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Abstract. Spontaneous symmetry breakings in indefinite metric quantum field
theories are analyzed and a generalization of the Goldstone theorem is proved.
The case of local gauge quantum field theories is discussed in detail and a
characterization is given of the occurrence of the Higgs mechanism versus the
Goldstone mechanism. The Higgs phenomenon is explained on general grounds
without the introduction of the so-called Higgs fields. The basic property is the
relation between the local internal symmetry group and the local group of gauge
transformations of the second kind. Spontaneous symmetry breaking of c-
number gauge transformations of the second kind is shown to always occur if
there are charged local fields. The implications about the absence of mass gap in
the Wightman functions and the occurrence of massless particles associated
with the unbroken generators in the Higgs phenomenon are discussed.

1. Introduction

The discovery [1] that local internal symmetries in QFT (i.e. symmetries of the
equations of motion or of the Hamiltonian) may fail to give rise to global
symmetries of the theory because of vacuum instability suggested a simple powerful
mechanism to understand symmetry breaking in elementary particle physics.
Unfortunately, it was soon realized [2] and proved [3] quite generally in the
framework of axiomatic (positive metric) QFT that such a mechanism requires the
existence of massless particles (Goldstone bosons) with the quantum numbers of the
generator of the local internal symmetry and there does not seem to be any
candidate for such particles. A genuine Goldstone mechanism is therefore excluded
from elementary particle physics. Actually, the only massless boson existing in
nature is the photon and it is associated with an unbroken internal symmetry (gauge
transformations of the first kind).

It was later shown [4] that a spontaneous symmetry breaking may occur
without implying the existence of massless particles provided one is dealing with
gauge field theories (Higgs phenomenon). This is not a counterexample to the
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general theorem [3] since in gauge field theories not all the standard axioms of
positive metric formalism [5] can be satisfied, and in particular one cannot have
locality covariance and positivity at the same time [6].

The occurrence of the Higgs phenomenon has been discussed in explicit
Lagrangian models but it appears that a general treatment or a general theorem is
lacking. Actually given a gauge field theory it is not clear under which conditions a
spontaneous symmetry breaking will occur following the Higgs mechanism rather than
the Goldstone mechanism, both being allowed in gauge field theory. More
specifically, one may ask when the "original" massless vector field acquires a mass
by "eating the Goldstone boson" [7]. Examples are in fact known in which the
Higgs mechanism is only partially realized and the vector fields remain massless [8].
All this may explain why one talks of the Higgs phenomenon and not of Higgs
theorem as in the case of Goldstone mechanism.

Another very interesting feature which usually accompanies the Higgs pheno-
menon is that the unbroken generators have massless particles associated to them, a
feature which seems to be exactly realized in nature.

All this indicates
i) that spontaneous symmetry breaking may be relevant to elementary particle

physics only if one deals with gauge field theory (i.e. through the Higgs mechanism),
ii) that it is very important to know under what conditions the Higgs

mechanism will act, what are the characteristic features accompanying it, and in
particular whether the massless particles associated to the unbroken generators
are a general fact or not.

Since there are strong indications [9] (asymptotic freedom, unified theory of
weak and electromagnetic interactions, quark confinement, etc.) that gauge field
theories may be the only kind of QFT relevant to elementary particle physics, it
seems worthwhile to have a general discussion of the Higgs phenomenon in the
framework of general local QFT in order to answer the above questions. This
constitutes the main result of the present paper. In particular we will provide a
characterization and an explanation of the Higgs phenomenon on very general
grounds without the introduction of the so-called Higgs fields.

Most of the Lagrangian field theory discussions of the Higgs phenomenon have
been carried out in the unitary or radiation gauge in which neither locality nor
covariance hold. It is difficult to give a general treatment of this phenomenon in the
style of axiomatic field theory in such gauges, because almost all the general features
of Wightman field theory are lost. We will therefore deal with a local and covariant
gauge where, as we will see, it is much easier to understand the basic features of
Higgs mechanism. This shows that, just as for the Goldstone theorem, the
framework of Wightman field theory proves to be natural and in fact allows a
simple characterization of the Higgs phenomenon.

The crucial point is to find an axiomatic field theory translation of the
properties of Lagrangian field theory models which exhibit the Higgs phenomenon,
such as the existence of a vector field coupling, etc. As we will see, a consequence of
such a characterization is a strict connection between the Higgs phenomenon and
the failure of the cluster property, a feature which has attracted much attention in
relation with charge screening and quark confinement [10] after its discovery in the
Schwinger model [11].
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Quite independently of the above physical motivations the discussion of
spontaneously broken symmetries in gauge field theories provided by the present
paper appears as a necessary step in the extension of the results of standard (positive
metric) Wightman field theory to QFT's with indefinite metric.

2. Local and Covariant Gauge Quantum Field Theory

In order to avoid any question of semantics and to allow an unambiguous
discussion, it is necessary to spell out what we mean by a local and covariant GQFT.
The following properties can be regarded as basic properties or axioms for GQFT's.
Essentially, one has to give a precise meaning to the key words: local field,
covariance, gauge transformations.

By a local and covariant gauge quantum field theory we mean a quantum theory
satisfying the following properties.

A. Local Fields. It is defined in terms of a set of fields φa, α = 1, ...rc, i.e. operator
valued (tempered) distributions in a Hubert space ffl, with scalar product denoted
by ( , •), having a common dense domain D. The fields φa are local, i.e. they satisfy
local commutativity, and the polynomial * algebra generated by the smeared fields
ΦJJ) w i l 1 b e denoted by 3F.

Physically interesting quantities like transition amplitudes, vacuum expectation
values or Green's functions, etc. are computed in terms of a bounded, hermitean,
non-degenerate1 sesquilinear form <-,-> = (•,?y ) and η is called the metric
operator 2.

B. Covariance. There is a weakly continuous representation U(a, A) of the Poincare
group, defined on the dense domain D, such that the operators U(a, A) are "unitary"
with respect to the product <•,•>, i.e. (UΨ, UΦ} = (Ψ,Φ}Ψ,ΦeD, and the fields
φa transform covariantly under U(a, A).

