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Abstract. In this paper we show that the local limit theorem is a consequence
of the integral central limit theorem in the case of a Gibbs random field
ξt, teZv corresponding to a finite range potential.

We apply this theorem to show that the equivalence between Gibbs and
canonical ensemble is a consequence of the integral central limit theorem and
of very weak conditions on decrease of correlations.

Introduction

The integral and local limit theorems for sums of random variables belonging to
a random process with dependent values have been considered in a lot of papers
on probability theory, see for example [1] and the literature there quoted and also
some more recent papers [2, 3]. In connection with the developments of the
theory of random fields and their applications to physics in the last years some
papers appeared concerning the integral limit theorem [6,14,15], and the local
limit theorem for random fields [5, 4, 7].

From the point of view of statistical physics these local theorems are inter-
esting because they are strongly connected with the problem of the equivalence
of canonical and grand canonical ensembles, if one considers, as we do in this
article, this equivalence not only in the sense of equality between thermodynami-
cal functions, but also in the sense of equality between all the correlation func-
tions. The known proofs of the local limit theorems can be applied in particular
cases and are founded on some special methods developed for studying the Gibbs
random field. We use different techniques and emphasize the connection between
local and integral limit theorems which up to now have never been pointed out.

The main result of this paper (§1.1) is that the integral limit theorem for an
integer valued Markov field with non vanishing conditional probabilities (or,
which is the same, [8] for a Gibbs random field with a range R finite and bounded
potential) implies the local limit theorem.
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The proof of this proposition happens to be very simple.
Applying the methods of [9] one can easily reduce the problem of estimating

the tail of the characteristic function, which is especially needed for the proof of
the local limit theorem, to similar estimation for sums of independent random
variables. And so it is possible to apply standard methods of probability theory
which are presented in the pioneer work of Gnedenko [10] (see also [11,1]).

Although these methods are well known to specialist of probability theory,
they are not sufficiently popular in the usual mathematical physics literature: for
this reason and to make this article self-contained, we give a detailed presenta-
tion of the methods. In § 1.2 a generalisation of the above proposition to the case
of an unbounded potential and an additive functional of the random field is
presented.

Therefore, the problem of the proof of the local central limit theorem is
reduced to the proof of the integral central limit theorem. In 1.3 there is a dis-
cussion about what situations it is possible to prove the central integral limit
theorem. In particular, it is possible to prove that the integral central limit theorem
follows from the analyticity properties of the free energy as a function of the
activity and so it can be derived from the well known results on this kind of
analyticity.

In Section 2 the results of Section 1 are applied to the problem of the equiv-
alence of the ensembles. The main results consists, roughly speaking, in the
possibility of establishing the equivalence in all cases when the integral central
limit theorem has been already proven. We note that in the recent years Thompson
[12], and Georgii [13] have developed an interesting approach to the problem
of equivalence of ensembles based on the concept of the Gibbs canonical state.
But from the fundamental result of Georgii on the coincidence of extremal
canonical and extremal usual Gibbs states it is not possible to obtain results of
the type of those in § 2 of our work. In fact, as far as we know, there are no methods
for checking if the limit canonical state is extremal or not which avoid the con-
struction of the type used here.

0. Notations and Definitions

D.I. Space and Configurations. Let Zv be the integer lattice in the v dimensional
space. Let X be a finite set with more than one point (here and in the following
\V\ is the cardinality of the set F), \X\> 1. A configuration in the volume V will
be denoted by X = (xt, ίeF). The set of all such configurations Xv will be called
the space of configurations in the volume V.

D.2. Random Field. A random field is a system of random variables ξt, ίeZv

taking values in X.

Let Pv be a probability measure on (Xv&v\ where 93F is the σ-algebra in
Xv generated by cylindrical sets such that
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From Kolmogorov's theorem it follows that the probability distribution of
the field P=PZV is uniquely defined by the set of finite dimensional distributions
Pv, i.e. by distributions Pv with |F|<oo.

