QΔ(\. Here 0(1) depends only on λ (each 5^=1=0 is bounded by 1). One
gets

-2ReFα + Reλ S φ*(x)dx _ Λ / 1 v,, 2 i i
e Λ ^ Π e°(1)M2(^)|ρj|. (3.2.2)

By Definition (3.2.1) ρ^φ0, ^φO, if there exists a A^+1CA^ and i^α(/) such that
5?.pJί+1Φθ, thus that a P-vertex has been created in Δ€. Therefore one has

(3.2.3)
QΔG@ P-vertex
Δφ@>Q

The contribution of the ρ Jo's is Π 0(1) where 0(1) is for e°
(im™. Since there

are at most \Λ\Δ0 in £&0nΛ, one gets finally that (3.2.2) is bounded by

0(l)μl Π °W (3 2 4)
P-vertex

the first 0(1) depending on λ and Mx. This establishes the Wick bound in its
combinatoric form.

111.3. The Gaussian Integration

In R'a once one has dominated the improperly localized legs and bounded the
exponential, one performs the Gaussian integration starting from the legs localized
in the smallest cubes. In this way each leg contracts to a leg localized in a larger cube.
The result of the Gaussian integration is a sum of contraction graphs G.

From Sections III.l and III.2 one gets

Σ\ Π 0(1) Π d(Δ,A')°wΣG\1/2.
JRά I P-vertex contrac. G J

Our purpose is to replace the sums by a supremum using the method of the
combinatoric factors. We first discuss the combinatoric factor due to the
contractions, treating on the same foot the renormalization contractions of R'a
(partial Gaussian integration) and the contractions of the final Gaussian in-
tegration. One has
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Lemma 3.3.1. The following factors are upper bounds on combίnatorίc factors
associated with the contractions

per contraction line;
l2 per δφ leg;

— M\3 per P(i A)-vertex of Type α
— \A\~ε3 per P(i>A)-vertex of Type β;

ε2>0, ε3 small (depending on ε) and Mί large enough depending on ε and ε3.
Here b is the localization ration introduced in [1] :

l} = bA (3.3.2)

where A is the localization cube and M is the lower momentum of the leg.

Proof of Lemma 3.3.1. A field in A e^ contracts only, by construction, to a field in
'5^/. The contraction is completely specified if one knows the cover

the localization cube A' in the cover, the P(itΔ»)- vertex which has generated the field
in A', and finally which one among all possible fields having the above
specifications. Let us consider these cases :

1) Choice of/' : With a factor 2 we choose whether /' = 0 or not. If/' is different
from zero we choose it with a factor |zΓ|~ει = |zl"|~ε ι provided M1 is large enough, ε^
fixed as small as we want. The combinatoric factor for the choice is therefore
O(l)\A"\~eι attributed to the P(ί ^-vertex, with the remark that if this vertex is a Pα-
vertex, then one uses \A"\~1^Mε

i

12 to take 0(l)Mει as combinatoric factor.
2) Choice of the cube of localization A': With a factor 3 we distinguish the

following three cases
a) one of the two contracting fields is properly localized. The combinatoric

factor is 0(l)d(A,A')4 as seen from (2.3.3).
b) The two fields are improperly localized and one of them is not a δφ field, but

then this means it has been obtained from a generating Pα- vertex (of high
momentum i). Using (see [1])

Σ d(A,AT4^0(l)\AΓί and μ'Γ^Mf,
Δ'e®t>

one attributes d4 to the contraction line and 0(l)Mε/2 to the Pα-vertex.
c) The two fields are improperly localized and are both δφ legs.
Suppose the δφ legs, localized in A and A', have respectively j and/ as high

momentum (remember, Section IΠ.l states that δφ legs are of the type δφifA legs, i.e.
of high momentum Mt and low momentum M^J. Then

Since |J|^|/Γ|, for ε2>0, small enough

Σ (bAbΔ,d(A9A')Γ3(l+B2)/2
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with 0(1) depending on ε2. One attributes d4 (^ d3(1 +£2)) to the contraction line, bΔ

and bΔ, to the δφ legs, and 0(1) to the generating P-vertex (of one of the δφ legs).

3) choice of the generating P(ί ^,^-vertex: By a factor 2 we decide whether the
field in A' has been created by a Pα or a P^-vertex.

Case α) The localization cube Δ" is chosen using

•12

by giving O(l) Mf2 to the P(i Δ,,} α-vertex and d(Δ,Δ'}4 to the contraction line (if the
field in Δ' belongs to C-vertex created by the contraction of a C-vertex (an inner C-
vertex, see [1]) in Δ'" one uses 0(1)d(Δ', Δ'")4 d(Δ'",Δ")4 and one attributes
d4(Δ',Δ'") and d4(Δ'",Δ") to the contraction lines generating the C-vertices). To
choose the momentum i of the P(itΔ") vertex, one uses ϊ^M]1 for M1 large enough
depending on εl which can be taken as small as we want. Finally we choose by a
factor A(i, Δ") = [M^\ which P(i ^,}-vertex it is. We attribute both factors to the P-
vertex.

Case β) The localization cube Δ" and the momentum i are chosen using

and

for M! large enough depending on ε and εr There is only one P(i}A-}β- vertex. The
attributions are done as above.