C.Physical States. There is a distinguished (non-trivial and maximal) subspace
JVCJff', such that

cl) (Ψ,Ψ}^0 MΨe3tf'\
c2) there is a common dense domain D'eW such that U(a9A)D'cD';
c3) the unique translationally invariant state Ψo in Jf7, (i.e. such that U(a, ί)Ψ0

= Ψo), called the vacuum state, is a cyclic vector with respect to the local field
algebra #", and it belongs to D'.

D. Spectral Condition. The Fourier transform W(qί,...,qn_ί) of the vacuum
expectation values Ψ'(x1,...xn)=W(x1-x2,...xn_1-xn) of the fields φa satisfy

W(qi,...qn-i) = 0 if qjΦK. (2.1)

E. Gauge Transformations. There exists a (non-trivial) group of local automorphisms
aΛ of ^ , depending on real C00 vector-valued functions A with components ΛLfle0M,
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a=l, ...n, (i.e. of at most slow increase), such that the infinitesimal action of oίΛ

on the fields φa

is generated by local operators JA

μ(x) in the following sense:

f)= lim

= lim J fR{\x\)fa(*o)l4(x)> Φa(f)¥4x (2.2)
R-+00

JR(\x\)=lϊor\x\<R,fR(\x\) = Oϊor\x\>R + εJde^m^fd^o)dxo = ^)
δΛφa depends linearly and continuously (in the 0 M topology) on A, and dμJΛ

μ(x) = Q.
The automorphisms aΛ are called local gauge transformations. The elements aΛ

corresponding to non-constant A are called gauge transformations of the second
kind.

The elements ocΛ corresponding to A = (Aa = const, Ab = 0b + a) and such that
there is at least one gauge transformation of the second kind with
A = (AaΦconst, Ab = 0 bφa) define the subgroup G of local gauge transformations of
the first kind. The corresponding local generators are denoted by Ja

μ(x). They are
assumed to be local, translationally co variant conserved currents, with the property
that there is a skew symmetric local field Gμv = — Gv

a

μ such that

(2.3)

' C D\ s/a

μ(f) = JaJJ) - d*Ga

vμ(f). (2.4)

The above properties are a slight adaptation of the similar well-known
properties which characterize a local and co variant formulation (or gauge) of
quantum electrodynamics (QED) [12]. For a familiar and simple interpretation of
the above concepts we refer to the Gupta-Bleuler formulation of free QED [12,13].
The following remarks are meant to provide general motivations and discussion.

Remark. Property A is just the standard definition of local fields. The requirement
that the algebra $F is large enough to allow approximation of every vector in ffl by
vectors EDQ = {^ΨO} (cyclicity of the vacuum, assumption c3) can be regarded as a
characteristic feature of what one should mean by a local "gauge". The only non-
standard element in A is the allowed possibility that the physically interesting
matrix elements are computed by using a product < , ) which is not the natural
scalar product in ffl (η = 1 would correspond to the standard case).

Property B is essentially the standard definition of covariance in QFT. The
main difference is that no commitment is made about η = l or ηή=l. Since the
covariance of the Wightman functions only requires the "unitarity" of U(a,Λ) with
respect to the product < , >, in general the operators U(a, A) need not be unitary
and/or bounded operators.

In order to have a physically acceptable interpretation of the theory in the
general case η Φ1 one has to specify which vectors of Jή? describe physical states (the
correspondence need not be one-to one). This is essentially the reason for Condi-
tion C.
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Since the matrix elements between two "physical" states Φ,ΨeM" do not
change if one adds to Φ and/or to Ψ elements χeJtf" with vanishing "fy-norm", i.e.
<χ? χ> = 0, it is more convenient to characterize the physical state corresponding to
Φ by the equivalence class [Φ]. The quotient space j f p h y s = Jf'/jH?", 2tf" = {χe Jtf",
<χ ?χ>=0}, will be called the space of physical states (without quotation marks).
Jf p h y s is equipped with the positive definite scalar product ([Φ], [*f])^p h y s = <Φ, Ψ}
induced by Jtf".

The assumption of the uniqueness of the vacuum is essentially the statement
that a physical theory corresponds to a "pure phase". The physical motivations for
this have been discussed in the literature [14] and we do not insist on this point, the
essential argument being that the presence of more than one vacuum state would
give rise to a decomposition of the Hubert space into phases, which describe in
general different physical theories.

The spectral Condition D is equivalent to

$d*aeipχψ,U(a)Φ} = 0, if pφV+, (2.5)

for any Ψ, ΦeD0 = {^Ψo}. The physical interpretation of the theory requires only a
weak form of the spectral condition, namely

leipad*a(Ψ,U(a)Φ} = 0, if pφV+, (2.5')

for any ψ, ΦeD'CJf. The stronger form (2.5) is suggested by perturbation theory
and it can be justified by arguments based on the asymptotic condition, the
"support of the spectrum" of U(a) being then dictated by the free in/out fields and in
all the free field gauges known to us Equation (2.1) being satisfied.

Furthermore, the above spectral condition is strictly connected to the possibility
of formulating the theory in terms of the Schwinger function (Euclidean for-
mulation) by analytic continuation.

Property E provides a precise definition of local gauge transformations. The
term local here is meant to indicate a symmetry at the level of local fields, i.e. a local
automorphism of the algebra of local fields (in the Lagrangian field theory language
such are the local transformations of the fields which leave the Lagrangian or the
equations of motion invariant). Local symmetry has to be contrasted to global
symmetry (or global automorphism) which is realized when the local symmetry
generates a symmetry of the states (one briefly characterizes the latter case by saying
that the local symmetry is not spontaneously broken). Gauge transformations
depending on the spacetime points (A φ const) and the corresponding subgroup of
constant phase gauge transformations are distinguished by calling them of the
second and of the first kind, respectively. (Some authors use the terms local and
global for this purpose.)