D.3. Potential We will consider the following situations. The energy

U(xt,tεV)= ΣΦ(x f,ίeS) (0.1)

where the potential Φ is a function with values in the extended real line ( — oo, +00]
defined on the space Lzv = (J XJ and such that

JCZV

Φ(x t,ίeJ) = 0 if sup|s-ί|># (0.2)
ί,seJ

i.e. Φ is finite range and

0 (0.3)

where φ is the empty set, and for every xeXZΛI where |/|<oo, there exists at
least one xeX1 such that the interaction energy

v—\ I A-*

φ i j ^\x)~ = = / Φ(x £(Ξt/l where x == \
I x

JC Zv

is finite.
Here and in the following we use the conventions:

α + oo-oo, α>-oo, e~°°-0.

Further we suppose that Φ(x) is invariant with respect to the translation group
acting on Lzv defined by (6>ίx)s = x s_ ί where xeLzv i.e.

Φ(Θtx) = Φ(x), xeLZv. (0.5)

D.4. Gibbs Distribution and Gibbs Random Field. The Gibbs distribution in the
finite volume /, |/|<oo with boundary conditions xexzvvf is the probability
distribution

(0.6)

A random field is a Gibbs random field if for every finite /CZ V its conditional
distributions are given by

Pr{ξt = xt9t€l\ξt = xt9tGZv\I} = qI(x\x) (0.7)

for all (xf, tefyeX1 and almost all xεXzv\*. Consider a sequence of cubes {Vk}
such that
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where [ak], keZ+ is a monotone increasing sequence. We use this sequence {Vk}
for the sake of simplicity but it is easy to see that our considerations are valid
also for any sequence of volumes going to infinity in the sense of van Hove [20].

Let [Vk] be a sequence defined before. We shall say that the sequence {Pk} of
probability measures on {XVk,$$Vk} is Gibbsian if it is defined in one of these
two ways :

1) Given a sequence of boundary conditions {3cί? ίe Vk} = xk

) = Σ

where

or

min|ί-5
seVk

2) Pk(A) = PVk(A)

where PVk( - ) is the restriction on (XVk^V]) of the Gibbs measure corresponding
to the Gibbs random field defined above.

D.5. Integral and Local Central Limit Theorem. We say that the random variable
ξ is lattice distributed with step h if it takes integer values kl9...,ks such that
pr{ξ = ki}>0 and if ^-k^l^h then ltj are integers such that their greatest
common divisor is one, see [10], Chapter 8.

Let {Sk} be a sequence of random variables corresponding to the cubes

(Vk}> set

(0.8)

and

if DSt>0.

Then we shall say that {Sk} satisfies the integral central limit theorem if:

α) DSk~ D\Vk\,
k-» oo

β)

γ) \- l/2 "2/2du — oo<x<+oo.

Moreover suppose that each Sk takes integer values, let p by any integer and set

(0.9)P-ESk

then we say that the sequence {Sk} satisfies the local central limit theorem if α),
β) are true and

sup /DSkPk(p)-(2π] > 0 . (0.10)
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In particular we may consider special expressions for Sk. Let ξt, ίeZv be a
Gibbs random field and set

sk= Σ & (o-ii)
teVk

and suppose that the quantities Pr{Sk = u} are given by a Gibbsian sequence of
probability measure {Pk} as defined above.

Under these two assumptions we shall say that the Gibbs random field with
some potential satisfies integral central limit theorem if α), /?), γ) are verified, and
that it satisfies local central limit theorem if α, β (0.10) is verified, for any Gibbsian
sequence corresponding to this potential.

1. The Local Limit Theorem for a Gibbs Random Field and Its Connections
with the Integral Limit Theorem

1.1.

The aim of this section is to show how the local limit theorem for a Gibbs
random field can be derived from the integral central limit theorem. Since we use
a finite range potential, we have some simplifications: we think that the extension
to the case of long range potentials is not straightforward and requires perhaps
the use of more general techniques like those in [1] combined in some way with
our arguments.

