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Abstract. It has recently been shown that there is no finite-energy non-singular
solution to the sourceless gauge-field equations in four-dimensional Minkowski
space that does not radiate energy. However, this does not preclude the
possibility of solutions which hold themselves together for a long time before
radiating away their energy. If they existed, such objects would be analogous to
the geons of general relativity. We show such objects do not exist.

I. Introduction

This is the second of two papers devoted to the study of finite-energy non-singular
solutions of classical gauge field theories in four-dimensional Minkowski space. In
the first of these papers [1], it was shown that the only such solution that did not
radiate energy to infinity was the vacuum solution, Fa

μv = 0. Recently, this result has
been strengthened by Weder [2], who showed that it is impossible for any non-zero
amount of energy to be permanently confined in any compact volume.

These are strong results, but they do not exclude the possibility of energy being
confined to some compact volume for a very long time before eventually escaping.
A priori, this is a live possibility; after all, gauge field theories have much in
common with general relativity, and general relativity is known to possess solutions
of precisely this character, the geons of Wheeler [3], Brill and Hartle [4].

The purpose of this paper is to kill this possibility, and to attempt to understand
physically why gauge field theories differ from general relativity in this respect.

In Section 2 we prove some rigorous theorems that can be (very loosely)
described as saying that any configuration of gauge fields initially confined to the
interior of some sphere falls apart in the time it takes light to cross the sphere. Not
only are the forces of classical gauge field theory not enough to confine, they are not
even enough to restrain.
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These theorems require assumptions about the behavior of the fields at spatial
infinity that can probably be weakened considerably by better analysis than we
however, we think they are weak enough already to include most cases of physical
interest.

In Section 3, we try to understand the physics of these theorems by attempting to
mimic in a gauge field theory the construction of a geon in general relativity. Here
we make no attempt at generality we restrict ourselves to an SU(2) gauge theory
and make the analogues of all the drastic simplifying assumptions that go into the
construction of a static spherical geon. Of course, the attempt fails, but only at the
very last step, and the reason for its failure is enlightening: The gravitational force is
always attractive; the Yang-Mills force, however, can be either attractive or
repulsive, and it turns out that the repulsive interaction always wins.

In Section 4, we summarize our conclusions and make some speculations.

II. Some Theorems

Our basic input will be certain properties of the symmetric energy-momentum
tensorx

These are

0 O O ^O, (2)

dμθ*» = 09 (3)

01 = 0. (4)

It will be convenient for us to choose a Lorentz frame such that the total three-
momentum of our solution vanishes, and to choose the origin of coordinates at the
center of energy.

Our first theorem deals with a very restricted set of solutions, those such that
there exists a positive number ε such that

l im|r 5 / 2 + ε i ^ v | = 0 , (5)
r->oo

at all times. (We make no assumption about the uniformity of the limit in time.) In
particular, this excludes solutions that have a Coulomb field at large distances from
the center; we shall take care of this case in our second theorem.

For solutions obeying Equation (5), we can define the moment of inertia at time t
by

I{t)=jd3xr2θ00. (6)

1 Notation: Greek indices range from 0 to 3 Latin indices from the beginning of the alphabet range
from 1 to the dimension of the Lie algebra Latin indices from the middle of the alphabet range from 1 to
3. Summation over repeated indices is implied. The signature of the metric tensor is (H ).Aa

μ are the
gauge fields, Fa

μv = dμA
a

v-dvA
a

μ + cabcAb

μA
c

v, where the c's are the structure constants of a compact Lie
group
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Fig. 1. a Radius of gyration as a function of time for an imploding and exploding spherical wave in free
electromagnetism. b Radius of gyration as a function of time for a hypothetical object that holds itself
together for some time before falling apart

and the radius of gyration by

r(t)2=I(t)/E,

where, as usual

(7)

E=jd3xθ0

(8)

Because the energy density is positive semidefinite [Eq. (2)], the radius of
gyration is a measure of the spatial extent of our solution, and its time rate of change
is thus a measure of whether the system is expanding or contracting. For example, it
is easy to see that for an imploding-and-exploding spherical wave in free
electromagnetism,

r2 = (t — t ) 2 -\-r2 (9)

where t0 and r 0 are constants. This situation is shown graphically in Figure la. This
is to be contrasted with a hypothetical system that holds itself together for a time
before radiating away its energy, shown in Figure lb. Note that both of these figures
are consistent with the theorems cited in Section 1 (both systems radiate), but the
detailed time dependence of r is quite different in the two cases.

Theorem 1. For any non-singular solution of the sourceless gauge-field equations
obeying Equation (5), the radius of gyration obeys Equation (9).

Proof By Equation (3),

Integrating by parts and using Equation (4), we find

d2l = 2 J θ00d3x + J dSir2dβίj - xιθjί),

(10)

(11)
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or

dff2 = 2. (13)

This implies Equation (9).
We will now extend this result to include the possibility of a non-vanishing

Coulomb field at large distances. Of course, we need only worry about distant
electric or magnetic monopole fields; higher multipoles automatically obey
Equation (5).