The group G is by definition a local internal symmetry group of the theory; it
has however a very special property with respect to other local internal symmetry
groups that the theory may have, namely that of being associated to non-trivial
gauge transformations of the second kind. In the Lagrangian quantum field theory
language one would say that the equations of motion are not only invariant under
the following transformation of the "charged" fields

(2.6)
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Λa = const, Qa being a finite dimensional representation of G, but also under the
corresponding transformations of the second kind e.g.

for suitable non-constant functions Λ = (Λa = Λa(x)). The property of being
associated in the above sense to local gauge transformations of the second kind,
gives a very special character to G. It is interesting to note that the presently
available experimental and theoretical evidence indicates that perhaps all the (local)
internal symmetry groups which are relevant to elementary particle physics are of
this type. This suggests that perhaps the most interesting feature of GQFT is that
they offer the possibility of such a non-trivial combination of internal and space-time
groups. Furthermore, the relation between the internal symmetry group G and the
space-time dependent gauge transformations of the second kind is of the same type
as the relation between the Lorentz transformations and the space-time dependent
coordinate transformations of general relativity.

Conditions (2.3) and (2.4) require some comment. In describing local automor-
phisms of the field algebra in axiomatic quantum field theory one has to abstract
their basic properties, e.g. from Lagrangian QFT, so that one may give a
characterization which does not rely on the equations of motions and/or the
Lagrangian function. In the case of a continuous Lie group of local automorphisms
the basic feature is provided by Noether theorem, according to which each
generator- Qa of the group is not only a constant of motion but also the space
integral of the fourth component of a (local) conserved current Ja

μ(x):

Qa=$d3xJa

0(x), d»Ja

μ(x) = 0. (2.8)

The above equations are the basic properties which can be easily translated into
QFT as a characterization of a continuous local group of automorphism of the
algebra of local fields, through its infinitesimal action

δaφa{f)= lim [β«,</>α(/)] = lim

(2.80
d»j;(x)=o.

Equations (2.8') play a crucial role in understanding local symmetries in QFT and
their spontaneous breaking. It is important to remark that the current conservation
provides a local version of "charge conservation" which still retains a meaning even
if a global conservation law fails to exist (symmetry breaking).

In passing from continuous (finite dimensional) Lie groups to continuous
infinite dimensional (or gauge) Lie groups, the invariance of the Lagrangian or of
the equations of motion yield an additional characterization. Clearly the A = const
subgroup G of the gauge group is a finite dimensional continuous group, so that
again Noether theorem applies, but now because of the connection with an infinite
dimensional (or gauge) Lie group the currents Ja

μ(x) associated with its local
generators Qa

R have a very special property: they can be written as the divergence of
antisymmetric tensors Ga

μv, Ja

μ = dvG"μ. Condition (3) is the QFT translation of this
basic feature and we take it as a characterization of those local internal symmetries
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which are associated with local gauge groups of the second kind [15]. The deep
physical consequences of Condition (3) will be discussed in Section 4.

Conditions (3) and (4) can also be regarded as a kind of gauge invariance of the
matrix elements between "physical" states. In fact, putting stfa

μ = Ja

μ — dvGa

vμ, by
Equation (2.3) one has s$a

μffl'C 2%" and therefore Condition (3) can be read as the
statement that the physical states are equivalence classes with respect to the gauge-
type transformations Ψ-+Ψ + stfμJ^f, ΨeJtf". It is worthwhile to stress that the
existence of local gauge automorphisms (of the second kind) is strictly related to the
existence of the unphysical field jrfμ, which has vanishing expectation values
between "physical" states, but it has a non-trivial action on local fields (gauge
transformations).

In Condition A the possibility was left open that in some cases one might choose
η — 1 or at least positive. This would imply that all the standard Wightman axioms
are satisfied and one would have a standard QFT. As we will see the existence of a
non-trivial internal symmetry group G associated to local gauge transformations of
the second kind in the sense of property E (i.e. a non-trivial combination of internal
and space-time groups) implies that η must be indefinite. Thus a characteristic
feature of local gauge quantum field theories is the lack of positivity.

Theorem. In a local gauge quantum field theory, if the local (internal) symmetry
group G associated with local gauge transformations of the second kind (Property Έ)
has a non-trivial representation on J^, i.e. the charges Qa

R do not induce the trivial
automorphism on 3F, then the form <( , ) must be indefinite.

Proof Consider the state Φf = (Ja

μ(f) - dvGa

vμ(f)) Ψo. Since Ψo e D' (by c3), so does Φf

as a consequence of Condition (4). Hence, by Condition (3)

/ / (2.9)

lϊη would be semidefinite (^0), the above Equation (2.9) would imply

as a consequence of a generalized Schwarz' inequality, and then

φf = 0 \jfe3) (2.10)

since η is not degenerate.
One can show that in a local (and covariant) gauge quantum field theory a

generalized version of the Reeh-Schlieder theorem holds [16], so that Equation
(2.10) yields

Jl = SvGa

vμ, (2.11)

and therefore

for any local field φa(f\ contrary to the assumption that G has a non-trivial
representation on # \ Thus η cannot be semidefinite. •
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In many of the formulations of GQFT discussed in the literature, the emphasis is
on the property of positivity at the price of losing locality and (manifest) covariance
of the basic fields (non-local and non-covariant gauges). The above theorem says
that this is a general fact, i.e. gauge quantum field theories are non-standard QFT's.

The simplest candidate of a local gauge quantum field theory is provided by a
local formulation of quantum electrodynamics. In this case the gauge transfor-
mations of the second kind, corresponding to the onumber functions A satisfying
Q 4 = 0, are generated by the local currents

JΛ

μ(x) = - A(x)dμd*Aρ(x)

i being an arbitrary constant, and AQ denoting the vector potential.

Definition 1. The Wightman functions W(q1... qn) are said to have a ''mass gap" or,
equivalently, to satisfy a strong spectral condition if there is a positive μ such that

WT(qi...qn) = 0 Ίq)<μ\

The Wightman functions are said to have no mass gap if there exist at least one
Wightman function W{q1...qΐ) for which there is no positive μ such that

Remark. Since we are working in an indefinite metric theory the absence of a mass
gap for the Wightman functions does not imply the absence of a mass gap in the
physical spectrum, i.e. in the spectrum of U\a) in e#".