Consider a Gibbs random field ξt, teZv defined on the lattice Zv, let {Vk} be
a sequence of cubes defined as before.

Theorem 1. // the potential Φ is bounded then the local central limit theorem for
the corresponding Gibbs field follows from the integral central limit theorem.

Proof. Using standard constructions we have the following representation for
the variables defined in (0.9)

1

2πPk(p) = -— jE(e i τ S f c )έΓ ί τ Z ϊdτ (1.1)

(1.2)
— oo

Then we have

sup2π DSkPk(p)-(2πΓ1/2e 2
+A

dτ

+ \ e 2dτ + \ __\Ee"Sk\dτ + __ J \Eeίτ*«\dτ
\τ\^A A ^\τ\^δy~DSί π£l/53£^ |τ| ^π]/53£

= / 1+/ 2+/3+/ 4 (1.3)

where Ij are equal to the corresponding terms in the middle part of the in-
equality (1.3) and A, δ are some positive constants (A<δ]/DSk, δ <π) to be choosed
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later in a suitable way. Now we are going to give estimates for these four integrals.
Let ε > 0 be fixed.

lί. For every A /χ^ε/4 fc^fcε, because the integral central limit theorem
is true [10, Chap. 8].

12. Choosing A big enough we obtain I2 ^ε/4.

13. We can take for sake of simplicity and without loss of generality R to be
an integer, and set

\Vk\ ,d = \Vk\-nk(2R+l)\

Let us now consider a family αk={^4j}, 7=l,...,«k of disjoint cubes ^4j on the
lattice each of them containing (2R + ί)v points; this family forms a partition of
the cube with site of length (nk)

1/v(2JR +1), shown on Figure 1 in the two dimension-
al case. We use the following notations:

Fig. 1 2R

ή is the center of the cube A]

yk is a vector random variable yk = (ηs, se Vk).
Then we define the σ-algebra generated by the following events

sεVk (1.4)

and we denote it 23p k. In other words 23p k is the σ-algebra generated by the random
variables in the points of Vk except for the centers of the cubes of the family αk.

We have the following representation of Sk

92= Σ

ηt-Eηt (1.5)

Using the fact that φ2 is measurable with respect to the σ-algebra 93fk, and using
the conditional expectations respect to this σ-algebra, we have:

= E(eίτφ2E(eίτφί\<βγ )) (1-6)
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From (1.6) we have

179

: φ ιl®fk)l) (1.7)

Let us define some probability distributions which are needed in the following
calculations. We can define the following conditional probabilities associated to
the σ-algebra33fk

From the hypothesis that ξt,teZv is a Gibbs random field corresponding to a
finite range potential we have that for every j, the conditional probability in (1.8)
depends only on the values of ηs, seA],

Furthermore the variables ζj are conditionally independent under conditions
of this type. So introducing the new vector notations

= {ηs,seVk\ (JA] (1.9)

we have that the conditional distributions of every variable ζ^ can be written as

where γj is a possible value of the random vector γj. Let also

w^ (τ), Eψ, D-yJ

be respectively the characteristic function, mean and variation, associated to the
conditional probability distribution (1.10)

ueX

j = £ uP-yj(u) (1.11)
ueX

ueX

Now we are able to use these considerations for estimating the integral /3.
By using (1.7) and the fact that the ζj are conditionally independent, we obtain

|£eιτSkl<; π
7=1

Ee

^ max Y[ Ee yj=τ (1.12)

In other words we can say that, owing to the fact that the ζj are conditionally
independent, we have reduced the estimation of the integral /3 to the same
estimation as in the case of independent variables with a smaller number of
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summands. Now we will estimate the product appearing in the last expression of
(1.12): we will do it for every conditional distribution and then we will find an
estimate independent of f. Before doing this, let us note that the mean Eζj ap-
pearing in (1.12) is not equal to the conditional mean E^ζt defined in (1.11) but
we can substitute the first with the second by using the equality