4) Choice of the field, the generating P-vertex being fixed : We consider 3 cases.
A factor 3 separates them (attributed to the generating P-vertex).

a) The field in Δ' is in a new C- vertex (the contraction in discussion has created
this C-vertex). A factor 0(1) (0(1) = 8) is enough to choose the field.

b) The field in Δ' belongs to a α-vertex. A Pα- vertex creates at most 0(1)
(O(l) = 96) free legs.

c) The field in Δ' belongs to a β- vertex. A Pβ- vertex creates at most 0(1)
(0(1) = 24) free legs.

Thus each P-vertex generates at most 0(1) legs. Therefore each combinatoric
factor for the contraction attributed in l)-3) to the generating P-vertex is raised to
the power 0(1).

Remarking also that 0(1) factors by P-vertex can be bounded by M?1 if it is a
P(ί^}α-vertex, and by |zlΓει if it is a P(ί ^β-vertex, we get

per contraction line;

_Mp<i)8+o<i)81 per p(MΓvertex of Type α;

-\Δ\~0(1}ει per P(ί ^-vertex of Type β.

One obtains the lemma with ε3 = sup(0(l)ε1,0(l)ε + 0(l)ε1).
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III A. The Combίnatoric Factors

In this part we collect the combinatoric factors introduced in III.l, III.2, and III.3.
From III.l, we have a factor 0(l)|/d|0(1)ει per P(i A)β-vertex corresponding to the

decomposition of improperly localized legs (this is the part in the Σ in (3.3.1)
\ R'a I

which is not due to contractions, and a d°(l} per contraction generating a Cβ-vertex.
From III.2, we get a factor 0(1) per P-vertex, and from III.3 the attribution of
Lemma 3.3.1.

Including the /l-dependence, in particular the one explained at the end of Section
III.l, one can replace [each P-vertex generates at most O(l) C-vertices] the 0(1)
factors in front of the P-vertices by M?3 per Pβ-vertex and \Δ\~ε3 per PΛ-vertex
provided M1 is chosen large enough depending on ε3 and on the parameters ρ and σ
of the domain of variation Dρ σ of λ.

Noticing that the combinatoric factors have the same form when raised to a
power, one gets

Proposition 3.4.1. Let ε2 and ε4 be small enough, ε4 > 0(l)ε for some 0(1), then there
exists M1(/l,ε4,ε) large enough and two constants C1(λ,M1) and n2 such that

P(i,zi)α-vertex P(j j Zi)/?-vertex

Ί"2 Π fc-3(1+ε2)/2G
δφleg )contraction <5<pleg

Here the contraction graph G includes the β-υertices with their new coefficient as
described in III.l.

III.5. The Bounds on the Graphs

This part concerns the extraction of the convergent factors from estimates on the
graphs. It is very similar to the Sections 5 and 6 of [1], and we will not repeat the
proofs. For example, one can obtain, as in [1], a factor 0(1)d~nι per contraction
with n1 as large as we want provided 0(1) is large enough.

The method used in [1] to estimate a large graph G is to decompose it as a
disjoint union of small subgraphs and then to estimate these subgraphs. A delicate
technical point in [1] was the control of chains of divergent subgraphs (PD). This
was done using regularity conditions in the way the covers were defined. We
propose here an alternative analysis. Let us call Pα 3 the Pα-vertices which contract
at least three legs to earlier vertices (i.e. produced in an earlier stage as referred to in
the order relation defining the expansion). Two Pα3-vertices are connected if they
are linked by a contraction line (it is possible by condition α3) of II.4), and consider a
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connected set of Pα3-vertices. The boundary elements of this set are the Pα 3-
vertices which have contractions with C or P^-vertices these are initial and final
boundary elements (as in [1]). We decompose each such set (in a nonunique way)
into a disjoint union of linear chains whose initial elements are the initial boundary
elements. In a chain of Pα3-vert ices we call PI D the two boundary vertices and Pf c

the other intermediate vertices. The subindices D and C are for divergent and
convergent. To generate a divergent mass subdiagram a Pα 3 has to contract three of
its legs to the same earlier vertex. Such a fact is impossible for a Pj c vertex by
construction.

We complete the enumeration of vertices in divergent and convergent in the
following way. Each Pα-vertex contracting less than three legs to earlier vertices is
said to be convergent: PαC-vertex. A P(iίΔ}β-vertex whose higher momentum is Mj is
a divergent Pβ ^-vertex if i <j (the size of the localization cube A cannot compensate
a logarithmic divergence in InM^ ) and a convergent Pβc-vertex if i =j. A C-vertex
localized in A whose higher cutoff is Mj is a divergent CD-vertex if Ml" 1 <Mf2.

Before we give the decomposition of G in small graphs, we describe a procedure
• associating in a finite way the divergent vertices to convergent vertices. This
association will be important in transferring convergent factors to divergent
vertices. (It was emphasized in [1] how basic is the fact that the number of PD

subgraphs is bounded by the number of Pc subgraphs.)