Definition 2. The physical spectrum of U(a) is defined as the union of the supports of
the ίf' distributions

9 ΦeD'.

Clearly, by the spectral condition JJψ φ(p) = 0 if pφV+. We will say that the physical
spectrum of U{a) has a mass gap (o9μ) if 3 a positive μ such that VΨeJtf",

p2<μ2.

Otherwise the physical spectrum of U(a) is said to have no mass gap.

Example. 2-dimQED where in the local Gupta-Bleuler gauge the Wightman
functions have no mass gap, whereas the physical spectrum has a mass gap.

3. Spontaneous Symmetry Breaking in Indefinite Metric QFT's

Since we are dealing with indefinite metric quantum field theories the characteri-
zation of a spontaneously broken internal symmetry requires some careful
adaptation of the standard case.

Definition 3. Let α denote a local internal automorphism of the field algebra J*\ we
will say that a does not generate a global symmetry or that α is spontaneously
broken if there is at least one Wightman function which is not invariant under α:

01...0 l ιyo>. (3.1)
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Otherwise we will say that α is "unitarily" ίmplementable and the mapping
a : φ-+u(φ) defines a symmetry of the theory [17].

Definition 4. A weakly continuous group of local automorphisms aλ, AelR, is said to
be generated by a local conserved current Jμ, iίJμ(x) is a local Wightman field with
dμJμ(x) = 0 and the variations φa-+φa + δφa of the fields (/>αe#"are obtained by

^ β = Π i m [ β Λ , ψ J , (3.2)

where

QR= $J0(x,x0)fR(\x\)fd(x0)d*x

and fR,fd are test functions of compact support satisfying

$fd(x0)dx0 = l, /d(x0) = 0, \xo\>d

fR(x) = l x<R, fR(x) = 0 x>R + ε.

Proposition 1. A weakly continuous local group of automorphisms ocλ generated by the
local operator QR is spontaneously broken if and only if there is at least one element
Ae^ for which

\im(Ψ0,lQR,AlΨ0>Φ0. (3.3)
R-+00

Proof. If all the Wightman functions are invariant, then MAeϊF

This implies

<Ψ0,δAΨ0}= lim(Ψo,ilQ
R-*oo

and therefore Equation (3.3) implies that <xλ is not spontaneously broken.
Conversely, if the Wightman function ζΨ0,φ1 ...φnΨ0) is not invariant under α,
then Equation (3.3) holds with

A = φ 1 . . . φ n .

As in the standard case (positive metric) one can easily show that the
commutator (3.2) is independent of fd for sufficiently large R as a consequence of
locality and current conservation. Furthermore, as in the standard case we have

Proposition 2 [18]. // the automorphism aR generated by QR is not spontaneously
broken then there exist an "hermitean" operator Q, with domain Do= {local states,
i.e. states of the form AΨ0, Ae^}, such that V local field A

QAΨ0= \hnlQR,A]Ψ0.

In extending the standard proof of Goldstone theorem [18] to the case of
indefinite metric QFTs one encounters two kinds of difficulties: i) the lack of
positivity, ii) the possible non-unitarity of space-time translations U(a), since in an
indefinite metric QFT, translation invariance requires only that U(a) be /^-unitary.
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The lack of positivity can be easily overcome provided the current jμ(x), which
generates the local automorphism, is such that the Fourier transform of the matrix
elements (ΨoJμ(x)AΨoy are tempered measures on IR4 for any local operator A
[19]3. Clearly, this is true if the operators U(a) are unitary, but in general the above
requirement on {Ψ0,jμ(x)AΨ0} looks rather artifical. As a matter of fact, in the
applications to (local) gauge QFT's we will discuss interesting examples in which
this property does not hold. In particular, one may show that U(a) must fail to com-
mute with the metric operator η in order that a confinement mechanism may act
[10] and the matrix elements {Ψ0,jμ(x)AΨ0} cannot be the Fourier transform of
tempered measures on IR4 if charge screening has to occur. One has therefore to
work out the general case.

Theorem 1 (Spontaneous Symmetry Breaking in Indefinite Metric Local QFT's j 4

Consider a QFT defined by a set of local fields φa,ot = l,...n, such that
i) the vacuum Ψo is cyclic with respect to the polynomial algebra $F of the

smeared fields φa(f),
ii) the Wightman functions are translationally invariant,

iii) the Fourier transforms of the Wightman functions satisfy the following
spectral condition

W(qi,...qn) = 0 if qjφV+..

Further, assume that there is a conserved current jμ(x) which is a local and
translationally covariant field. Then, if the local automorphism generated byjμ, in the
sense of Definition 4, does not generate a global symmetry of the Wightman functions
(spontaneously broken symmetry), δ(p2) singularities must occur in the Fourier
transform of vacuum expectation values of local operators.

Proof By Proposition 1 we have to study the matrix element

= <ΨO,IQ

= ί /*(M)

where A is a local operator e
First, one remarks that the limit R-+ oo of the above matrix element exists and it

is in fact reached for finite sufficiently large R, because of locality. Furthermore the
above limit is independent of the test function α(xo)eί^ provided Jα(xo)<ixo = 1. In
fact for any two such functions ^(XQ), α 2 ( x 0 ) t n e t e s t function

α'(xo)= j (α1(x/

0)-α2(x/

0))rfx/

0
— oo

has compact support, is C00 and

d(x'{xo)/dxo = α^Xo) - α2(x0).

3 For this reason all the treatments of spontaneous symmetry breaking in indefinite metric QFT,
known to us, assume this property [20]
4 This theorem has been conjectured by several people in the past, verbally or in print [27]
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Hence by current conservation

and for sufficiently large R the last integral vanishes since the only points which
contribute to the commutator are those for which fR{\x\) = l. Similarly, one may
show that the above matrix element is independent of fR for R sufficiently large.

The second remark [21] is that for R sufficiently large, for AetF(Θ\ putting
A(x)=U(x)ΛU(xy1 one has

for any geQ) such that \g{x)άArx — \, Thus, one might as well consider the last
commutator which is in general better behaved than the original one. In fact, by
using translation invariance again, one gets

Jc

0(x, x0) = J Ji{x - y)g(y)d*y = (J* * g)(x)

which implies J%(x, x o )e0 M (i.e. it is C00 and at most slow increase) and J%(p)eOf

c (i.e.
it is a tempered distribution of strong decrease) [22].