E\e

' = y

Now we can expand the characteristic function (1.13) and obtain

, ^ „ „ , 0(τ2)
E\e

(1.13)

(1.14)

Let us now estimate Dψζj. Observe that all the probabilities Pψ(l) are uniformly
bounded in / and in j from below by a positive constant α because of the definition
of conditional distributions (D.4) and of the boundness of the potential, so we
obtain

leX

leX

(1.15)

where g>0. From (1.15) we obtain that D1Jζj is uniformly bounded from below
so it is possible to choose a constant δ>0 which is independent of j because of
translation in variance, such that for |τ|^π<51/DSfc we have

. ~7^"^vJ^ no *" ,., 1 / :>.
^e DS>* ^e υ^k (1.16)

uniformly on 7 and yj.
Consequently (1.12) can be written in the final form

(1.17)

for Iτl^πδj/DSfc. Now choosing Vk sufficiently large and remembering condition
α), β) in definition (D.5) of integral limit theorem and the construction introduced

above, we see that

that
DS k k- (2R+1)V.D

we obtain that there exists a c>0 such

(1.18)

for δ sufficiently small, A and k sufficiently large.
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I4. For estimating this integral we use the same argument as for /3.
So we have

/ 5 Ξ J max
j=

max f] |w f j (τ)|dτ

max dτ

Now we use the explicit form of w^(τ):

|wF(τ)|2-l= X Pyj(/)P7J(m)cosί(/-m)-l

(1.19)

I.meX

and this estimate is again uniform in yj and j. Finally

—oί2nk Y sin2-(/ — m)
* 2

(1.20)

~ γD\Vk\(π~δ)e (« + !)* (1.21)

where F(δ) is a positive function of δ. Choosing Vk big enough we have for any
g

fixed δ < oo that 74 ̂  - and this completes the proof of the theorem.

1.2.

It is possible to generalize Theorem 1 to the case when Φ is not bounded and the
expression of Sk is more general. Consider a system of functions which take
integer values

<pv(xt, tεV) where xteX, VeZ\ |F|<oo.

Suppose further that the two following conditions are satisfied:

Condition A.

= Q if
t ™

without loss of generality we can suppose that the constant R in (1.22) is equal
to the constant R in (0.2). We also need some additional condition about the
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property of being lattice distributed for the sums of the random variables
φv(ξt, te V).

Consider for any finite volume F0 C Zv the random variable

Ko= Σ (1.23)

where ξt is a Gibbs field with given potential Φ.

Condition B. There exists a cube F0 such that for any boundary condition
ξt = xt, ίeZv\F0 the conditional distribution of the random variable θVo under the
condition ξt = xt, £eZv\F0 is lattice with step 1. It is interesting to note that there
exist situations when the condition B is not satisfied for V0 such that |F0| = 1, but
it is satisfied for enough large F0. A simple example is the case when X= {0,1},
the potential is pair, nearest neighbour with hard core condition U(Ί91)= oo and
t7(0,0)Φoo and φv(xt, teV) = xQ if |F| = 1, φv = 0 for other V.

Let us now introduce the following random variable

^eF) (1.24)Sk= Σ
vcvk

then is true the following theorem:

Theorem 2.If the sequence of random variables {Sk} satisfies the integral central
limit theorem and conditions A and B are satisfied then {Sk} satisfies also the local
central limit theorem.

Proof. The general scheme of the proof is the same as in Theorem 1.

But here we shall use the following geometrical construction for estimating
the integrals J3, /4.

Let R0 be the side of the cube F0 of the condition B and let JR' = R0 + R. In
analogy with the construction of 1.1 we consider the family of disjoint cubes
αk= {Akj} but with R' in place of R. Inside each of the cubes A] we introduce the
subcube A*\ which is cocentric with Ap has the sides parallel to the sides of A*
and is congruent to the cube F0 (see Fig. 2). Now we can introduce the same
symbols as in (1.1), with only one change.

