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Abstract. As an application of the theory of solutions of the classical, Euclidean
field equation, we prove the existence of solutions to the renormalized
functional field equation, for the λΦ4 interaction in four Euclidean space
dimensions, with non-negative λ and nonzero mass, through order he. That is,
we prove that the functional derivative of the connected generating functional is
in the Schwartz space Re^CR4), when evaluated at external sources in Re^,
through order he. We also prove the existence of all functional derivatives of the
connected generating functional through the same order. All quantities of
interest are analytic in the coupling constant at 0 ̂  λ < oo, and continuous in the
external source.

I. Introduction

A large number of formal, and several exact results, already exist for the loop
expansion of the generating functional for connected, time-ordered vacuum
expectation values of scalar field operators over Minkowski space. In this paper, we
begin to develop the Euclidean version of the loop expansion for the massive scalar
field with λΦ4 interaction, Λ^O, in four Euclidean dimensions, by proving the
existence of the renormalized theory through order he (one loop). We do that by
studying the functional form of the renormalized Euclidean field equation. The
techniques of linear and nonlinear functional analysis have matured to the point
where this becomes a "standard" calculation, and we think it reasonable to hope
that the same is true to all orders in the loop expansion.

Some motivating remarks follow:
(i) In the Minkowski version, Jackiw [1] gives a systematic treatment of the

effective potential in the loop expansion, and he discusses the renormalization of
one and two loops for λ(Φ4)ί + 3 in some detail. We are interested in the Euclidean
version because it is somewhat easier to state and prove rigorous theorems. We say
"somewhat", because the classical field equation in the presence of an external
source plays a central role and the mathematics for the classical field equation in
the Minkowski λΦ4 theory is well developed, albeit in the absence of external
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sources [2, 3]. One could hope that no new ideas would be needed to handle external
sources, and that the Minkowski parallel to the discussion in this paper would go
through. But the Euclidean version is certainly less involved, and we are encouraged
by the Osterwalder-Schrader [4] and Nelson [5], Euclidean to Minkowski
reconstruction theorems to believe that there is no loss of generality in consider-
ing it.

(ii) The principles of renormalization have not yet been formulated or proved as
definitive formal power series (fps) statements in he, in contrast to the fps expansion
in the coupling constant. Rather complete expositions of the latter situation can be
found in the articles of Hepp [6] and Epstein and Glaser [7]. Whether there might
be combinatoric or other advantages to renormalizing the loop expansion, over the
coupling constant expansion, thus remains unknown.

(iii) A treatment of sufficiently high orders1 might conceivably suggest
nonperturbative techniques of renormalization different in flavor from those
currently used in constructive field theory. Unfortunately, the superficially
nonperturbative direction of the loop relative to the coupling constant expansion
cannot be expected to give direct information about things like bound states [1] or
phase transitions, for the interaction treated here, because the terms in the loop
expansion, through one loop at least, turn out to be analytic in the coupling
constant. We are currently studying two or more loops.

(iv) Four dimensions is an upper bound for the techniques of this paper. Three
dimensions admits the Φ6 interaction, and two dimensions admits any power,
subject to positivity constraints. The three-dimensional Euclidean theory might be
considered warm-up practice for the richer existence theory of static, finite energy
soliton solutions in gauge field theories [8].

(v) The immediate practical motivation is that a sufficiently complete treatment
of the Euclidean classical field equation (CFE), which controls a large chunk of the
nonlinearity in the problem, now exists, due to a somewhat one-sided2 col-
laboration between J. Rauch and myself [9].

We devote the remainder of this introduction largely to a discussion of the
functional form of the Euclidean quantum field equation, which is our starting
point.

We imagine the following Euclidean generating functional to exist :

= <Ω0, exp(- V/hc) 0

U) <Ω0,exp(-7/ftc)00>

where Ω0 is the vacuum for the free, Euclidean scalar field of mass m>0, / is in
), Φ(f) is the smeared, Euclidean free field, and

(2)

with λ^O and μ = mc/h both renormalized quantities. There is no normal ordering.

1 Jackiw [1] emphasizes that less than two loops is structurally too simple
2 Although I was able to contribute a few parallel arguments, the style of the collaboration was mainly
that J. Rauch explained to me what he regarded as the standard analysis of the questions I posed, which I
then digested as what seemed to me powerful and interesting applications of unfamiliar techniques
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The renormalization constants are regarded as fps in he (they may equally well be
regarded as fps in λ) :

(3)

with dimensionless coefficients an, bn, and cn. The infinite parts of these coefficients
are to be chosen in n-th order to make the solution of the field equation finite in that
order. We may leave the finite parts unspecified, corresponding to finite re-
normalizations.

At the formal level, we think of S(f) as the Laplace transform of the interacting,
Euclidean path space measure. The reason for studying the Laplace rather than the
Fourier transform is that it gives c-number fields that are real, with the correct sign
of the coupling constant in the Euclidean field equation.

The field equation can be derived by a formal integration by parts on the free
Gaussian measure :

Q = (Ω0,[_(-A+μ2)Φ + δV/δΦ-nQxp(-V/hc)expΦ(f)/heΩoy, (4)

where we have dropped an infinite normalization factor that turns out to be
irrelevant. If we express g(f) in terms of the connected generating functional,

<f(/) = expL(/)/fte, (5)

it is well known that a fps expansion oϊL(f) in he is the loop expansion of connected
Feynman graphs [10], the term of order (hc)n (the term with n loops) being an infinite
fps expansion in λ. The field equation takes the functional form

J, (6)

where

Φc = δL/δf(x), δΦc = δΦc(x)/δf(x),

δ2ΦcEEδ2Φc(x)/δf(x)δf(x). (7)

Infinite renormalization is required because of the singularities in the functional
derivatives at equal arguments. We conjecture that the onumber function Φc

belongs to the real Schwartz space of test functions Re^^R4) to all orders in he, if/
is in Re^(^4). We prove that through order he. The functional derivatives of Φc, at
independent arguments,, give the connected n-point functions, when evaluated at
/= 0. Finite orders in he for these objects will also be finite sums in λ, so the standard
application of perturbative renormalization makes them finite. We show that these
functional derivatives are tempered distributions before putting/=0. Infinite fps in
λ are being summed here, and we are getting thereby the loop expansion of the
Laplace transform of moments of the putative Euclidean measure. The smeared
functional derivatives of Φc belong to Re ̂  through order he , just as Φc does.