As a third step one proves a Jost-Lehmann-Dyson (JLD) representation for
JQ(X,X0). Here, since the space-time translations are not necessarily described by
unitary operators (Assumption ii) only requires U(a) to be "unitary" with respect to
the sesquilinear form <( , •) in terms of which the vacuum expectation values are
computed, and in general U(a) may not commute with the metric operator), one
cannot conclude that J%(p) is a measure, as in the Araki et al. proof [23] of the JLD
representation. One may, however, follow the pattern discussed by Wightman [24]
and one obtains

Jc

0(fR,a)=]dμ2{$d3yρi(μ2,y)(μ(x-y,x0;μ
2)fR(\x\Mx0)d4x)

0

+ ίd3yρ2(μ2, j,χf (d/dxo)A(x-y,χ0;μ
2)/R(|x|)α(x0)d4x)} , (3.5)

where Qι{μ2,y\ ρ2{μ2,y) are tempered distributions in the two variables, with
compact support in the variable y as a consequence of local commutativity5.

As in the standard case, one can show that ρ^μ2, y) can be split in the following
form [18]

Qi(μ2, y) = Uμ2)δ3(y) + Vσlμ\ y)9 i = 1,2,

where σ^μ2, y) are also of compact support. One can prove that the derivatives on
the σf(μ2,)?) can be shifted to the test functions fR(\x\) and therefore they yield

5 We do not give all the details to derive Equation (3.5), the important property being the spectral
condition iii). For these and other details we refer the reader to a forthcoming paper on the general
mathematical discussion of the extension of the results of standard Wightman theory to gauge field
theory
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vanishing contribution for large R, by locality [/E(|JC|) = 1 on the points which
contribute to the integral]. We are thus led to study the following expression

t, x0 μ2)fR{\x\)tt{xo)d*x)

Δ(x,xo;μ
2)fR(\x\)φo)d*x)}. (3.6)

The two integrals in round brackets can be evaluated explicitly and they give

ί d3pfR(p)(2p0) ~1 (α(p0) - α( - p0))po = ( p 2 + μ2)l/2

and

2* ί d3pfR(p)(a(p0) + α( - po))p o = (J>2 + μ 2 ) 1 / 2 (3.7)

respectively. Since, as we have shown, J%(fR,oc) and, therefore, J'£(fR,oc) do not
depend on α, in the limit of large R, provided α(0) = 1, we can choose α such that α(p0)
= α( — p 0 ) 6 . This shows that ρx(μ2) gives a vanishing contribution in the limit of large
R, and we have to study only the contribution due to Q2(β2\ i e.

(3.8)

since in the limit of large R the integral (3.7) converges to zα( ]/μ ). Moreover, since

α( yi?) = α( — ]//?) and α is an analytic function, there exists an analytic function β

such that β(μ2)~a(]/μ2) and Equation (3.8) defines a functional eQ)' and of strong

decrease which depends only on the value of β at the origin.

Thus one must have

ρ2(μ2) = λδ(μ2) (3.9)

and the matrix element < [ β Λ , C]> does not vanish for large R only if /LφO. This
proves that the Fourier transform of JQ(JC, X0) has a £(p2) singularity if the symmetry
is spontaneously broken. •

The next interesting question is whether the δ(p2) singularities, which necessarily
accompany the spontaneous symmetry breaking in indefinite metric QFT's will or
will not show up in matrix elements of physical states. In the first case we will say
that symmetry breaking occurs according to the genuine Goldstone mechanism in
the second case we will say that a Higgs mechanism is acting. One learns from simple
examples that no general conclusion can be drawn unless additional information is
provided. A clear characterization of the two phenomena will be given in the
following section.

4. Spontaneous Symmetry Breaking in Local Gauge QFT. The Higgs Mechanism

Theorem 2 (Higgs Phenomenon). Let G be a compact Lie group associated to the A
= const gauge transformation of a local and covariant gauge field theory (Section 2,
Property E) and let Qι

R denote the corresponding local generators (Section 2, Eq.
(2.2)). Then, if the automorphism generated by Qι

R is spontaneously broken, the δ(p2)

6 It suffices to take α(x0) such that oφc0) = α( — x0)
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singularities, which necessarily accompany the spontaneous symmetry breaking, do not
contribute to the physical matrix elements and in particular they do not give rise to
physical massless particle states.

Proof. Let us suppose that the δ(p2) singularity arises as a contribution from an
intermediate state ΨG (Goldstone like boson), in the sense

lim J <Ψo, U0(χ, χ0), A]Ψo}fR(\x\Mxo)d*x
R

-(Λ+Ψo,ΨG)(ΨG,ηJo(x,xo)Ψo)}Φ0 (4.1)

(A+ being the ̂ -adjoint of A). Then, we can show that ΨG cannot belong to JΊ?' and
more precisely that its component in the subspace #?' cannot contribute to the
above integral. In fact, putting

(where Gvμ is the local operator introduced in Property E) one easily shows that

)=ϊ d*xfR(\x\Wx0)jtf0(x, x0)

and QR = J(fR,(x) generate the same automorphism on the local fields, since the
difference {dG)R generates the trivial automorphism [25]. Therefore for R
sufficiently large

and Equation (4.1) becomes

H m < [ ^ , Λ ] > = h ; m ^

-(A+Ψo,ΨG)(ΨG,η^o(x)Ψo)}*0.

Hence ΨG cannot belong to Jf" otherwise7

by Property E, and one could not have lim < [QR, A~\ > φ 0. This argument also

shows that only the component of ΨG in Jf7'1 can contribute to the above integral
and therefore the presence of the δ(p2) singularity is completely accounted for by
vectors which are not in jtf". Thus, the spontaneous breaking of the symmetry does
not give rise to physical massless particles.