Ak,

Fig. 2
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Now

l (1.25)
\vk\

 η

Writing Sk in analogy with (1.5) we have the following decomposition

Sk= Σ θ*}+ Σ <M^en.
J = l ^'cFk

If we change the definition of y 7' in (1.9) and we set

4$) (1.27)

then the main inequality (1.12) still holds. Now the argument needed for the
evaluation of /3 proceeds just like in the proof of the Theorem 1. The main dif-
ference between the two arguments is the bound (1.15) which must be changed by

Dyθz^c (1.28)

which follows from condition B for θVo. The estimation of I4 follows άmmediatly
from the considerations of the previous sections and from the following lemma
[10, Chap. 8].

Lemma 1. If ρ is a lattice distributed random variable then for every δ>0, it is

possible to find a positive constant dρ such that for every τ, ε^|τ|^ ——ε it is

true the following inequality

where wρ(τ) is the characteristics function of ρ.

1.3. Discussion on the Hypothesis of Theorem 1

Let us now discuss in what cases the central limit theorem in the sense of (D.5)
for a Gibbsian random field is verified. So we have to discuss for which Gibbs
random field conditions α), β\ y) are verified.

There are many different ways to obtain the integral central limit theorem for
a Gibbs random field as a corollary of well known results. Usually it is possible
to check also α) with the same methods.

/. Method. The integral central limit theorem can be obtained from the fact that
the Gibbs random field satisfies some condition of decreasing of correlations for
large distances. Such theorems have been known for a long time [1] in the one
dimensional case and recently Nakhapitan [14] and Malyshev [17] have
generalized them to the case of a random field. Nakhapitan uses the Bernstein
method of deletions and Malyshev uses the method of evaluating the semi-
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invariants. The conditions for which the decreasing of correlations in the necessary
sense takes place have been found for a large class of Gibbs random fields 1 and
in particular they are always true in the one dimensional case.

//. Method. It consists of making use of some equations for correlations functions
which are specific for the Gibbs field [4, 5, 6, 7].

III. Method. It is possible to derive α), γ) for a Gibbsian sequence corresponding
to some sequence of boundary conditions [case 1 of (D.4)] also in any case when
the sequence of partition functions, corresponding to increasing volumes and
these boundary conditions, converges uniformly in some open set of the complex
plane to an analytic function of the chemical potential. In [18], using this note,
α) and γ) are shown in the case when v = 1 but it is easy to see that the same argument
can be repeated for any dimension.

The same discussion can be, almost without change, extended to the case of
Theorem 2. It is easily seen that φv(ξt,teV) is a random field translationally
invariant if ξt are translationally invariant and that φv(ξt, te V) have the necessary
properties of decreasing of correlations if the field ξt has the decreasing of cor-
relations in the same sense.

β) In [19] it is shown that this condition is always true in the situation of
Section 1.1 and for all non degenerate in some sense potentials in the case of
Section 1.2.

So there exists a large class of explicit conditions on potential when the
integral and local central limit theorems are proven. For example we can formulate
the following theorem:

Theorems. Let us set as usual Ulμ(xt, ίeF) = | * I'l/!^ τhen

[ — μxt, \ V \ — 1 .
the integral and local limit theorems for the Gibbs random field ξt, ίeZv with
potential U*tμ hold when

1) v = 1 for every β and μ.
2) v^l.
// the potential is bounded, when |μ|^μ0

 or β^βo where μ0, β0 are some
constants.

If the potential is not bounded, when

where μo(β): continuous function such that it has finite limit when /?— >oo and

3. v^ l for X={ — \, +1}, for an attractive, symmetric respect the trans-
formation xt^—xt pair potential for

3a. v ̂  1 any β and μ φ 0.
3b. v^l, μ = 0 and β^βί9 where β1 some constant, for stationary Gibbs fields

1 Recently in the works [15, 16] the integral central limit theorem for random fields has been
demonstrated for some special conditions on the decrease of correlations but there are no methods
available for verifing such conditions in the case of a Gibbs random field.