A Pa D (a Pα-vertex which is not a PαC-vertex) or a Pj D-vertex is associated to the
latest P-vertex to which it contracts or to the P-vertex which created the latest C-
vertex to which it contracts. If, following this procedure, the Pj D-vertex is
associated to another Pτ D (chain without PI c) then this last PItD is necessarily
associated to a Pβ or to a Pα c vertex and we associate also the first P7 ^-vertex to
this Pβ or Pα c vertex. In this way each Pα ^ or Pj ^-vertex is associated to a Pβ or to a
PαC-vertex, and to each such vertex is associated a finite number (72 at most) of Pα D

or P/lΓvertices.

One then decomposes the large graph G in a disjoint union of small graph g of
the following type:

— a Pα c-vertex, the C-vertices it created, and the associated Pα D vertices;

— a P^-vertex, the C vertices it created, and the associated Pαl) vertices;

— a chain of P7 c-vertices and the PIΌ vertices at each end, following the
procedure in [1].

The Pα c and Pβ subgraphs are numbered in the order they are produced, the
chains are numbered in an arbitrary way compatible with the preceding en-
umeration. The Pα c and Pβ subgraphs are decomposed in elementary subgraphs as
in [1]. The chains are bounded by their Hubert-Schmidt norms which themselves
are bounded by the Hubert Schmidt norms of their elementary subgraphs. For
example the chain

PI.C
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is bounded by

PI,Ό Pι,c

J. Magnen and R. Seneor

Pι,c PI,Ό I 1/2

PI,D Pι,c Pι,c PI,D

1/4

π
Pχ,c

1/4

One gets finally a bound for G has products of

or + δm2

1/4

or

1/4

by P«,D °r ̂ -

1/4 1/4

or δm2

by β-vertex with 4 properly localized legs or by Cα-vertex

with at least one improperly localized
leg and with a derived leg (of index

by PαC-vertex

H.S.

•δm2

1/2

or by P^-vertex which is an
energy counterterm

with a derived leg (of index
i .Mf <|J|"1)

||j8-vertex||H.s. by jS-vertex with not all
legs properly localized.
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These elementary graphs are bounded by

Proposition5 3.5.1. Let τ be sufficiently small, then there exist A1 >0 such that

a)

P(ί,A)

1/4

b)

1/4

if the high momentum is Mi

if the vertex is a Pβ c-vertex

c)

d)

δm2

Δ Δ' U.S.

δm2 δm2
_

Δ A

1/2

^ |zj|2λl InM if the high momentum is M

if the vertex is a Pβ c-vertex

e)

if in the energy counterterm one of the lines is improperly localized and another one is a
derived leg

if in the energy counterterm one of the lines is a derived one

5 In the bounds we have systematically replaced a bound in lnM(2) (see [1]) by a bound in the
logarithm of the highest momentum
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Proof, a) and b) are Proposition 5.3.3 of [1] the second inequality in b) comes from
the fact that M? / 2<|/d|~ 1 for a P^-vertex (definition of Pβ c) and |zl|λ llnM^l if
M1 is large enough depending on λv c) and d) are Proposition 5.3.4 of [1] the
second inequality in d) comes from the fact that for a Pβt c- vertex Mf 2 < \Δ \~ 1. e) is
proven in Proposition 6.3.1 of [1]. Since one leg is improperly localized,
M(l) ̂  \Δ Γ 1/3 (see [1]). Since a leg has been derived (Case β) one has M*/2 < \Δ \~ l. f)
is Proposition 5.3.5 of [1]. In fact the β-vertices as defined at the end of Section III.l
are as the W- vertices of [1] as soon as one has eliminated the φ^A, using the fact that

If the β-vertex is a mass counterterm, one has used |(5m2|^0(l)lnMί.
As a consequence of this proposition, one gets (see [1])

Proposition 3.5.2. Let τ be sufficiently small. Then there exists λ2 > 0, n0 > 0 such that
for Ml large enough depending on λ2 each graph G is bounded by

— d~n° by contraction line;

— Mi λ2 by PIC or PaC P(itΔΓvertex\

— \A\λ2byP(i>A}β-vertex;

— InM; by PaD and PI>c-vertex and by CD-vertex localized in A and with high
momentum Mi with Mε

i

l2>\A\~1.

π0 can be taken as large as we want.

To compare these factors with the combinatoric factors of Proposition 3.4.1,
one has to eliminate the logarithmic divergences of Proposition 3.5.2. This will be
done in the next section.

III.6. Compensation of the Logarithmic Divergences

We want to prove

Proposition 3.6.1. Let τ be sufficiently small. There exists λ3 >0 and n1 >0 such that
for Mί large enough depending on A3 and nί9 each graph G is bounded by

— d~nί by contraction line;

— MrA s by P(i>A)a-vertex;

— \A\λ2 by P(i>A)β-vertex.

π1 can be chosen as large as we want (provided n0 of Proposition 3.5.2 was large
enough).