The connected generating functional L(f) may itself be computed in terms of
these results, through order he and we do so.
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To set up the detailed part of our discussion, let

00

Φc= Σ φtftcγ. (8)
n = 0

The field equations for order n = 0 and 1 are :

n = 0 (tree approximation) :

Kφ0 + kp*=f9 K^-A+μ2. (9)

This is the classical field equation (CFE), which we discuss in Section III.

n = 1 (one loop correction) : Let

(10)

Then

Kλφ1 = - 3λφ0δφ0 - cγλ
2φl - a^μ2φQ + biλΔφ0

(11)

In Section IV, we show that the infinite parts of α1 and cί can be chosen to
renormalize δφ0 into

δφ0.R = δφ0 + ̂ c1λφ2

0+^μ2a^^GθM(R4)9 (12)

where 0M is the set of infinitely differentiable functions with polynomial bounded
derivatives. We shall see that this puts φί in Re £f . The constant bi is finite, as usual.

The n-th order correction obeys an equation of the form

Rn_^ (13)

where the r.h.s. still requires renormalization, but depends only on φs and its
functional derivatives for s^n— 1.

In Section II, we review some relevant properties of Sobolev spaces. Although in
some sense the natural arena for our discussion is Re^, only the Sobolev norms get
much use.

In Section III, we state the basic theorem on solutions of the CFE and we show
enough continuity of the solutions in the external source to let us prove that the
generating functional in the tree approximation has functional derivatives of all
orders, which are analytic in the coupling constant.

We renormalize the one loop correction in Section IV, show that the generating
functional is well-defined, and prove the existence and analyticity of its functional
derivatives.

Several appendices contain the proofs of certain lemmas.
The reader may survey our main results by taking a look at Theorems 1, 12,

and 20.

Acknowledgments. I should like to thank Jeffrey Rauch for introducing me to some of the techniques of
partial differential equations, and Paul Federbush, Ira Herbst, and Rudolph Seiler for their
encouragement.
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II. Technical Preliminaries

We want to review what we need to know about Sobolev spaces and Sobolev
estimates in four dimensions. Let ^(R4) be the Schwartz space of infinitely
differentiable functions of rapid decrease. The notation Hn stands for the
completion of the pre-Hilbert space ^(R4) with inner product

Λ+μ2)"/>, (14)

where < , •> = <•, >0 is the L2(R4) inner product. The Sobolev norm is

\\f\\2,n=«f,M/2 (15)

Most important are the norms for n= — 1, 0, 1, 2, ... .
The injections induced by the inclusions Hn+lcHn are continuous relative to

the respective norms. Indeed,

l l/lkn+i^ll/lk,,. (16)
The Sobolev inequalities for four dimensions correspond to the continuous

inclusions

H2CLP, 2^p<oo. (17)

The inequalities are the statement of the boundedness of continuous linear maps,
such as the injections induced above, between Banach spaces.

We also recall that

HnCL^ n>2, (18)

for four dimensions, again a continuous inclusion. In this case, feHn has an L t

Fourier transform, and so is absolutely continuous and zero at infinity.
Our notation for the Lp norms in four dimensions is || ||p.
We use the common multi-index notation / = (/1> ... /4),

Dl = (d/dxl)
lί...(d/dx4)

l\ |/ | = /1 + . . .+/ 4 ; xl = xlϊ...xlj. (19)

For bounded operator norms on Hn> we use the notation

\0\n = \Kn/2OK~nl2\, (20)

where | | is the L2, bounded operator norm. We denote the normed space of
bounded, linear operators on Hn by B(Hn).

In case the operator O is multiplication by a function h, we can estimate its norm,
for non-negative integers n, by

|Λ|π^C I lmax[| |Λ| | 0 0, | |Λ| | 2, I I + 1]. (21)

The argument for this is easy and presumably known, and we are just ignorant
about whom to quote3. Nevertheless, we present it in Appendix!. Note that the
Hn+1 norm controls unless n = 0 or 1.

3 Reed and Simon give a similar result for general dimensions that is not quite as sharp as that in
Equation (21) for four dimensions. See Proposition 2 on page 51 of [2]
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We use the familiar notation F = 0(ε) to mean JF^C|ε|, where C is uniformly
bounded in ε near ε = 0. We use the same notation for the absolute value of a number
as for the B(L2) norm.

We shall be dealing with functional F(f\ where/is in R.Q^(R4) and F has values
in the complex numbers, Hn, or B(Hn). Continuity of F at /0 in Re 5 ,̂ relative to the
norm appropriate for the values of F, is typically achieved by having F be norm
continuous as/->/0 in Hn for some non-negative n. Since these Hn norms are part of
a complete set of seminorms for the topology of ̂ , if/->/0 in Re5^, then/-»/0 in
Hn, and hence F(f)->F(f0) in norm.

III. The Tree Approximation

Our starting point is a theorem on solutions of the CFE:

Theorem 1. Let Kφ + λφ3 =f be the CFE, where μ2 > 0 and λ^.0. Then for each f in
Re<9%R4), there is a unique solution φ in Re^. The solution is analytic at all points
Λ,e[0, oo ) in all of the Hn norms.

The proof is given in [9], for a general class of interactions and dimensions one
through four.

As terminology, we sometimes shorten "φ is a solution" of the CFE for / in
Re 5̂  to "φ is a solution".

The map <ph»/is trivially continuous from Re^ to Re^. We need continuity
for the inverse map f\->φ in the Hn norms, and that results from the next two
lemmas.

Lemma 2. Let φ1 and φ2 be solutions corresponding to fv and f2. Let n^l be an
integer. Then if there exists a polynomial P2 such that

ί>2(ll/lll2,,-2, II/II2..-2) (22)

for all /i and f2 in Reί'7, it follows that there is a polynomial Pί such that

B-ι) (23)
Proof. We learned the basic argument from J. Rauch. Let Δaφ(x) = φ(x + a) — φ(x).
Since the CFE is translation invariant, and has unique solutions,

). Thus,

\\Δa<P\\2,n^UJ\\2,n-2P2(\\f\\2,n-2, II/II2..-2). (24)

where the two arguments of P2 are the same because of the translation in variance of
the norm and

\\Aaφ\\2,n/\a\^(\\AJ\\2,n-2/\a\)P2. (25)

A standard theorem says that ΔJ\a\ is uniformly bounded as a linear operator
from Hn to Hn_ 1? for 0 < a rg 1. Passing to the limit along fixed directions, we find

(26)
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Since this is true for any directional derivative, and since we may put /2 = φ2 = 0 in
the hypothesis of the lemma to eventually get a similar bound on ||φ||2>π5 there is a
constant C such that

. (27)

The Hn_2 norm in P2 may be replaced by the larger (up to a factor μ"1) Hn_1

norm. Π

Lemma 3. Let φ1 and φ2be solutions. Then for each integer n^l there is a polynomial

P such that
n^\\f1-f2\\2,n-2P2(\\fl\\2,n-2,\\f2\\2,n-2)- (28)

For n = 1, we learned from J. Rauch that /κ>φ is in fact a contraction from H_ ί

to Hί. We repeat his argument, and give our own induction proof for n>l in
Appendix II. The proof is straightforward, given the B(Hn) bound in Equation (21).
It is valid for a large class of interactions, including any polynomial obeying certain
positivity laws [9].