Recently integral limit theorem has been prooven by Deo [32] using conditions on the decrease
of correlation which are not fulfilled for non trivial stationary Gibbs field.
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which are extremal in the set of Gibbs fields, and for non stationary extremal field
which was constructed in [31].

The proof of the integral central limit theorem can be obtained in the four
cases of Theorem 3 from the following list of possible ways (which is far from being
exaustive):

Case 1. By method I (see [1]) from the results, for example of [21], by method III
from the classical results of Van Hove [20].

Case 2. By method I (see [17], or [14]) together with the results for example,
in [21], or also by method II [4-7] or method III and the results of [26,22].

Case 3a. In this case it is used method III and the result of Lee-Yang [23] (see
also Ruelle [26]), or by method I [17] and see also the additional reference there.

Case 3b. It follows from an application of method I. The condition of decrease
of correlations is cheked for stationary case in [24] for example, and for the non-
stationary case in [31]. In the stationary case it is possible also to use Malyshev's
results [17].

2. Local Limit Theorem and the Problem of Equivalence of Ensembles

In this section we apply the general mathematical results of the first section to the
discussion of a problem of great interest in Statistical Mechanics: the equivalence
between canonical ensemble and Gibbs ensemble.

The idea of applying local limit theorems to this problem is not new and can
be found for example in the old and very interesting book of Khinchin [29].
"Mathematical Foundations of Statistical Mechanics" where he has developed
the method of applying the limit theorems of probability theory to some problems
of Statistical Physics and he has shown, as an example, that the local limit theorem
for indipendent random variables can be applied to show the equivalence between
canonical and usual description of an ideal gas.

This result is also connected with results about the equivalence of ensembles
obtained by various other authors. In one of the first papers on this subject
Bogoliubov, Petrina, Khazet [30] have shown in some situation the equality of
correlation functions when F->oo, Halfina [7], have obtained the same results
using a different approach, and Gurevich [28] has shown that for one dimensional
Markov chain the multidimensional local limit theorem is a necessary and
sufficient condition for the equivalence in some sense between canonical and
Gibbs ensemble. In Section 2.1 we define the notion of equivalence between
ensembles. The main results are contained in Section 2.2.

2.1, Definitions

D.6.1. Gibbs Ensemble. Assume that Φ(xί? te V) is a potential defined like in (D.3)
for \V\ ̂ 2 and equal to zero when \V\ = 1, we will consider it as fixed in the follow-
ing considerations.
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Then we introduce the family of potentials Φμ, μeR1 such that:

if κ={ί},
 (11)

where the constant μeR1 will be named chemical potential.
Consider the Gibbsian sequence of type 1, see (D.4), with fixed boundary

conditions of probability measures {Pμjfc}, [See the end of the paper for the
discussion of the type 2.] corresponding to the potential Φμ. We shall name the
Gibbs ensemble in the volume Vk the probability measure Pμ fc. Let Pμ,k(ξt, teU)
be the restriction Pμ>fe( ) on (Xυ^υ\ L/CF, £μfcχ, Dμkχ,covμ>fc(x, y) will denote
respectively*the mean, variance of the random variable χ and the covariance of the
random variables x,y corresponding to the probability measure Pμk.

D.6.2. Canonical Ensemble. We shall say that the probability measure on (XVk, 23Fk)
denoted by qNyk( ) is the canonical ensemble if qNtVk(-) is defined by

qN Vj(ξt9 te Vk) = Pμ k(ξt, te Vk\SVk = N) (2.2)ι.iιiyk\~ι? K/ μ,/c\~ι~ κ\ v jc ' ^ '

where SVk= Σ ζt and Pμ,k('\Svk

 = N) is the conditional distribution obtained by
teVk

Pμ fc under the condition SVk = N and N is some integer such that Pμ>k(SVk = N)ή=Q.
We emphasize that because of the condition SVk = N the left part of (2.2) does

not depend on μ. We shall name Gibbsian canonical sequence a sequence of
canonical ensembles generated by a Gibbsian sequence and a sequence of integers
Nk.