In comparison with Proposition 3.5.2, n0>nΐ and λ2>λ3 we have eliminated
the logarithms using a part of the convergent factors. Comparing now with
Proposition 3.4.1, one sees that one gets Proposition 2.3.2 by taking ε2 <τ,n2<nί, ε4

small enough with respect to λ3 and then setting ε0 = λ3 — ε4.
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Proof of Proposition 3.6.1. This proposition is proved by transferring a part of the
convergent factors of (convergent) P-vertices to divergent vertices. The convergent
factor M ~ Λ 2 (or |^|~λ2) by convergent P-vertex is divided in 4 parts, one M^~λ2/4

remains to this P-vertex, the other three M ~λ2/4 are used to attribute convergent
factors successively to Pα D and Pf D vertices, to CD-vertices, and finally to Pβ D-
vertices.

III. 6.1. Attribution of Convergent Factors to Pα D and Pt D-Vertices

Each of these P( ^α- vertices, A e 3)^ has a logarithmic divergence InM . where M is
the high momentum of the vertex. We replace it by a divergence depending only on
the index i of the P(l Δ)- vertex. In fact, i f / > i, then by definition of the expansion, this
means one has created M]P(j.)Zi)- vertices in A. Thus; being fixed, all the InM^ of later
P(ί ^α-vertices with high momentum Mj can be replaced by a divergent factor Mf4

by P(j)Δ}- vertex using

for λ4 as small as we want provided M1 is large enough. For later convenience, we
take Λ 4 < / l 2 ( 7 x 4 x 8 X72)" 1. Such a divergent factor being also attributed to
convergent Pα- vertices, we take (MrΛ2/4)1/4 to compensate it (using
Mj4M7λ2/16^l).

We now compensate the bound Mf4 per divergent Pα D and P7 ^-vertex of the
type P(iίΔγ Δe@j. Each divergent P(. J}-vertex is associated with a P(M,}-vertex,
A'ε@j,, (' ^/, which can be a Pα c or P^ vertex. There is a finite number, less than or
equal to 72, of divergent vertices associated to a given Pα c- vertex.

The attribution is proved inductively starting from earlier covers.
1.1) Case zf = 0, i.e. /' = 0. All vertices in ̂ 0 are α-vertices. Since P(k>Δ>} is earlier

than P(iίA), k^i. We use a factor (M^λ2/4)1/2 by PαC- vertex to attribute convergent,
factors to the at most 72 divergent associated vertices using

M-λ 2 / 8^(M-Λ 2 / 8 x 7 2)7 2^(Mr7^)7 2. (3.6.1)

One M;~Λ4 is used to compensate the divergent Mf4. Therefore it remains Mt~
6^4

per Pα- vertex in ^0. Proceeding inductively we suppose that each Pα- vertex
of type (z, Δ\ Δe$}m,m,<^ has a factor Mί~

6λ4 (for a Pα c- vertex we use the fact
that the remaining (M^λ2/4)l/4<^M^6λ4). Also, as before, by formula 3.6.1 we can
assume that each Pα D and Pj D- vertex has obtained a factor M^Λ 2 / 8 x 7 2 from the
associated P(fc JΊ-vertex, if it is a Pα- vertex.

1.2) Case/^1.
1.2.1) The associated P(k ^-vertex is a Pα c-vertex
1.2.1.1) {' — f . Then by definition of the expansion fe^i. Using

one has a M^~6λ4 per divergent vertex (after compensation of the Mλ4 divergence)
1.2.1.2) {'<{.
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a) M.^M4. Using

one proceeds as before.

b) M >M4. Let A"e2j_^ A"~^A. By definition of the expansion, one has
created MjT(. ^^α-vertices and by the induction hypothesis we have at our disposal
a factor M^6λ\ This gives (using only M ~A 4) a factor

per cube Δ. From Definition 2.4.1

and from definition of α-vertices |zy >M ε/2, thus

-L e ( l - ( τ / 2 ( l + τ ) ) )

as factor per cube A.

Now let nD(ί, A) be the number of P(ί A)-vertices of type Pα D or Pj D in A
associated with P(M,}α-vertices with zΓe^,,,1' <t and Mk <M//4. We consider two

cases setting N(ί)= — M?(1~(τ/2(1+τ))).
56

α) nD(i,A)-^N(i). Then the factor per cube of (3.6.2) can be distributed to the
divergent vertices using

_ A fε - τ τ

(M r λ4)8 ^ (Mr 7A4f(ί) ̂  (Mr 7λ<)»D<i^) (3.6.3)

and this gives a M^~6λ4 per divergent vertex (after compensation of the Mf4

divergence).

β) nD(i,A)>N(ί). The idea is to use a large distance argument. First let us
compute a bound on the number P(/c/d,}Pα- vertices such that M/C<M:L/4. It is

for Ml large enough. On the other hand, the smallest possible volume of
localization Δ' is such that \Δ'\ ~ 1 ̂  Mjp ̂  Mf8 and the number of cover 0,,, *f ^ / is
/ + l^MΓ ε ι^Mf1 / 2 for Mt large enough. In this way at least half of the nD(i,A)
vertices are associated with a P- vertex localized in A' such that6

1 Λ/YzΊI/ΓI \1 / 3

- 2

T

6 We remark that
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by taking εί ^ -, τ ̂  - and Mί large enough depending on ε to bound the numerical
« , 8 8
factors.

Thus, taking O(l) large enough, for at least half of the P-vertices, one gets

and lead to a factor M.~6Λ4 to each nD(i9 A) divergent vertex (after compensation of
the usual Mf4). It remains at least a factor Mr5*4 by Pα c or Pj ^-vertices.