Remark. The above theorem clarifies the conditions under which a spontaneous
symmetry breaking in (local) gauge QFT occurs through the Higgs mechanism rather
than the Goldstone mechanism: namely when the generators Qι

R of the internal local
symmetry group are associated with local gauge transformations (of the second
kind) in the sense of Property E, Section 2. Clearly a genuine Goldstone mechanism
in gauge QFT is allowed for those local internal symmetries whose generators are
not associated with local gauge transformations of the second kind.

7 It is not difficult to show that the same state ΨG contributes to < [ J ^ R , ^ ] > and to
Moreover ηΨGeJ^"
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Examples: 2-dimQED and the (abelian) Higgs model

It is useful to stress that the Higgs phenomenon is often accompanied by the
phenomenon of charge screening [26] or, equivalently, by the lack of com-
mutativity [27] between the metric η and the space-time translation operators
U(a)8. This means that U(a) are not unitary operators, but only unitary with respect
to the sesquilinear form < , •> (as required by the translational in variance of the
Wightman functions).

Proposition 3. // s$μ generates the same local automorphism as λ(dμGμv — ΏA[) (A\,
being a local vector field) with λ an arbitrary constant, then the spontaneous breaking
of the automorphism generated by s$μ implies that the translations U(a) do not
commute with the metric9.

Proof. Clearly for any local operator A

lim < [ ^ ( / Λ α ) , AJ) = — λ lim ([Π\Aι

0(fRa\ A~Y)
JR->oo R-*co

and if \U{a\η\ = 0 the right-hand side can be written as

lim {<*F0, Hi^^f^ψyiΨ,AΨ0) — crossed term},

where ΨeE0Jf, Eo= j dE(p). Then
p2 = 0

/Ψ ΓΛΛ1 (γ\Ψ\ — ΓΊSΨ Λί(ΎλΨ\—Cί

which would imply no spontaneous symmetry breaking. Thus the breaking of the
automorphism generated by stfμ can occur only if [l/(α),?y]Φθ.

Remark. An example exhibiting the above features is provided by the abelian case
[27] (or the abelian Higgs-Kibble model) as can be seen in a local gauge where one
expects that the following equations hold

dμFμv = Q4 V - dv8A = JV + advdA.

i being a parameter which depends on the specific choice of the gauge. In this case
stfμ = adμdA= —a(dμFμv— Q4V) so that the condition of Proposition 3 is clearly
realized.

5. Gauge Transformations of the Second Kind and Their Spontaneous Breaking

The existence of local automorphisms associated to local gauge transformations of
the second kind, characterizes one of the basic feature of gauge quantum field
theories. It is therefore of some interest to spell out some properties of those
automorphisms and in particular to investigate their spontaneous breaking.

We will consider the case in which there is a group of local automorphisms aΛ

labelled by a linear set S of functions10 AeOM, generated by currents JΛ

μa(x), μ

8 This property is strictly related to the mechanism of confinement [10]
9 This Proposition is very similar to the Lemma of Ref. [27] where j / μ and dvGvμ— Q 4 μ are
proportional
1 ° ocΛ need not be defined for all A e 0M. The set S is however assumed to be invariant under translations,
i.e. iϊ A(x)eS also Aa(x) = A(x-{-a)eS, for any αeIR4, and closed under derivations, i.e. if A(x)eS, any
derivative Dι"ιA(x)eS
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= 0,1,2,3 (α being some other possibly tensor index) having the following
properties

a) JA{x\ μ = 0,...3 are for any ΛeS operator-valued tempered distributions,
b) 3*Jftx) = 0,
c) for any local φae^(Θ) the mapping ocΛ(φa) is continuous [35] in A in the 0 M

topology and the infinitesimal transformation

0 ( R J
R~>oo

depends linearly11 on A12,
d) JA{x\ μ = 0,...3 are local fields, i.e.

UΛ

μ(g\φJ = 0 if

Properties a-d are suggested by simple examples of GQFT's. Perturbation theory
indicates that they also hold in the Gupta-Bleuler formulation of Quantum
Electrodynamics where the gauge transformations of the second kind are generated
by the local current

JA{x)=-AdμVAv{x). (5.1)

Condition b could be replaced by the weaker one

Further information, which is necessary for the analysis of gauge transfor-
mations of the second kind, is the commutation relation with the space-time
translations, since, in general, as it is also evident from (5.1), JΛ

μ(x) will not transform
covariantly under space-time translations

One may however separate the covariant and the non-covariant behavior of JA

μ by
introducing the "field" fμ{y, x) defined13 by

fitf, 9) = ί d4zU(z)fμ(f_z,g)U(zy1,

where f_z(x) = f(x — z). Thus/1(j;,0) transforms covariantly in the y variable

The dependence oϊff^y, x) on the x variable depends on the explicit transformation
law of JA(x) under space-time translations. For example, if JA

μ(x) is of the form

1 x We do not require that JΛ

μ itself has this property since there are examples in which this property does
not hold for JΛ

μ, but only for the commutator
1 2 This implies that JΛ

0

= °{fRfd) generates the trivial automorphism in the limit of large R and therefore
without loss of generality we can put JΛ = 0=0 by a redefinition of J/l' JA

μ.-+JA

μ — J/lΓ°
1 3 In general j£(/, g) will be a bilinear form defined on Do x D o , D0 = ̂ Ψ0. One may show that j£(/,g)
is actually an operator if e.g. the space-time translations commute with the metric η



72 F. Strocchi

fμ(x) being local translationally covariant fields and 0* being a polynomial in the
derivatives, one has

and

Motivated by the above remarks, in order to simplify the discussion14, we will
assume that

e) the set S is invariant under translations, i.e. if ΛeS also Aa(x) = A(x + a)eS,
and there is a Γieldfyy, x) which is an operator-valued tempered distribution in the y
variables, and an 0M function in the x-variable such that

JΛ

μ(x)=fμ(x,x) (5.2)

and

U{aψβ{y9 x)U(aΓ * =fμ(y + α, x) =fμ-(y + a,x + a). (5.3)

The above Equations (5.2) and (5.3) imply the following commutation relation
between α4 and the automorphisms Ta describing space-time translations

T y = α4 TaocΛ ~\ Aa(x) = Λ(x + a). (5.4)

Equation (5.4) is also equivalent to

^ - T β . (5.4')

Conditions a-e isolate some characteristic property of the familiar gauge
transformations

Ψ(x)-+eiqΛ(x)Ψ(x)

and give a precise meaning to gauge transformation of the second kind, in general15.