D.6.3. Equivalence between Gibbs Ensemble and Canonical Ensemble. For defining
the equivalence between these two ensembles it is necessary to define (see a
detailed discussion in [26,27]) a correspondence between the thermodynamical
parameters which are defined in the two different ensembles. Suppose that a
certain canonical Gibbsian sequence is given such that Nk/\Vk\^>ρ, where ρ is a
positive constant named density.

Choose μk=μk(Nk) in such a way that

Ϊ7 C \T O 1\
CJμk,k^Vk

= ™k V^ V

where the mean value is made with respect to the Gibbsian probability distribution
Pμk,k which belongs to the Gibbsian sequence corresponding to the considered
canonical Gibbsian sequence and having chemical potential μk. Because of the
strong convexity of the free energy in finite volume μk exists and is unique. We
shall say that the Gibbs ensemble and canonical ensemble are equivalent, for a
given canonical Gibbsian sequence if for every U and every ξteX9 te U

\Pμk,k(ξt, te U)-qNk,k(ξt, tε U)\^^0 (2.4)

where the definition ofqNkίk(ξt, te U) is analogous to the definition of Pμk>k(ξt,te U).
Suppose that there exists μ = μ(ρ) for some ρeR+ such that

Hm β(Qy vk =ρ (Z5)

fc-» oo I yk\



Central Limit Theorem 187

for any Gibbsian sequence and any sequence Nk such that— -,->Q> From the
I *k\

strong convexity of the free energy as function of μ in the case of infinite volume
limit, it follows that μ(ρ) is unique if it exists (see Griffith and Ruelle [33] Do-
brushin and Nakhapitan [19]).

The function μ(ρ) can be found explicitely by usual way by means of the
Legendre transformation. If, for some fixed value of ρ, μ(ρ) is continuous on ρ
and the Gibbs state Pμ(ρ) with μ = μ(ρ) is unique (this fact is realized if ρ lies in a
domain of absence of phase transition) then μk(Nk)-+μ(ρ) when /c->oo and usual
compactness arguments (compare with [21]) shows that

|Pμk,k(ξf, te U)-Pμ(ρ}(ξt, ίe l/)|— ̂ -+0 (2.6)

for /c-»oo. From (2.4) and (2.6) it follows that

and this is the most usual formulation of the equivalence of ensembles.

2.2. Equivalence of Ensembles as a Consequence of the Integral Central Limit
Theorem

Let now tl9 ..., £„, n = 0, 1, ... be n points and Q = ( t ί 9 ..., ίw). Let {Pμsfe} be a given
Gibbsian sequence and if QCVk let Pμ >k( |xt, ίeβ), xteX be the conditional
distribution under the conditions ξt = xt9teQ calculated using the {Pμ>fc}, if
Q = φ the quantity Pμίk('\xt, teQ) coincides with Pμ>k( )

Theorem 4. a) Suppose that is given a certain canonical Gibbsian sequence and a
constant d>Q
and hypothesis b): suppose that for any zeR1 and for every finite Q and xteXQ

where Pμh>k is the Gibbsian sequence used in the definition of equivalence of ensembles
and we suppose that the sequence {μk} is bounded.

Then the equivalence between Gibbs ensemble and canonical ensemble is true
for this canonical Gibbsian sequence.

Proof. First we note that the local central limit theorem follows from hypothesis
b) for the conditional probability distributions Pμk)k('\^tEQ) as can be shown
using the same arguments of Theorem 1 and the boundedness of μk. Than b)
implies that :

-2π—e— >u (18)

I k\ μk,k( Vk— k\ » y.) \ ) ' fc^oo

where
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from (2.3) we have Zk = 0 and so we can compare Pμktk( ) and Pμkίk( \xt,teQ)
using (2.8). Thus:

l i m ^ f c e β ) = 1 (210)

From (2.10) we obtain the thesis because of the following identity between con-
ditional probabilities