1.2.2) The associated P(M,}- vertex is a Pβ- vertex. Again let zΓe^_ 15 Δ" D A By
definition of the expansion, one has created MjT^^α-vertices. As in 1.2.1.2) we will
use the fact that one has at his disposal a factor Mr^4 per Pα-vertex in ̂ _1. Let
nD(β, A) be the number of Pα D and P2 D vertices in A associated with a P^-vertex. We
consider two cases (as above)

α) nD(β9Δ)<^N(ί). It is as in 1.2.1.2b), α).

β) nD(β, Δ}> N(ΐ). The number of P^-vertices in Δ is bounded by the number of/
such that M^rgl/d'l" 1 . But this number is bounded by έ' + n for some integer n
depending on ε and τ. Thus given ε4 as small as we want, there exists M1 large
enough depending on ε4 and n such that

The smallest volume of localization Δ' is such that

and the number of possible covers is bounded by M?ιε/2. As in 1.2.1. Ib), β) at least
half of the nD(β, A) divergent vertices are associated with a Pβ- vertex in Δ' such that

for ε4^ — , ε1 ̂  — and τ^ -. One can therefore do the usual attributions. As a
16 16 8

result of 1) we have obtained that a factor M ~ Λ2/2 per PαC- vertex can be replaced by
a factor Mr4 A 4 per Pα-vertex without logarithmic divergences. In the last two
subsections we will use the remaining (MfA2/4)2 per Pα c vertex and Mf 3 A 4 per Pα-
vertex to control the divergences associated with CD and Pβ D-vertices.

111.62. Domination of the Divergent CD Vertices

Let us consider a CD vertex localized inAe^j with high momentum Mf and created
by a P(kιA>) vertex zl'e^. It diverges in lnMt . We consider several cases as in 1).

2.1) The associated P(k ^-vertex is a Pα c-vertex.

a) M. rg M4. A P- vertex creates at most 16 C- vertices. Using the factor Mfe~
 λ2/4 of

the Pα c-vertex, one attributes convergent factors to the C-vertices

Since for M1 large enough, M ~Λ 4 InM^l, one has dominated the logarithmic
divergence of the CD- vertices.
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b) Mt>Mk. This means that (z, A) is of type α and therefore since the high
momentum in CD localized in A is Mί5 one has created A(i\A) — M\P(ϊ ^α-vertices.
Let n$(C9 A) be the number of C^-vertices in A with high momentum M .

a) n(g(C, Δ)^M\. One takes a factor M ~λ4 per P(M)α- vertex (obtained in IΠ.6.1)

(M ~ λΛ}Mf ^ (Mr A4)«kα)(c,Λ)

and this factor per C^-vertex allows us to control the logarithmic divergences (as
above).

β) n(g>(C,Δ)>Mϊ. The number of P(Mrvertices such that Mk<M}/4 is
bounded by

Σ M^Mf
/c:M k<M// 4

and the smallest possible volume of localization is bounded as

Thus at least half of the n(^(C, A) vertices are associated with P(k Δ>) localized in A1

such that

Mε \1 / 3

ε/12

and for at least half of the CD-vertices one has

which allows us to compensate the logarithmic divergence.

2.2) The associated P(/c ^-vertex is a P^-vertex. Since P(ktΔΊ is a j8-vertex at least
one has f ^ 1. Let zl"e^_ 1? A" C A. By definition of the expansion, one has created
MεP(M,,}α-vertices. Let n(^(C9A) be the number of CD-vertices localized in A
associated with P^-vertices.

One proceeds as in 1.2.1.2b) introducing N(i)
α) n(g\C,Δ)^N(i). With a factor M ~λ4 per P(ί >JW)a-vertex, one gets

which allows us to compensate the logarithmic divergence.
β) n$\C,Δ)>N(ϊ). The number of P^-vertices in Δ'c2^ is (see 1.2.20))

since μj'Γ^Mf2. Thus for at least half of the n^(C, J) CD-vertice

for β4 ̂ ,̂ τ ̂ ,̂ and M1 large enough. For at least half of the CD vertices one gets

3(Δ9Δ'Γ0(1^MΓ2λA

and thus one can compensate the logarithmic divergences.
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To compensate the logarithmic divergences of the CD-vertices, one has used a
factor M ~2 λ 4 per P(ί 4)α-vertex and a factor M f~

A2/4 per Pα c-vertex.

111.63. Attribution of Convergent Factors to the PβίD-Vertices

Let us consider a P(i)Δ} divergent β-vertex with high momentum M; . By definition of
divergent P^-vertex, this means Mj>Mt and therefore that one has created at least
one PO S ̂ -vertex.

3.1) If Mj/ 2<|/d|~ 1, this is a P^-vertex. At most jPβtD vertices can have
divergences in InM on the other hand, each P(j>A)β- vertex has a convergent factor
\A\λ2. We use \Δ\λ21 to compensate the P^-vertices attributing

to each such Pβ ^-vertex. Now for M1 large enough depending on λ2 and τ

One has therefore compensated the divergence and it remains a factor \A \λ2/2 per Pβ-
vertex.