Remark 1. Lemma 3 states a stronger condition than we actually need. For example,
it would be enough to know that some Sobolev norm occurs on the r.h.s., not
necessarily the one for n — 2. We have taken some pains to get the n — 2 norm
because in the theory of the CFE there is a natural correspondence:

In the next lemma we collect some useful facts about the linear operator
Kλ = K + 3λφ2, corresponding to any fixed /GRe5^.

Lemma 4. (i) As an operator on L2, Kλ for λ ̂  0 is strictly positive and self-adjoint on
the domain of K, @(K) = H2CL2.

(ii) The inverse operator K^ l is bounded on L2 and maps Hn into Hn + 2 for every
integer n^Q.

(iii) Kλ and K^1 map ̂  and Re^ continuously onto themselves.
(iv) The operators KK^1 and K^1K are bounded on Hn for all integers n^O.
(v) The same operators are analytic at λe [0, oo) in the bounded operator norm on

Hn for all integers n^Q.

The proof is in Appendix III.

We want to study functional derivatives of solutions of the CFE. In doing so,
functionals F(f) will arise that have values in the complex numbers, in Hn, or in
B(Hn). The functional derivative with respect to /in the g direction, for geRe^, is

δf(g)F(f) = limAf(sg)F(f)/s
ε-»0

= (d/ds)F(f + s g ) \ Λ ί S θ , (29)

where we define the difference operator with respect to / by

(30)

and where the convergence is in the norm appropriate to the image space of F.
We make the index / explicit in these notations, because later we are going to

want to consider functional derivatives and finite differences with respect to φ.
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In the case of interest, δf(g)F is a continuous linear functional for g in y, and
higher functional derivatives are multilinear and separately continuous on Sfx w, so
the following notation is sensible:

(31)

The difference operator gets bounded in the next few lemmas.

Lemma 5. Let I be any multi-index, m ̂  1 any integer power, and 2 rg p ̂  oo. TTien there
exists an n such that

\\DllΔf(h)φ-]m\\p = 0(\\h\\ln). (32)

Proof. First, suppose pΦ oo. By its definition, the difference operation commutes
with the gradient so we can let the derivatives act, and bound the Lp norm by a sum
of products of pt norms, p<pt < oo, of the form

\\Δf(h)D^φ\\p=\\D^Δf(h)φ\pi

^C\\Δf(h)φ\\2,2 + ] l ί l = 0(\\h\\2M), (33)

where the last step is from Lemma 3.
That leaves p = oo. Bound the L^ norm by a sum of products of the same form as

the l.h.s. above, but with p. = oo. Now bound these norms by H3 norms, etc. D

It is sometimes convenient to treat Af(h)φ as a multiplication operator on Hn.

Lemma 6. For any integer n^O, there is an n' such that

\Δf(h)φ\n = 0(\\h\\2^. (34)

Proof. Lemma 5 for p = 2, and the estimate in Equation (21). D

Lemma 7. Consider K^ 1 as a functional off. Then for every integer n ̂  0 there is an n'
such that

\Δf(h)K-λ\f\ = 0(\\h\\2^. (35)

Proof. The idea is that the resolvent expansion for K^1(f+h) about K^l(f)
converges in norm for h small in some norm, and that we may thereby bound the
difference. Thus

m=l

ι\2

n/(\-a\K-\), (36)

where a = \Δf(h)(3λφ2)\n = 0(\\h\\2^\ by Lemma 6. Π

These lemmas can no doubt be sharpened by computing the optimum norm for
h. Which norm occurs, however, is irrelevant for us, because we typically consider
limits where h scales to zero, and so goes to zero in every Hn.
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With these estimates, we begin to compute functional derivatives. We use the
temporary notation Aε = Δf(εg). We get the first functional derivative of φ from

Δeφ = K^{sg-λ[3φ(Aeφ)2 + (ABφ)*l}. (37)

Lemma 8. δf(g) φ = K^ lg belongs to Re^, exists in Hn norm for every integer n ̂  1, is
analytic at Ae[0, oo) in those norms, and

n,) (38)

for some n'(n}.

Proof. To compute the functional derivative write

\\ε-lΔεφ-K^g\\2_n

^(λl£)\\K-λ^φ(Δcφ)2+(Δεφ)^\\2tn. (39)

The factor K^ x is bounded on Hn, and its norm may be factored out. Apply Lemma
5 to show that the r.h.s. goes to zero like ε. The bound on the functional derivative
follows from Lemma?. The fact that the derivative belongs to Re ̂  follows from
Lemma 4.iii; and analyticity in λ is a consequence of Lemma 4. v. D

Before considering higher derivatives, let us introduce the functional derivative
and the difference operation relative to φ. Since the correspondence between /and
φ is one-to-one, we can make a change of variables and write

F(f) = G(φ). (40)

Then we define

Fh-F. (41)

We often do not bother to give F a new name in terms of the variable φ, and the
notation is always Fh = G(φ -f h\ unless we state otherwise.

Functional derivatives of F with respect to φ are now defined like those with
respect to/, but using the difference with respect to φ instead of/ An important link
between the two derivatives is the

Bounded Difference Condition. A functional F(f) with values in one of the relevant
normed spaces is said to obey the bounded difference condition relative to the norm in
that space is there is an n such that

\\Aφ(h)F\\=0(\\h\\2J. (42)

Note that, by Lemma 3 and the continuity property mentioned in Section II, a
functional that obeys the bounded difference condition is continuous from Re^ to
the image space. In practise, the φ differences that we shall encounter obey the
condition above for complex h. And although we shall only need real φ derivatives,
all objects that we consider will in fact be analytic functions of the parameter ε in the
definition of the derivative, for small ε.
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Lemma 9. Let F(f) have values in a normed space. Let F obey the bounded difference
condition relative to the norm, and let δφ(g)F exist in norm, for all geRe.99. Then

(43)

where the f derivative exists in norm.