We define a general monopole field by

Fa. = EaxJr3, (14)

p* —Hap xk/r2 Π5Ϊ

where Ea and Ha are bounded functions of spatial position at any time. (Note that
this definition is invariant under arbitrary space-time dependent gauge
transformations.)

We now consider solutions such that there exists a positive number ε and a
monopole field /μ

α

v such that

l imr 2 + ε l ^ v - / ; v H 0 , (16)

for all t.

Theorem 2. Define

I(R,t)= J d3xr2θ00. (17)
r^R

For any non-singular solution of the sourceless gauge-field equations obeying
Equation (16),

lim dtI(R,t) = 2E(t-t0). (18)
R-+00

where t0 is a constant.

Proof First we show that the limit exists:

dtI(R,ή=- f d3xr2dfii0

= 2 J d3xxβi0- J dSfΨ0. (19)
r^R r=R

Γhe terms in θOi obtained by contracting the monopole field with itself vanish the
remaining terms fall off faster than r~4 thus the limit exists. Now we evaluate the
time derivative of the limit:

dt\d3xxiθ
Oi=-\d3xxidβij

fiij, (20)
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where the surface integral is at spatial infinity. Because θtj falls off like r~4 the
surface term vanishes. Q.E.D.

Note that if the limit of I(R, t\ as R goes to infinity existed, Theorem 2 would be
identical to Theorem 1. The point is that even when the fields fall off too slowly for
r2 to be well-defined, we can still define dtr

2 and use it as a measure of the gross
expansion or concentration of the system. In particular, if we have a geon-like
situation, a lump of energy (perhaps surrounded by a Coulomb field) holding itself
together for a long time, we would expect dtr

2 to be small (compared to the size of
the lump) for a long time. Theorem 2 tells us that this is impossible, unless by "a long
time" we mean the time it takes light to cross the lump.

III. General Relativity vs. Yang-Mills Theory

It is clear from the above proof that it is the scale in variance (4) which prevents a
Yang-Mills field from holding itself together. This is not a very satisfying physical
reason, even if it is a general proof. To obtain a deeper understanding of what goes
wrong, we will attempt to construct a Yang-Mills lump in exact analogy to the
successful construction technique used by Wheeler [3], Brill and Hartle [4] in
building electrogravitational and pure gravitational geons, respectively.

Let us briefly recall that a classical geon is a self-consistent approximate
solution to either the source-free Einstein-Maxwell or the pure Einstein field
equations. The topology of each spacelike hypersurface of the highly curved
space time is E3. To build a geon one assumes a metric background which is
spherically symmetric and static outside some radius r = r0 and flat inside. The
effective source of this gravitational field is a zero rest mass field in a thin spherical
shell concentrated at r = r0. The background field has a "trapping potential" at
r = r0 and, to close the self-consistency, the effective energy density built out of the
spherical shell of radiation is always positive—thus acting to bind. The details are
outlined in Table 1.

We now attempt a similar construction for a SU(2) Yang-Mills field theory in
Minkowski spacetime. First, we specify some background Yang-Mills field Ab

μ. The
source for this background will be the current produced by a high-frequency
perturbation ab

μ of the background. Thus, the full potential is:

A μ = Άb

μ + ab

μ. (21)

The total field strength becomes2

Fl = Fb

μv + Dμa
b - Dva

b

μ + (aμ x avf (22)

where the background covariant derivative is

DJa

μ=@Ja

μ+{Avxfμγ. (23)

We have included spatial Christoffel symbols in the Q)v derivative.

To shorten our equations, we use the standard notation (A x B)a = εabcAbBc



Table 1. Two successful attempts to construct static spherical geons and a failed attempt to construct a similar object in Yang-Mills theory

Property

Full field equations

Field split
Background field
Background equations21

Perturbation equation
Gauge condition
Nonzero perturbation
Variable separation
Radial equation b

Effective potential
Trapping orbits
Can trapped orbits be
source of background?

Wheeler
Electrogravitational geon [3]

Gμv=T™

gμv, A~
d72= - ev(r) dt2 + eλir) dr2 + r2dΩ2

G μ v = 8π<Γ μ

£ M >

@a@aAμ-RμvA
v = 0

^ctAlx = 0
AΦ

AΦ = eiωtR(r)Φι(θ) + c.c.
d2R/dr*2+ [ω 2 - V(rJ]R = 0
V(r) = eΊ(l+\)r~2

yes
yes

Brill-Hartle
Pure gravitational geon [4, 5]

G..-0

Gμ v =iΦ μhaβ@ μ!fβy
9a9Jιμv + 2Raμβvh

aβ = 0
@ahaμ = 0 haa = 0
hoΦ = ho hrΦ = hί

hί e

1/2(v~λ)

 r~
1=eiωt R{r)Φz(θ) + c.c.