3.2) If M^2^!^!"1, this is a Pα- vertex. The number of PβD vertices, with
divergence in InM^, is, in this case, also bounded byj. We use one of the factors Mr λ4

attributed to each Pα- vertex to compensate the divergences

for Mί large enough (as above).

To summarize: From a factor (M ~ λ2/4)4 per Pα c vertex, \A\~λ2/2 per P^-vertex
and d°(1} per lines of contraction, we have obtained a factor M^λ4 per Pα-vertex, a
factor \Δ \ ~ λ2/2 per P^-vertex and the compensation of the logarithmic divergences of
the Pα D, PIfD, CD and PβfD vertices. Proposition 3.6.1 follows with n1=n0 — 0(1) and

λ3 = -̂  (we use MΓA 4 / 2 and \A\λ4/2 to absorb 0(1) factors which could have been

attributed to P-vertices after application of the triangular inequality for dist(zl, A')
to distribute the distance factors from the divergent vertices to the associated P-
vertices through the lines of contraction).
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Appendix: The Borel Summability of φ*

The Sch winger functions of the theory are defined as

S ( f Π- lim lim \Ψκ(ί^ Ψκ(^-V(λ'Λ'κ)dμsA(Λ,...,Λ)- ™ ™ - -vu.Λ,K) -

We want to prove (compare with [10]).
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Theorem III'. Let the mass parameter oj the theory m be large enough, then jor
junctions Jί9 . . .Jn in a suitable class, the perturbation series of the Schwinger Junctions
oj the λφ\ theory are Borel summable.

The perturbation (renormalized) series oj Sλ(Jl9...Jn) is the Taylor series at
λ = Q+ oj Sλ(Jί9 ...,/„) (see [10] jor a prooj in the case oj φ\).

To prove Theorem ΠΓ it is enough to show that there exists two constants λ0 > 0
and <50>0 such that for λeDλo>_δo.

1) Sλ(Jι,...Jn) is analytic in 1
2) For ξ small enough depending on <50

dN

TTΪV /!,-.,/„) (A.O)

for two constants C1 and C2.
The proof of 1) can be made following step by step the argument of [11], using

as a starting point the analyticity stated in Theorem II. We sketch the proof of 2),
(for more details see [9]).

dN

Following [11], -^Sλ(jl9 ...,/„) has the form of a truncated function of N + 1
uΛ

points and can be expressed in terms of derivatives of unnormalized Schwinger
functions. To control the infinite volume limit, the standard method is to apply the
cluster expansion [2]. We recall how the expansion of φ\ is combined with the
cluster expansion (see [4] and [5]). One proceeds along three successive steps7 :

a) one performs the algebraic expansion in ̂ 0

b) one performs the cluster expansion
c) one completes the algebraic expansion.
The cluster expansion has the form (see [2])

^ Σ
ΓCZ 3* 0 beΓ VbeΓ

Let A be a connected subset of 2Q9 suppose that/1? . . .,/„ are functions supported in
the cubes of @0nΛ, and let ΓcZ3*, ΓcΛ, then the combination of the two
expansions takes the form

beΓ uab a beΓ "<>b

= Σ Σ jΛ6>βe-Kb-(AM)dμ= Σ Σ Σ ί JW
a b a b c

where the indices α, b, c refer to the three steps α, fe, and c.

The action of a derivation —- is localized in ̂ 0:

d d ^ d
7τ = Σ /^)ττ= Σ^ A&O dλΔ

1 Although the algebraic expansion and the cluster expansions are commutative, this order provides
the suitable recombinations
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with the meaning

^μ«J:<^:(x)χΛxW
UAΔ

for any q, p and neZ+.

Following the combinatoric analysis of [10], to prove 2) it is enough to show
that there exist constants C1? C2, K, and ζ, K large enough depending on the mass m
and ζ small enough depending on <50 such that for cubes Aί9...9 Are@0nΛ one has

i = ι

fι,...Jn)e~κ}n f] Cn

l

(A^(n(Aj)l)2+ζ (A.2)
j=ι

where |Γ|^|Λ| + 1 and n(z1) = {number ofA^A^A, i=l9 ...,r}. According to (A.I),
the left hand side of (A.2) is equal to

Σ Σ Σ Π 3τ- J*cA«*~FdbmUsyl)^- (A.3)
α b c j = l ^\dj

Our purpose is to estimate (A.3) using the method of the combinatoric factors.
The various derivations (with respect to the ^-parameters of the algebraic and

cluster expansions or to the λΔs) acting on the initial expression generate three types
of vertices: the P-vertices of the algebraic expansion, the E-vertices of the cluster
expansion (see [5]) and the D-vertices of the /l-derivations. The P and E vertices are

known we describe the D-vertices. The D-vertices obtained by a derivation ——
acting on the exponential are of four different types: Δ

1) a :φ4: vertex localized in A;
2) a λδm2\φ2: vertex localized in A\

3) an energy counterterm λΔ r~ ^ , one vertex being localized in Δ

λ2

2
4) an energy counterterm — Δ ( / \ \ , one vertex being localized in Δ.