Proof.

(44)

The difference in the first two terms on the r.h.s. converges to zero in norm by
hypothesis. The second term obeys.

n ) , (45)

which converges to zero by Lemma 8. D

Lemma 10. Let Al9 ...,Am be functional^ of f with values in B(Hn), and letψ be a
functional of f with values in Hn.

(i) IfA^..., Am and ip obey the bounded difference condition in the relevant norms,
then so do the products Al...Am and Aί...Amιp.

(ii) // the As and ψ have φ derivatives in the relevant norms, then so do the
products, and the answer is given by the Leibniz rule.

Proof, (i)

zy/z)[^...^>[^(^

+ ...+Al...AnΔφ(h)ιp. (46)

Given n, choose n' large enough so that each factor obeys the difference condition
with 0(\\h\\ 2χ) Each of the factors Aί>h or \ph is thus uniformly bounded in norm for
small ||/ι||2χ, and the result follows by bounding the Hn norm of the above
expression in the obvious way. The same argument works with ψ left out.

(ii) If the φ derivative is written in terms oϊd/dε, this is a standard theorem for
norm differentiable operators and vectors. D

To handle higher functional derivatives, we first study the derivative of the
operator K^1:

Lemma 11.

Sφ(s)K:1 = - 6λK;lφgK;1, (47.a)

δf(g}K~λ

 1 = - 6λK: \K~λ

ίg}φK-λ

 1. (47.b)

Both derivatives exist and obey the bounded difference condition in B(Hn) for every
integer n^.0.
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Proof. By the resolvent formula,

Δφ(h)K^ = -K^ίΔφ(h)(3λφ2KK^ . (48)

The proof of Lemma? can be adapted to show that K^1 obeys the bounded
difference condition in B(Hn). Thus, putting h = εg, we find that K^g-^K^ * in norm
as ε->0. The difference divided by ε converges in norm, because in the middle factor,
the multiplication operator φ has the trivial norm, φ derivative, g. The / derivative
exists in norm, by Lemma 9, because we just saw that K ~λ

 1 obeys the difference
condition.

The φ derivative obeys the difference condition because K^1 and the
multiplication operator φ do, and the / derivative obeys it because the multipli-
cation operator δf(g}φ = K^lg does. D

Higher functional derivatives with respect to / or φ may now be computed
routinely, and they converge in Hn and B(Hn) for positive integers n. Although there
is no particular advantage in getting / derivatives through intermediate φ
derivatives at the level of the tree approximation, it becomes convenient at the one
loop level so we discuss both derivatives.

The general / derivative is a sum of terms of the form

where the fe's are multiplication operators by functions of the form: a product of
two, lower order / derivatives of φ (including φ itself). It is clear that this form is
preserved under the operation of taking the next /derivative, because of Lemma 1 1,
and the Leibniz rule for differentiating products. A simple induction argument,
based on Lemma 4.iii, shows that the higher order /derivatives belong to Re ̂  and
an induction based on Lemma 4.v shows that they are analytic at λe [0, oo) in the Hn

norms. An induction plus Lemma lO.i shows that they obey the bounded difference
condition.

The φ derivatives admit an analogous discussion.
Separate norm continuity in Hn of the / or φ derivatives as the g's vary in £f is

easy to check, as a consequence of the fact that #-»0 in £f entails ||0||2 n— >0 and
|0|w-»0. It is easy to verify that the derivatives are multilinear in the 0's.

We summarize what we have learned so far, and complete our characterization
of the tree approximation, in the following theorem:

Theorem 12. (i) The generating functional for the tree approximation is

φ*)dx, (49)

where φ = δL0/df(x)ε Re ̂  is the solution of the CFE corresponding tofε Re 5 .̂ L0 is
continuous for f in Re^ and analytic at Ae[0, oo).

(ii) For g's in Re £f, the smeared functional derivatives δj(g^ ...9gm)φ belong to
Re^, converge in Hnfor every n, are analytic at λε[Q, oo), are continuous inf, and
obey the bounded difference condition in those norms. Similar statements hold for the φ
derivatives of any of the f derivatives.
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(iii) The unsmeared functional derivatives,

'̂•••^;/)=db ^Lo(/)' (50)

are real, symmetric, tempered distributions.

Proof, (i) The expression for L0(/) is well known, for Minkowski fields, in the sense
of an "effective potential" [1] what is new here is the precise characterization. It is
easy to check that L0 is analytic in λ, and that

Aφ(h)L0 = 0(\\h\\2>1), (51)

by bounding the L4 norm by the H1 norm, and by Theorem 1. It is easy to show that
the φ derivative exists, and hence the / derivative does, too, by Lemma 9. The CFE
gives δf(g)L0 = (g,φy.

(ii) This part of the theorem was already discussed.
(iii) That we get tempered distributions is a consequence of the nuclear theorem

and our earlier discussion on separate continuity of the /derivatives of φ in the #'s.
The symmetry of the functional derivatives is easy to check for lower derivatives.
For example, for the two-point function,

} = (x1\K;1\x2y = (x2\K;1\xιy, (52)

it follows from the reality and Hermiticity of K^1. As for the higher derivatives,
note that we could have evaluated them at nonzero ε by the formula

...+εm0J/3ε1...Sεm. (53)

By a standard theorem from real analysis, we could conclude the symmetry of the/
derivative in the #'s from continuity in (ε1? . . . , εm), because we know that the partial
derivatives with respect to εf exist with any ordering and we would then know them
to be equal. But continuity, say at (εj, ...,ε°), follows from the bounded difference
condition relative to/, which in turn is a consequence of that condition relative to φ,
plus Lemma 3 :

. ..+40J|2iΠ,), (54)

for some rΐ. D

Five remarks complete our discussion of the tree approximation.

Remark 2. L0(f) is invariant under the full, inhomogeneous Euclidean group,
including reflections, because of the invariance of the CFE, the uniqueness of its
solutions, and the invariance of four-dimensional Lebesgue measure dx.

Remark 3. We are not sure in precisely what way the tree functional <f0(/)
= QXpL0(f)/hc violates the axioms of Euclidean field theory. For example, does it
violate Symanzik-Nelson positivity; and if so, is it perhaps still the Laplace
transform of a signed measure?
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X X X Xoo-on
u

(a) (b) (c)

Fig. 1. Infinite parts (a) and (b), and the finite part (c) of (3φ = (a)-(b) + (c)

Remark 4. The theory of the CFE [9] shows that L0(f) is well-defined for/e ReL2.
In that case, <pEReί/ l5 and a Sobolev inequality says that the φ4 term and the φf
term are both finite.