Theorem 3 (Generalized Goldstone Theorem). Let o^ be a local automorphism
generated by a current JΛ

μ(x) satisfying Conditions a-e above, and
suppftf,q)cV+nV_. Then if lim <[β^,^]> + 0, for some Ae^, there are δ{p2)

singularities in the vacuum expectation value (Ψr

0, JA

μ(f)AΨoy.

Remark. This theorem is a generalization of Goldstone theorem in two respects.
First the local current JA

μ(x) generating the automorphism a* is not assumed to
transform covariantly under translations. Secondly, indefinite metric is allowed
and, above all, space-time translations U(a) may fail to commute with the metric
operator. A similar theorem was proved by Dothan and Gal-Ezer [20] and by
Ferrari [20] under the assumption that the space-time translations commute with
the metric as discussed before this restriction in general precludes the application
of the theorem to gauge quantum field theories exhibiting a Higgs phenomenon.

1 4 The essential results of this section hold under more general conditions
1 5 Definitions of gauge transformations similar to the one given above occur in the literature (Ref.
[20] especially the second paper). For the differences see e.g. footnote
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Proof. By an argument similar to that used in the proof of Theorem 1, putting
A(y) = U(y)AU(y)-1 one has that

lim JΛc/κ(

= lim j d4xfRaIΛ

A(x, x) = 0. (5.5)
R-*co

, implies

limμ*xfR(\x\)aIΛ

A{y)(x,x) = O. (5.6)
R->oo

~, and vice versa. On the other hand, by translational covariance of/J(x, x) in
the first variable, one has

JΛ (Ύ Ύ\—TΛ(Ύ v Y} ί^Ίλ
1A(y)\X'X)~1A\x /5 Λ / \ J ')

and Equation (5.6) reads

Jim ί d4xfR(\x\Mx0)IA

A(x - y, x)=0 (5.8)

or

lim J Λ d V « ( W ) Φ o ) ' > - >̂ xίίϋ')=0, (5.9)
R-^oo

where gf is any function eQ) such that jd4xg(x)= 1. One is thus lead to study the
function

which is better behaved than IA

A(x, x). In fact it is a function eOM as can be seen by
the same argument used in the proof of Theorem 1, the dependence on the second
variable in IA(x — y,x) being C°° and of at most slow increase by assumption.

Moreover, supp/^(jp)cF+uF_ since

J ϊΛ

A(p)f(p)d4p = J ϊΛ

A(q, p - q)g( - q)f(p)d*qd*p

and

s u p p l y , p) C V+ υ F_, s u p p l y , p ) c F + n F_

as a consequence of the spectral condition and the hypothesis of the theorem,
respectively.

One may therefore write down a JLD representation for lA

A(x) as in the proof of
Theorem 1. Moreover the independence of the test function α(x0) in the large R limit
is proved in the same way as in Theorem 1, as a consequence of locality and current
conservation (Conditions b and d). The proof of Theorem 3 then follows along the
same pattern as in Theorem 1, and it will not be repeated here.

Remark ί. One may take the point of view that a local non-internal automorphism
does not generate a global symmetry or that it is spontaneously broken if there is
no unitary operator V such that a{A)=VAV~ι\IAe&r and VΨ0= Ψo. This is
equivalent to the property that
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for some Ae^. With this definition of broken symmetry the condition

te*<Ψo>lQ!k>A ]Ψo>*0 (5.10)
R->σo

for some Ae^F, is equivalent to the spontaneous breaking of α4 and Theorem 3 can
be read as a characterization of the spontaneous breaking of gauge
transformations.

Remark 2. According to Theorem 4 for each A such that

l i m < < F o , [ β ^ ] < F o > φ 0 (5.10)

for some local operator A, one predicts the existence of δ(p2) singularities. A natural
question is whether they are all independent (or unrelated) and whether one can
reduce the check of Equation (5.10) for all A's to a check for a subclass of Λ's.

Proposition16. // for some value of β (j8 = 0,1,... 3), Q^ and Qd

R^ denote the local
charges corresponding to local currents JΛ

μ, J
d^ having the Properties a-e, then for R

sufficiently large

or

where A is any local operator, C = JA(x)g(x)d4'x,ge^ C = J A(x)dβg(x)d4'x.
Thus, if Condition (5.10) holds for Qd

R^ for some local operator C, the same
condition holds for Q^ for the operator C and the corresponding δ(p2) singularities
are obviously related.

Proof. It follows easily from Equation (5.4) when written in the infinitesimal form

(Ta-l)lQΛ

R,A^ = lQΛ

R,Ta(A)-Λ^ + UQΛ

R-\A^. (5.11)

When one takes for a a four vector of the form a = λna, na being a unit form vector in
a fixed direction, then the vacuum expectation value of Equation (5.11), divided
by λ, has a limit as λ^O and

by Condition c and the assumption that space-time translations define a global
symmetry of the vacuum expectation values.

6. Unbroken Symmetries in the Higgs Phenomenon

As discussed in the Introduction one of the most interesting features usually
associated to the Higgs phenomenon is the existence of massless particles associated
to the unbroken generators of a spontaneously broken symmetry group G (Higgs
phenomenon II). The situation is just the opposite of what is predicted by the
standard Goldstone theorem (for theories satisfying positivity) according to which
the broken generators have massless particles associated with them (Goldstone
bosons) and no information is provided by the existence of unbroken generators.

1 6 This Proposition occurs also in the second paper of Ref. [20]
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Now, elementary particle physics exhibits exactly the features of the Higgs
phenomenon with no massless particle corresponding to the broken generators of
internal symmetries and only one massless (boson) particle, the photon, corre-
sponding to the unbroken electric charge generator.

It seems therefore of some interest to provide a rigorous discussion of this
phenomenon and to isolate the basic features which characterize it. As we will see
the crucial point is that the generators of the local internal symmetry group G are
associated to local gauge transformations in the sense of Property E.