Let nt(A) be the number of D-vertices of type ϊ generated by derivations in A, let
n0(A) be the derivations in A acting on vertices created during the steps α, fo, and c,
and let nE(A) be the number of E-vertices generated in A.

Performing the derivation — on the integrand of (A.3), this last expression is

replaced by

Σ ΣΣΣί«d. ί.M«~Vβ b (iί^ (A 4)
deriv. a b c

and in (A.4) Λd f C Λ α has the form Rr

dtCtbt0 Π £>-vertex. We first compute bounds
D-vertex -,

on the combinatoric factors for the sum over the derivations —.
dλ
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Lemma A.I. The following are upper bounds on the combinatoric factors jor the λ-
derivations

— M\5 per P(i A}a-vertex

— \Δ\~εs per P(i A)β-vertex;
— d°(1} per line oj contraction;
— [0(l)rc£(z1)]0(1) per PE-vertex localized in A
— 0(l)n(A\(A)ln2(A)ln3(A)l(n4(A)l}2 per Ae@0πΛ,

where ε5 is small as we want provided M1 is large enough and the 0(1) are some
constants.

Prooj oj Lemma A.I. We just outline the proof. One distinguishes three cases
according to whether a A-derivation acts on

1) a vertex created during the expansions α, b, or c;
2) the exponent
3) a previously created D-vertex.
Case 1) is treated as in the algebraic and cluster expansions. To control the

derived vertex, one refers it to its generating Pα, Pβ or PE vertex. One remarks also
'that if a A-derivation acts on a vertex localized in zΓeί^nzl, then this means
(obviously) that this vertex has been created during the expansions and each P
vertex generates at most a finite number of such vertices. Case 2) is just to decide
which type of D-vertices are created. Case 3) is obvious noticing that a D-vertex of
Type 1 has no more λ factor in front of it, that D-vertices of Type 2 and 3 have a λ
factor, and a D-vertex of Type 4 has a λ2 factor. This gives bounds of the type

The combinatoric factors for the sums over steps α, fo, c are those of the algebraic
and cluster expansions with two exceptions :

1) we treat separately the D-vertices;
2) if a λ derivation acts on β-vertex, it suppresses a power of λ and therefore (see

III.l)) one cannot apply the procedure of domination by the exponential to the
associated φf Δ.

To separate the D-vertices, we use for each integral of (A.4) the Schwarz
inequality

, . (A.5)
\ D-vertex /

We prove

Lemma A.2. There exists £>0 as small as we want and constants D1? D2, and 0(1)
depending on ζ such that

(ί Π D
\ D-vertex

2 Λ , , \ l / 2ldμ

ζ Π 0(1).
P-vertex

(A.6)
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Prooj oj Lemma A.2. The integral under consideration is a sum over all possible
schemes of contractions of vacuum graphs G. We first bound the number of terms.
To do that, it is convenient to separate the φ4 part of the D-vertices in two classes.

A) The <p4-vertices which contract their 4 legs to another φ4 vertex forming

. Let n^(A) be the number oj such vertices in A.

B) The other class. Their number is n*(A) = n1(A) — n*(A). We start computing
the combinatoric factors associated with vertices of Type A. We suppose that the
contractions were performed in the following order: first the vertices in zJ1 ? then
those (the ones not previously contracted) in A 2, and so on. Here A 1? A 2, . . . are unit
cubes in Q)^r\A such that

n^A^n^A^.... (A.I)

Let us consider an uncontracted vertex of Type A in Δ{. It contracts with a vertex of
Type A in AjJ^i. By a factor 0 ( ί ) d ( A ί 9 A j ) 4 we choose the cube Δj and by a factor
2n^(Aj) (remember the squaring), we choose which vertex in A . Using

we attribute [2rcf (zQ]1/2 to the contracting vertex and [2nf (Afi112 to the
contracted one. We obtain, therefore, as a total combinatoric factor for the
contractions of Type A

2 Π d4. (A.8)
ontr.

One considers now all the other contractions: Type B and mass counterterms.
There are N(A) = 2[4n^ (A) + 2n2(A}] fields of this type which are contracted. One
introduces, as above, an order relation and one follows the same procedure.

Finally, one gets

Π D
D-vertex

1/2

dμ ^sup|G|1 / 2

(A.9)

We then bound a graph G. One first extracts the localization factors d~0(1) with 0(1)
large enough to compensate the one in (A.9). Then to estimate G one decomposes it
as a union of the following elementary graphs:

α) a D-vertex which is a vacuum counterterm

β) a graph tΓ~^ formed by 2 vertices of Type A

γ) a graph / / \ \ formed by 3 vertices of Type B;

δ) a graph formed by 2 vertices with at most three contractions between them
and eventually a φ4 vertex if it contracts its 4 legs to these two vertices.
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With these definitions, each graph G is a union of such graphs plus, eventually,
an isolated D-vertex, and one gets as an obvious bound

(A.10)

where we have separated the mass counterterms (Type 2 D-vertices) from subgraphs
of Type (5, and subgraphs of Type α are written as being or of Type 3 or of Type 4.
The last term is a bound on the eventually isolated D-vertex.

One has the following bounds (see III.2))

Lemma A.3.