Remark 5. We have made no statements about the size or uniformity of the size of
the domain of analyticity in λ. We sort of expect that there will be no uniformity,
neither in the number of points in the n-point function for a fixed order in the loop
expansion, nor in the order of the loop expansion, for a given n-point function, nor
even perhaps in / or in the choice of Hn norm in the CFE itself.

Remark 6. We certainly expect the functional derivatives of φ to exist, and be
analytic in λ and continuous in /, not only in the Hn norms, but in the "rapid
decrease" seminorms that remain to make a complete set for the topology of £f.

IV. The One Loop Correction

i. Solution of the Functional Field Equation

The object to be renormalized at the one loop level is δφ = δφ(x}/δf(x), where φ
obeys the CFE. The infinite parts can be isolated by expanding the kernel
^x\K^\yy through the resolvent formula, with one iteration. Let

(55)

Then

K^=K-1-K~1uK-1+K-1uK-1uK^. (56)

The strategy is to show that

δφN=<x|lC-1 |x> + 3-V 2 f l ι 9 (57)

δφL= -(x\K-1uK-i\xy + 9-1cίu(x), (58)

are finite by the choice of the infinite parts of al and cί9 while

δφF = <x|£- luK~ luK^ l\xy (59)

is automatically finite. The first two expressions above correspond, respectively, to
the normal ordering of Φ2, the x-space Feynman graph in Figure (la), and the
renormalization of the loop in Figure (Ib). Figure (Ic) represents a rearrangement
of δφF.

The renormalized functional derivative at equal arguments is then written

δφR = δφN + δφL + δφF , (60)

where all three pieces on the r.h.s. are finite.
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The normal ordering term is diposed of in the usual way; the kernel

-1\yy = (2πΓ4$eίk°(χ-y)/(k2+μ2)dk (61)

is (he)'1 times the free, Euclidean propagator4. It is translation invariant, and so is
constant when evaluated at x = y. We choose

-3 dk
+αiF' (62)

where alF is finite. Thus,

δφN = μ2aίFβ. (63)

The loop term is also handled by the standard renormalization. Define the
Fourier transform ύ by

ύ(k) = (2πΓ2$u(x)e-ik°xdx. (64)

Putting the infinite part of cv equal to the logarithmically divergent constant

cίao=9(2πΓ4ϊ(q2 + μ2Γ2dq, (65)

we get

ύ(k)eik χdqdk + c1Fu(x)/9

= (2π)~ 2 J /1(fc)fi(/c)eί't °xdk + c1Fu(x)/9, (66)

where

τ = (/c2 + 4μ2)1/2/2/c. (67)

The renormalized loop integral 71 is continuous, non-negative, and monotone
increasing in /c, starting at zero at k = 0, and growing logarithmically at large k. Since
ύε<$f, J1 ύ is continuous and rapidly decreasing. Taking derivatives in x-space gives
I^ύk1 in fc-space, which is absolutely integrable. We conclude that δφL is smooth,
with all derivatives uniformly bounded and vanishing at infinity. These functions
are multipliers on £f, so φδφLe^.

It is convenient to consider 7\ as a multiplication operator in /c-space, and as a
convolution operator in x-space :

= \Iί{peikoχdk. (68)

Then Ϊ1 * is a real, positive, self-adjoint operator on the appropriate domain in L2,
and is a bounded operator from Hn to Hn_ε for every n and every ε>0.

Lemma 13. φίL = — 3λK^ 1 [φδφL~] e Re5^. All functional derivatives with respect tof
and φ exist in Hn norm for every integer ftΞ^O. φίL and its functional derivatives are
analytic at Ae[0, oo) and obey the bounded difference condition in those norms.

All dot products in this paper are Euclidean
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Proof. We are in Re^ because of Theorem 1 and Lemma 4.iii. The only term of
concern is /^φ2. Note that it obeys the bounded difference condition in the Hn

norm, because

n+^ (69)

and φ2 obeys the condition.
Putting h = εg, it is easy to check that

δφ(g)ϊ^φ2=ϊ^(2φg) (70)

exists in Hn norm, and so by Lemma 9,

(71)

This derivative clearly obeys the bounded difference condition in Hn norm. Higher
functional derivatives are no problem they can be treated by simple induction and
all properties easily verified.

The expression K^ ^(φϊ^φ2)^ now easy to treat as a product of factors, each of
which has functional derivatives of all orders obeying the bounded difference
condition and analytic in λ. That leaves K^ l(φ*\ which is even easier to treat. Π

There remains the piece δφF, which can be written

(5φF = <x| lC- 1 uK7 1 MlC" 1 |x>, (72)

because the resolvent formula says K~luK^1 is Hermitean. To treat higher
functional derivatives, we want to consider expressions of the form

^°xdk dkrfM/C2'~ (kl+μ2)(k2

2+μ2)

(73)
where ul9 ..., wme«^,

uk(x) = eik °xu(x) = T(k)u(x) , (74)

and T(k) is the unitary, momentum translation operator on L2. Denote the matrix
element in the integrand by

M(k1-k2,k2) = ̂ uk

1\K^u2...K^uk

m^. (75)

We begin our attack on Xby studying M. We use the multi-index notation Dl

k for
derivatives with respect to k.

Lemma 14. Let xlιpeL2. Then, considered as a function of k,

N(k)^\\Dl

kK^T(k)ψ\\2eLp(R4) (76)

for 2<p£Ξoo. For these values of p,

ζ\\(k2 + μ2Γ\\\xlψ\\2\K^K\. (77)



208 D. N. Williams

Proof. The effect of the /c-derivative is simply to bring down xl on ψ. We shall
therefore forget about the derivative and restore the xl at the end of the argument.
Thus

N(k)=\\K-1KK-1T(k)ιp\\2^\K-1K\\\K-1T(k)ψ\\2. (78)

Next,

\\K-iT(k)ψ\\2

2 = tt(q + k2)2 + μ2T2\ψ(q)\2dq. (79)

Applying the Young inequality, we find

UIK^ + μ2)-2^, (80)

which makes sense on the r.h.s. for l<p^oo. Taking square roots, noting that
\\2 = \\Ψ\\2> and restoring xl, we get the result. D

Lemma 15. Define M as in Equation (75), and let k = kl—k2, q = k2. Let

) . (81)

Consider N as an Lp function of q for fixed k. Then for every 2<p rg oo, there is a
polynomial P, depending on p and /, but independent of fe, such that

2 , ι /

2\K^K\. (82)

In the exceptional cases \l\ = 0 or 1, the H^ + 1 norms should be replaced by H3 norms.