d2R/dr*2+ [ω2 - V{rJ]R = 0
V(r) = eΊ(l+l)r-2-(3/2r)dell2(v-λ)/dr*

yes
yes

Possible gauge-field analogue

l»F,,-0

Ab

μ = Ab

μ + a*μ

Aa

μ = δ°μδ
aj(r)

DμFa

μv = (aμ x Dvaμy

DaDaa
b

μ + 2{Fμv x α v ) b = 0

Daaa = 0

aΦ = a2 + ί al

aΦ=eiωtR(r)Φι(θ)

d2R/dr2 + lω2-V(r)-]R = Q

V(r) = l(l+ \y-2 -f -2ωf
yes
no

a Here we set G = c = 1 and use [5] the metric perturbation haβ = haβ —\h,yaβ

b In the gravitational case, it is convenient to use r* as a radial coordinate where dr* = ell2(λ~v)dr

n

I-1

B
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Expanding the nonlinear field equations up to quadratic powers of ab

μ we find
the following two sets of equations:

μ μ 0 (24]

DμFa

μv = [aμ x Dvaμ - 2Ό\aμ x αv)]« (25)

where we have imposed the background field gauge on the perturbation:

Dμab

μ = 0. (26)

That is, the perturbations ab satisfy a linear wave equation in the background Λb

μ

which is created as a result of a current quadratic in the perturbation. This current
can be averaged over several wavelengths to form an effective source for the field
Λb

μ. The second term in (25) is of higher order and can be dropped3 (just as in the
geon construction) if we impose the further condition:

Abμac

μ = 0. (27)

In this case, the effective current becomes:

(28)

In order for the analogy to be complete, we assume there exists a Coulomb
potential outside of a thin shell at r = r0 and a constant potential inside, with the
potential everywhere pointing in a constant direction in isospin space:

(29)

' 0 ' ' = r0

This potential produces only one nonzero component of field strength:

Fl=-drf. (30)

The demand that the background be aligned in the 1 direction then implies that
only (jμ) is nonzero. This can be seen to be equivalent to demanding:

<=0. (31)

Let us combine aμ and aμ into a single complex field aμ:

aμ = a2

μ + ίa3

μ. (32)

Then the Equation (24) becomes:

( • -AlμΆ1

μ)av + ί[2@μ(Άμav) + av@
μAμ~] = 0 (33)

or using (29):

where Π = @μ@n is the coordinate d'Alembertian.

3 For the rules on manipulating spacetime covariant derivatives inside averaging brackets see Misner
et al. [5], p. 969, and Isaacson [6]. Here we extend these rules to include gauge covariant derivatives
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Following Wheeler's ansatz [3] we will assume a standing wave in a thin torus of
radius r = r0 with only aφ nonzero [thus satisfying (27)], the spherical shell later to
be constructed by use of the rotation group. In this case only the charge density ρ is
nonzero:

> (35)

If we separate variables by taking the decomposition:

then our final equations become:

( Π — 2/ω — f2)aώ = 0 (37)

/ i x _ < ( ω + / K α J >

where, as in Wheeler's construction of the electrogravitational geon,

(38)

. . r . - . .- (39)

Using the standard separation constant, 1(1 + 1), we are left with a radial equation:

(40)

(41)

Unlike the geon radial equations (Table 1) our effective potential depends on ω. This
difference is essential. It is easy to see that the potential has two turning points for
ω2 > 0 only if ω < 0 and:

(trapping). (42)
ero

Furthermore, this can occur only if e 2 > / ( ί + l ) , i.e. only for the case where the
charged attraction can overcome the centrifugal barrier.

On the other hand, the charged current of the shell (38) can act as a source of the
assumed background (29) only if ω < 0 and

\ω\ > — (self consistency). (43)

Γhus we are led to a contradiction between (42) and (43). In words, a background
field of one sign of charge can only trap charge of the other sign, but then that
trapped charge cannot serve as the source for the background: a spherical shell
3U(2) Yang-Mills lump cannot be constructed.
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IV. Conclusions and Speculations

If one is willing to accept the time dependence of the radius of gyration as a measure
of the gross behaviour of a solution of the field equations, we have shown in Section
2 that the gross behavior of solutions of an arbitrary sourceless gauge field theory is
the same as that of solutions of free electromagnetism. Of course, this does not mean
that on a more detailed level such theories are essentially the same as elec-
tromagnetism, but it is sufficient to show that there is no hope of constructing a
Yang-Mills analogue of a geon.

We think we have isolated the essential physical reason for this in the example ol
Section 3. Nearby portions of the gravitational field attract one another however,
by continuity, nearby small portions of the Yang-Mills field must always point in
the same direction in internal space, and therefore must repel each other. (Like
charges repel.) We believe it is this selfrepulsion at small distances which
overwhelms all other effects and prevents the construction of a geon analogue.

Acknowledgements. We thank Jose Cervero, Charles Misner, Richard Treat, and Gordon Woo for
stimulating discussions.
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