A

i)

δm2 δm2

2)

are bounded by

0(1) + 0(1)

3)

1/2 1/4 1/4

The bounds of Lemma A.3 are obvious they are consequences of Proposition 3.5.1
and of Proposition 6.3.1 of [1] with M(l)lnM(2) bounded by M }̂.

We now use the definition of a(f) and the fact that, for /Φθ, in Δ^QΔf at least
one P- vertex has been created :

0(1). (A.11)
P-yertex

in A
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Using the concavity of the logarithm and the fact that {ρ^\AtCA,Ae&0} is a
partition of A9 we have also

Σ + l

IV (A. 12)

Now from (pa)" ̂  w ! (eT and [ln(l + x)]" ̂  C(ζ) [n!]ζ e* valid for p and x ̂ 0, neZH

and C > 0, one gets

Σ
P-vertex

in A

Π 0(1)
P-vertex

in A

In Σ 0(1)+1
I P-yertex
\ in^ /

Finally one obtains

Π 0(1) Π
P-vertex contr.

Π 0(1).

Π

(A.13)

1/2

(A.14)

Lemma A.2 follows from (A.9) and (A. 14).
It remains now to discuss the treatment of the improperly localized legs of the

derived β-vertices. For a derived β-vertex, we modify the procedure of III.l. We
write the improperly localized legs as

We separate the φ£ Δ legs of ^,C,M from ^e remaining applying the Schwarz
inequality. Let r(A') be the number of φ^^Δ, legs coming from derived ^-vertices and
localized in A'. One has

(A.15)
A'CA

since each β-vertex has at least 3 improperly localized legs.
From the results of Chapter III combined with the cluster expansion (see [5])

one has

,ba\
2e~2ReVc>b>a(λ'Λ}dμ\

P(i,zi)α-vert. P (i> zi)/3-vertex

• Π ίO(l)nE(A)Γ°(1) Π
P^E-vertex contr.

1/4
(A. 16)
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where we have included the factor |zl|1/4 + ει resulting from the bound on ̂ -vertices
of Proposition 3.5.1.

Comparing (A. 16), (A. 6), and Lemma A.I, one sees that the bound (A.O) is
proved if one can show that [because of (A. 15)]

ί
e&

0(ί)Y\'d°w.
P-vertex

The product over the contractions ]"]' excludes the contractions between φ^Δ legs.

Prooj oj A.I 7. We decompose each leg φ^Δ as φf jΔ = φ1 ,Δ + φ2 ,Δ where φ1>A is the
part of φ^Δ with high momentum less than or equal to \Δ | ~ 1/6 and φ2 Δ is the part of
φ^Δ with low momentum above \Δ\~ 1/6. This decomposition replaces the left hand
side of (A.17) by a sum of terms. We perform the Gaussian integration and bound
the sums, using the method of combinatoric factors. We compute them in two
different ways and finally take a geometric mean.

Let r (zl) be the number of φt ̂ , i=l ,2; one has r ί ( A ) + r2(Δ) = 4r(A).

1) We suppose that the contractions (in the Gaussian integration) are made
starting from the smallest cubes. Consider φitA, A^Q)£ contracting with φjtA>,
Δ'ε2>t,. Using the fact that /'H-l^+l^l^p1/2, a factor \A\~ει/2 is enough'to
choose Λ The cube A' is chosen noticing

1) if i or 7 = 2

2) if i=7 =

Finally, by a factor 0(l)d(zΓ, A")4\A"\~ει/2 we can choose the cube A" and the index ί
of the P(iίΔ)β- vertex which has generated the contracted leg (and which leg).

In this way, one gets as combinatoric factor

2) Letforzl6^0,N(zl)= ^ r(Δ'\ One orders the cubes of 2^r\A according
Δ'z&r\Δ

to

The contractions are supposed to be made starting from legs in A 1? then in A 2 and so
on.
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Let Ae@nAk and A'e@nAk, and suppose that φi Δ contracts with φ. Δ,, k'^k.
With N(Δk,)9 one chooses the leg in Δk, and N(Δk)^N(Δk)

ll2N(Δk^
12. What

remains is as in 1), and one gets as a total combinatoric factor

Π d°(1) Π 0(l)|JΓβl Π (N(Δ)1/2f(A\ (A.19)
contr. P(i,.4)β-vert. ΔeSiQ

Using the fact that N(Δ)£4 x 3n0(Δ), (A.19) is bounded by

Π 0(ί)\Δ\'eί Π 0(lΓ(d)[4n0(Λ)!]3/2. (A.20)

Taking the geometric mean of (A. 18) and (A.20) with weight 1/3 and 2/3, one gets
that the final combinatoric factor is

Π d°(v Π o(i)MΓβ l Π
contr. P(i )Zi)/3-vert. Δe2>Q

,r('ιW . r 2 (J)\
2 2 (A 21)

To get (A. 17) one has to bound the contraction graphs. One first extracts the
localization factors and then one bounds the diagrams, using

and

IJ^^J^μl^^Oll^Γ^^lj^J^μl^^Oίl)!/!!"1/6.

The required bound follows from the fact that - — — = - and - — - = —. This

completes the proof of the Borel summability.

We thank Jurg Frδhlich for his criticism during the elaboration of this last part.
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