Proof. The fc-derivatives bring down powers x1'1 and xl'29 which may be put onto ui

and wm, respectively. We forget them for now. M is clearly a C00 function o f k 1 and
k2. It is convenient to rewrite M as follows :

(83)

where

Kλ(q) =T(- q)KλT(q) = K(q) + u ,

The idea of the proof is the same as in the Jost-Hepp theorem [11], except that
here we look at matrix elements of the momentum rather than the space translation
operator, and we have a uniformity problem in the extra variable q. As in the Jost-
Hepp argument, we write

fcIT(-fc) = (adzy)IT(-fc), (85)

where the r.h.s. is a multiple commutator of order |/| of T( — k) with components of
the operator V. Any F's standing to the left of T( — k) get absorbed into the left-hand
vector u1 the maximum degree on ul is |/|. Those standing to the right are to be
pushed through the K^ 1 and u factors, so they can be absorbed by um.

The operator K(q) is still a function of P, and that makes the commutators
controllable :

U, K- \q)-] = ~ K- \q) (Vu)K~λ \q) . (86)
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The result after pushing the Ps through is a sum of matrix elements of the same
form as before, except that there may be more K^ 1(q)'s, and a certain number of
factors Dlίu may be inserted, and u2, ..., um may get derivatives, at most of degree |/|.
Each matrix element has a bound of the form

i j=2

Φill 2,ι/ι IIKί'Wϊ'-MjIz
The result follows by Lemma 14. D

Note that the above arguments and the statement of Lemma 15 are scarcely
modified if we put different /'s in each Kλ, or if we allow the λ's to be unequal and
complex, but near the real axis. Also note that with this modification, if the w's are
the usual functionals of φ, then Aφ(h)M or Aλ(ε)M (we hope the latter notation is
clear) is a sum of terms with the same structure as M, with extra factors of K^ 1,
K^fc, etc., and with similar estimates that are 0(||/ι||2>n) for some n, or O(ε).

Lemma 16. Define X by Equation (73). Then X is in £f, and in Re^ when w l 9 . . ., um

are real δφF and all of its functional derivatives with respect to φ and f exist, obey the
bounded difference condition, and are analytic at Ae[0, oo), in Hn norm for all n.

Proof. Write

M(k,q)eίk°xdkdq

Note that one over the denominator, along with any number of derivatives, belongs
to Lp for p > 1, in the variable q. The Lp norm of one over the denominator (or any of
the derivatives of that) is bounded by a (sum of) product(s) of L2p norms of two
factors, each of which is finite for p > 1 and these bounds are independent of fc, by
the translation invariance of Lebesgue measure. To fix our ideas, take p = 4/3 for
this part of the integrand.

Lemma 15 says that the numerator, or any of its k derivatives, belongs to L4.
Thus, by the Holder inequality, the q integral exists and is bounded by

with analogous bounds for fe derivatives. Lemma 15 also says that these bounds are
rapidly decreasing in /c, so we conclude that X is the Fourier transform of a function
in £f , and hence is in ̂  .

The reality of Xis most easily seen from Equation (75). Using the reality of K^ \
we get M(k,q) = M( — k, —q), which does the job because the denominator obeys
the same law.

To put the discussion in the frame work of the typical argument for functional
derivatives and the bounded difference structure, we note a standard argument:

I I D ' X I U ^ I K l + l x l T ' l U I K l + M^^llco. (88)

After translating |x|4 and Dλ to /c-space, we can eventually bound the Hn norm of X
by expressions of the sort in Lemma 15. Taking into account our earlier remarks on
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the bounded difference structure of M, it is not hard to see that we are in the typical
situation for our methods of proof, and that all statements in Lemma 16 about δφF

follow.
The proof just given gets Hn bounds more indirectly than previous arguments.

Perhaps there is another way to get to the same goal, based on an expression that we
shall get later, containing δφF in terms of a trace. Without further proof, we state

Lemma 17. φ1F = — 3λK^l\_φδφF\ obeys exactly the same statements as φ1L in
Lemma 13.

That completes our discussion of the one loop correction to the solution of the
functional field equation, hcφl9

9ι=9iN + 9iL + φiF + bιλκIlΛ9Q' (89)

We did not put the piece φ1N = — a1Fμ
2 Kχ 1 φ in a lemma, because it trivially has all

the properties stated in Lemmas 13 and 17 for φίL and φ1F.

2. The Generating Functional

It remains to discuss the one loop correction to the generating functional. To
compute it formally is a standard manipulation [1]. At first, we follow that
procedure, which is a fps functional integration of polynomials in φ, to get the
candidate for Lx(/). Then we take the formal result as a starting point, and show
that it is rigorously well-defined, and has the required functional derivatives.

So we take the one loop correction to the solution of the functional field
equation, and write

φ,=δLJδf. (90)

Assuming that L t obeys the conditions of Lemma 9, this follows from

δL1/δφ= — 3λφδφR-\-λb1Aφ. (91)

All of the terms except

δLlF/δφ=-3λφδφF (92)

are trivial to integrate formally, and the answer is displayed in Theorem 20. This
term is not so bad either, as a fps in λ. Remembering the definition of u in Equation
(55), we get

δLiF = Y / n u n
δφ m = 2

V 1
n=?>m

V -ττ(-AΓ, (93)
n = 3 ™

(94)
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This gives the formal expression

(95)

which we now study.
We are going to find that A is a non-negative, self-adjoint, compact operator on

L2, and that A3 has a trace. The last fact should already be expected from
Lemma 16, by putting m = 2 and replacing Kχ 1 by K~ l in Equation (73) for X. We
get that more directly from the following :

Lemma 18. Let uί and u2 belong to H3. Then 0 = K~lulK~lu2K~l is a trace class
operator on L2, and the usual trace norm obeys

\\0\\τr£C\\Ul\\2t3\\u2\\2t3. (96)

Proof. Let A(x) and B(k) be functions, and let A and B be the corresponding operator
functions of the operators x and — zTon L2. It is well known that if A( ) and B(-) are
L2 functions in their respective variables, then AB is a Hubert-Schmidt operator
with

(2πΓΊ\A(')\\l\\B(')\\2

29 (97)

and that if A( - ) and B( ) are continuous functions that vanish at infinity, then AB is
compact5. We thus know that K~lu is compact, for u in H3. We also know that
K~(ί+ε}u is Hubert-Schmidt, and that u1K~3u2 is of trace class.