Theorem 4. Consider a local gauge quantum field theory as defined in Section 2, with
the local automorphism v^ defined for a set of ΛeOM,Λ=\= const, such that α4 is
generated by a local current JA

μ{x) satisfying Conditions a-e of Section 5.
If there are fields φ(/), with non-vanishing two point function

) = lim [β£, ψ(f)-] = qψ(ΛJ), (6.1)

then

and if

some of the Wightman functions have δ(p2) singularities.

Proof We consider the following vacuum expectation value

Equation (6.1) implies

so that the above vacuum expectation value becomes

j < Ψ 0 , ψ+(x)ψ(y)Ψ0}f(x)g(y)( - Λ(x) + Λ(y))d4xd*y

and the condition that it vanishes V/,gfG^ can be written as

(Λ(x)-Λ(x + y))S(y) = 0 (6.2)

Vx,yGlR4, with S(x-y) = (Ψ0,ψ
 + (x)ψ(y)Ψ0}.

Now let / be an interval / = (x0 — <5, x0 + δ) such that Λ(x) Φ A(x') Vx, x' e /, x =f= x'.
(If such an interval would not exist A would be a constant contrary to the
assumption of the theorem.) Then Equation (6.2) implies

) = 0 Vye(O,δ).

By the spectral condition S(y) has an analytic continuation S(z) in the forward tube
and therefore its vanishing on an interval of its boundary implies that S(z) vanishes
everywhere [5, Theorem 2-14]. Thus if S is non-vanishing

We can therefore apply Theorem 3 since its hypotheses are satisfied.
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Remark 1. A very simple way of satisfying the condition supp//, q)= {q = 0} is to
q

consider gauge transformation of the second kind associated to A = c x, c being a
constant four vector, since in this case Equation (5.3) implies

and since dadβΛ = 0, without loss of generality (s. footnote 12) we can put jd

o

aδβΛ(y, x)
= 0, i.e. dx

βd^{y9x) = 0. This yields

Corollary. A local QFT may allow local gauge transformations of the second kind as
local automorphism of the field algebra (in the sense discussed above, Theorem 4)
only if some of the Wightman functions do not have a mass gap.

The above Corollary may be regarded as a rigorous proof of the folklore
statement that gauge in variance of the second kind requires the existence of
massless fields. In particular, the Corollary shows that for the extension of DHR
analysis [28] to the case of gauge transformations of the second kind it is essential
to abandon the mass gap assumption.

Remark 2. If the condition

o £ o

for some local operator AetF,is interpreted as a symmetry breaking condition the
above Theorem 4 shows that the gauge transformations of the second kind
discussed in Theorem 4 are always spontaneously broken and therefore the local
field algebra admits infinite inequivalent representations associated to the infinitely
"degenerate" vacua, which may be labelled in terms of the gauge functions A(x). In a
certain sense this provides a rigorous proof of a mechanism suggested and discussed
in detail by Callan et al. [29].

Remark 3. In the simple case in which A(x) = Λcμ, cμ being a constant four vector,
by Condition (5.4) if α4 can be described by a "unitary" operator F 1 , then VΛΨ0

= Ψ0, whenever the A = const gauge transformation is unitarily implementable.

Thus the condition lim < ϊ F o , [β^ = c ; ",yl] ϊ /

o >φ0 for some local Ae^, can be
#-•00

interpreted as a spontaneous symmetry breaking condition without any possible
reserve [30].

An interesting question is whether the δ(p2) singularities predicted by Theorem 4
show up in matrix elements of physical states and give rise to massless physical
states. This question does not seem to have a general answer. According to the
folklore on the Higgs phenomenon one expects that the possible appearance of such
massless physical particles is related to the implementability of the A = const
transformations and also to the abelian or non-abelian character of the full A
= const unbroken group. In the case in which the A = const unbroken group is a
semisimple non-abelian group, it is believed that a confinement mechanism will be
acting so that massless particles with the quantum numbers of the unbroken
generators Qι are not expected to exist and <*F, QίΦ} = 0 for any physical states
Ψ,Φ.
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Theorem 5 [26]. In a local and covariant gauge QFT, if for some i the fields Jι

μ(x) and
Gμv{x) (Property E) are observable fields and the charge Qι generates a non-trivial
symmetry on the physical one particle states, then the physical spectrum does not have
a mass gap.

Proof. Under the above assumptions Jμ and Gμv define [31] local operators
J%x\ Gμv(x) on Jf p h y s EEirA5r and

Moreover the charge Q1 is non-trivial on the physical states of f̂phys. Thus, as
proved by Swieca [26], the physical spectrum has no mass gap.

The assumptions entering in the Theorem are expected to be satisfied if the
unbroken symmetry group is abelian. In this case, one has also the following result

Theorem 6 [30]. Let OLA, Λ = cx + b, define a local automorphism of the field algebra
3P for any cμ, b and let uΛ be generated by a current JA{x) in the sense a-e of Section 5
and such that

i) there is a local field Aμ(x) such that V/

i.e. Aμ{x)-+Aμ + dμΛ9

ii) the Fourier transform of (JΛ

μ{x\ A(g)}, A(g) = Av(gv\ # ve^(IR 4) is a tempered
measure in the neighborhood of p 2 = 0 , for any gv,

iii) the A = const transformations generate a global symmetry.
Then the two point function (Fμv(x)Fρσ(y)}, Fμv = dμAv — dvAμ has δ{p2) singula-

rities. In particular if Fμv is an observable field, those δ(p2) singularities appear in the
physical spectrum.

Proof. The proof follows, with some slight modification, the treatment given by
Ferrari and Picasso [30].

Remark. Assumption iii is crucial for the above theorem and it shows the
mechanism by which the Higgs phenomenon appears for the unbroken (gauge)
symmetry.

Furthermore, the above theorem shows that in QED one must expect δ(p2)
singularities in the photon spectral function, i.e. the photon is not an infraparticle in
the sense of Schroer [32]. This justifies the basic assumption of Buchholz treatment
of asymptotic condition in the zero charge sector of QED [33].
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