For the operator 0, the idea is to shove enough K~ 1?s to the middle by means of
the commutation relation :

l . (98)

For each commutator, there is a net gain of one inverse power of Pin the middle of
the expression for 0, coming from the term with the VK ~ 1 factor on the right or left,
as the case may be. Thus, consider

\uJK-1[u29K-1 ]. (99)

The first three terms on the r.h.s. have effective powers of at least K~5/2 in the
middle, and derivatives of at most second order on the M'S. The last term has one
piece, containing Vuv and Vu2, where the effective power in the middle is only K~2.
Shoving one more K~l through in that term gives K~5/2 in the middle, and
derivatives of third order on one of the w's. Any outside factors K~ x are bounded, so
the result follows from the statements in the first paragraph of the proof, plus the
Schwartz inequality for the Hubert-Schmidt inner product. D

Lemma 19. Let

^-- (100)

I want to thank I. Herbst for making these facts known to me
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(i) A is non-negative, self-adjoint, and compact on L2 A3 is in the trace class and
so is B. In particular

(101)

(ii) Let T = ΎτB. Then for Λe#3,

2 f 3); (102)

and T is analytic at /le[0, oo).
(iii) For any

lφ}-]. (103)

Proof, (i) Positivity of A is evident from that of K~l, and self-adjointness, too,
since only bounded operators are involved. The trace condition for A? follows from
Lemma 18, and the estimate on B can be taken as straightforward if A is replaced by
a non-negative real number. That will be clear from the integral representation in
the next step.

(ii) The integral representation

(104)
o

converges in B(L2) norm, for positive A, and in trace norm, if A3 also has a trace.
Since Aφ(h)ΎrB = Tτ[Aφ(h)B], we consider

Aφ(h)B=}{(A3-A3)(I + ηAΓ1

o

-A3(I + ηAΓlη(Ah-A)(I + ηAΓ1}η2dη. (105)

Taking into account the cyclic property of the trace, and factoring out certain B(L2)
norms, we get

(106)

To get the result, look at

(107)

In the first term on the r.h.s. of Equation (106), expand Ah by Equation (107), cycle
the trace to bring a factor h to the outside, and write || hO \\ Tr ̂  \h\ \\ 0 \\ Tr. The factor 0
left behind is still of trace class, by Lemma 18. For any factors h2 remaining in the
terms in 0, we remove \h\ by cycling the trace, still leaving a trace class operator of
the sort in Lemma 18. We conclude that ||0||Tr is uniformly bounded for small
| |/z| | 2 3, because \h\ is easily bounded by C\\h\\2 ?3. The result for the second term in
Equation (106) is immediate.

Analyticity in λ follows from that of φ after similar arguments.
(iii) Now put h = εg in Equation (105) for Aφ(h)B, and note that, except for the

factor (/ -f ηAεg)~ *, the rest is a polynomial in ε, of order ε for small β, with trace class
coefficients, because of Equation (107) for Aεg — A. To handle the factor, note that

(108)
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from the resolvent formula, uniformly in η for positive η. Thus, cycling the trace, we
get

(109)
o

where

(110)

can be taken as simply a notation, although in fact this formula makes sense in
B(Hn) for integer n ̂  0. The integral may be evaluated from the functional calculus, a
triviality since A is not only Hermitean but compact and that gives the result in the
Lemma. Π

To make the connection with our earlier expression for δφF, we use the bounded
operator identity :

1, (111)

and its Hermitean conjugate. A straightforward manipulation gives

φ(x}(x\K-1uK~1uK-1 \xydx. . (112)

One may question in the last step how the expression <x|0|x> is defined, and
whether the definition agrees with our earlier definition of δφF. In general, the
Hubert-Schmidt kernel <x|0|y> of a trace class operator 0 has an L1 restriction to
the diagonal x = y in a certain sense. In our case, we can use Lemma 15 and the
argument in the proof of Lemma 16 to show that the Hubert-Schmidt kernel is the
Fourier transform of a function in Ll(dkl dk2\ and hence is continuous in (x, y) and
the restriction to x = y can be carried out directly and seen to belong to Lv

With this sketchy proof, we conclude that

δT/δφ = 6λφδφF. (113)

where δφF is the function in Re ̂  defined earlier.
The smeared functional derivatives of T, with values in the real numbers, could

be discussed directly in terms of the trace norm. Our results on the first, unsmeared
functional derivative, part of the correction to the solution of the functional field
equation, with values in Re^, are of course stronger than what that discussion
would give directly.

To put it all together for the one loop correction, we have

Theorem 20. (i) The one loop correction to the generating functional is hcLί(f),
where

L ί ( f ) = -§(^λ

-9/4(2πΓ2λ2$φ2(x)ϊΐ(x-y)φ2(y)dxdy

(114)
= 3λφK~lφ.
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and where φ is the solution of the CFE corresponding to /, and /1 is defined in
Equations (67) and (68). L1(/) and its smeared functional derivatives of all orders with
respect to φ and f exist, are analytic at Λe[0, oo), and are continuous in /eRe^.

(ii) The first unsmeared functional derivative φl — δLί/δf belongs to Re^, and
has smeared functional derivatives of all orders with respect to φ and /, belonging to
Re^. The functional derivatives exist in Hn norm for all integers n^Q, and φ1 and its
functional derivatives are analytic at Ae[0, oo) and continuous in fin Re^ in those
norms.

(iii) The unsmeared functional derivatives

L,(x,, ...,xm f) = δmLl(f)/δf(x1)...δf(XJ (115)

are real, symmetric, tempered distributions.

Proof, (i) The only thing we haven't verified already is that the polynomical terms
in φ have the correct properties. By now, we feel we have the right to claim that that
is trivial.

(ii) This is already verified in Lemmas 13, 17, and 19, up to trivialities.
(iii) The argument that we have tempered distributions is the same as in the tree

approximation, based on the nuclear theorem. The argument that these distri-
butions are symmetric in the permutation of x's is also the same, based on the
bounded difference property, which is true by Lemmas 13, 17, and 19, and Lemmas
6 and 7. Π

Remarks 2, 3, 5, and 6 on the tree approximation apply equally well to the one
loop correction.

Appendix I. Bounds on Multiplication Operators

Instead of the expression (20) for \0\n, we use the definition of the operator norm as
the supremum of absolute values of matrix elements

\\ιp\\2>n = l. (A.1)

The procedure is to integrate each V Fin Kn by parts once, putting one Fon the left-
hand ψ. Then let the other gradients act to the right, giving a sum of terms of the
form

|<DZ lφ?(^20)D^>|^C||φ||2 j Π | |D^OZ)/ 3φ||2, (A.2)

where the first factor on the r.h.s. follows because |/J ^n. We also have |/ 2 | + 1/3 | ^n,
and we estimate the second factor by

n + 1 W2,π, (A.3)

for |y + l^n, and by I J O U ^ ||φ||2,B times a constant for |ί3|=π.
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Appendix II. Proof of Lemma 3

The argument is by induction, af
can make effective use of the B(

n= 1 : This case is settled by Rauch's a priori estimate:

The argument is by induction, after settling the cases n= 1 and 2. For larger n, we
can make effective use of the B(Hn) norm.

ι^l l/ ι-/2lk-ι (A.4)

Rauch's proof is very short : multiply the difference of field equations by φl — φ2

drop the positive term

λ(φl-φ2)(φl-φl)2:0 9 (A.5)

and apply the Schwartz inequality.
Before looking at n = 2, we want to look at some general features of the case

n^2. Applying the CFE, we get

^\\<Pl-<P2\\2,n\\fl-f2\\2,n-2

(A.6)
where

We have to keep partial track of the two cases :

odd n: Estimate the second term on the r.h.s. by

where \_d] means the integer part of a. The first factor is bounded by \\φ± — φ2\\2,n>
and we divide it out.

even n : Estimate the second term by

Immediately divide out the first factor.
That leaves the second factor, involving Q. The argument that follows is going to

work for any polynomial Q in φί and φ29 in particular for the Q that would result
from replacing the interaction term φ3 in the CFE by any other polynomial. So
from now on we let Q be any polynomial.

n = 2: The factor to be estimated is6

. (A.7)

The difference in the Hl norm gets bounded by ||/i— /2||2 -i ^ A ί ~ 1 I I Λ ~ /2\\2> fr°m

the case n = 1-. To estimate the Q factor, we note from n = 1 and Lemma 2 that

6 We learned this estimate from J. Rauch
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II 9\\ 2, 2 = 11/11 2^1- Now bound the Q factor by sums of products of Lp norms of <p's,
p£Ξ2< oo, which in turn are bounded by H2 norms, then by L2 norms of /'s.

Induction Step. Suppose we have proved the result up to some n ̂  2. Then, for n + 1
we have to estimate

» (A.8)

where n' = 2[n/2] is n for even n and n— 1 for odd n. Since n' ^n, \\φ1 —φ2\\2 ri *s

bounded by \\f± — f2\\2,n'-2 times a polynomial in Hn,_2 norms of /'s, by the
induction hypothesis, which is better than the Hn_1 norm we need.

The Q factor can be bounded by a polynomial in || φ \\ 2 n, + 1? from Equation (21),
because n'^2. Since n' + 1 ̂ n+ 1, we conclude from Lemma 2 and the induction
hypothesis that this is bounded by a polynomial in Hn_1 norms of/'s. D

Appendix III. Proof of Lemma 4

(i) By Theorem 1, φ2ε Re5^. Thus, multiplication by 3λφ2 is a bounded, Hermitean
operator on L2. The operator K is known to be self-adjoint on the domain H2 C L2

which is easy to check in fc-space. Thus, Kλ is self-adjoint with domain H2.
(ii) Strict positivity is evident because Kλ^K^μ2L The existence and boun-

dedness of the inverse follows from the functional calculus and the fact that the
spectrum of Kλ is contained in [μ2, oo), so that of K^1 is in [0,μ2].

To see that K^1HncHn + 2, note first that K^1L2 = H2. Indeed, for any strictly
positive, selfadjoint operator A, one has the range &(A) = L2, and @(A) = &(A~ί).
Thus, for any heHn, we know there is a ιpeH2 such that

Kλψ = h. (A.9)

Suppose we know that K^lHscHs+2 for s<n. Taking the gradient of the above
equation, we get

(iii) That Kλ maps ^ continuously onto itself, and Re ̂  continuously onto
itself is evident. We need only show that the maps are onto, for the inverse of a
continuous, linear, one-to-one map of ίf onto itself is automatically continuous.

Let Kλιp = he^. We have shown above that then ιpeHn for all positive integers
n. Now for any n>2, every function in Hn is the Fourier transform of an L1

function, and hence is continuous, uniformly bounded, and zero at infinity. Thus, ψ
is infinitely differentiable, with uniformly bounded derivatives vanishing at infinity
so in particular, t/;eOM. But then

Kψ = h-3λφ2ιpe5?. (A.ll)

The result for y follows, because K and K~ 1 map &* onto ̂ , as well as Re ̂  onto
Re y. The result for Re 5̂  follows, because Kλ preserves reality, and if Kλιp = h is
real, then
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(iv) The operator

is bounded on L2, because K^lK~nl2 maps L2 into Hn + 2, and K1+n/2 maps jFίn + 2

onto L2 so τ4π is defined on all of L2, while A* is densely defined, on Hn + 2 CL2 so
An = A** is a closed operator defined on all of L2. Thus, KK^1 is bounded on Hn.

Next,

which easily gives boundedness of K^1K on Hn, except for the case n = 1, which
yields to an argument that @(Kll2) = Hl9 and that K1 / 2K^1 / 2 is bounded on L2.

(v) For a fixed /, consider the operators K^1 and KΪQ

I

+ ε, where λ0 ε [0, oo), and ε
is a small, complex number. The resolvent expansion gives

= Σ (-hK^
Lw = 0

where /ι = 3(A0 +ε)φ2 — 3/l0φ
2, and the q>'s correspond to λ0 + ε and A0, respectively.

The strategy is to show that, for each Hn, there is a complex neighborhood of zero in
ε where the expansion converges uniformly in norm. The same will then be true if we
multiply the expansions from the right or left by K, because the factors KK^1 and
K^K are bounded on Hn for integers π^O.

The first step is to show that h, considered as a multiplication operator on Hn, is
small in norm. Thus,

From Equation (21), we may replace the \ \n on the r.h.s. by Hn, norms, and the whole
thing goes to zero like ε as ε-»0, because φε is analytic (and hence continuous and
uniformly bounded) in Hn, norm, by Theorem 1.

That is good enough for the norm convergence of the resolvent expansion in
every Hn, for integer n^O, uniformly for ε small, because K^=Kχ^KK~l is
bounded, and \hK^\n can be made uniformly less than one for ε small.

To complete the proof, we need only remark that h is an analytic function of ε,
with values in B(Hn\ because φε is, due to Theorem 1 and Equation (21). D
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