A T \ p /O \J I £ v + r- f\\~^k) fμk,k(ϊ>vk = Mk\ζt-xt,te(J)
— = ™ 7^ ττ\ ί^ l l)

The condition of the boundedness of μk used in Theorem 4 is not very re-
strictive because it is true for example if μk->μ(ρ) for fc-κx). In situations when
μfc-»μ(ρ) it is possible to apply without any essential change all the methods used
to show the integral central limit theorem and discussed in Section 1.3. Thus it is
possible to show that in the situation of Section 1.3:

- ̂
^

)/Dμk,k(SVk\xt,teQ)

(2.12)

*'

Here we use the notation of (D.5) for Dμkίk(SVk\xt, teQ) Hypothesis b) follows
from (2.12) if one can show the relations:

Du kSv ~DU k(Sv \xt9teQ)~d\Vk\9k-+ac>βk>κ 'k μ k>K\ ^ k 1 " •*-"' ' κ" //-> 1 Λ \

-1/2 - ί2'1^)

By using the usual relations

Eμk,k(Svk\Xt> teQ)= Σ Eμk,k(ζt\*t> t<=Q)
teVk QU]

Dμk,k(SVk\xt,teQ)= Σ - - - - - -
t,seVk

t,seVk

and comparing the corresponding terms it is possible to check the conditions
(2.13) with the help of any of the types of the conditions of decrease of correlations
used in the mathematical physics and probability theory literature. Besides that
it is possible in enough general situations to obtain hypothesis b) from integral
central limit theorem in a more usual variant.

Before we need some notations and explain some useful conditions
D.I.1. Let X be a finite space. We define on it a metric ρ(x, x7') in the following may:
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D.I .2. We define also a metric on the space of probability measures on (Xv,$$v)
in the following way: let Pv, Qv be two probability measures, than:

R(PV, Qv) = sup \Py(B) - QV(B)\ . (2.16)

D.7.3. Uniform Exponential Property. We shall say that the Gibbs random field
ξt,teZv has the uniform exponential regularity property if there exists some
c>0 and C<oo such that for any fc, any volume F2CZV and V1CZV\V2 and for
almost all with respect to the restriction to (XV2,3$V2) of the measure PV2 sets of
variables (x*, te F2), (xf, te F2) the following inequality holds:

Σ ίfo1,*?)*-'1'-" (2.17)
ίeF2

where PF^,^^ is the conditional distribution for the set of variables {ξt, te V±}
under the conditions ζt = x\ , te V2.

Now we formulate the following condition:

Condition C. There exists an interval A CR1 such that μ(ρ)eA and for all μeA the
uniform exponential regularity property (2.17) is verified with c, C independent
from μ.

Theorems 4, 5 of [25] imply that the condition C is true in enough general
situations. Thus we can state that it is true in the cases 1, 2 of Theorem 3.

Condition D. For the Gibbsian sequence {Pμkίk} used in Theorem 4

k μ k , k k

Proposition 1. // μfc->μ(ρ) when k-^co and if the Gibbs random field ξt,teZv

corresponding to the potential Φμ(ρ) satisfies condition C and if the condition D is
true then hypothesis b) of Theorem 4 is true.

Proof. Let us choose ak = keZ+ (see D.4) for the sake of simplicity. Suppose
further that Q is contained in some cube of the sequence {Vk} (see Fig. 3) which we
shall call Vq and suppose that it has site length 2q. Let us fix also a cube Vk with
site 2k and a cube Dke {Vj}jeZ+ with site 2[]/fe]. Let be q^ [FJ. Setting Wk= Vk\Dk

S —E S
we can decompose Svk=

 Vk , μk'k vk in the following way:
Vd\Vk\

 8 y

where

~
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Fig. 3

Let us evaluate DμkίkSDk, where SDk = ]/d\Vk\SDk

D,kJok = Σ
t,seDk

= Σ (Σ
ί , seD k \/,meΛ: Z e X

(2.18)
where the probabilities introduced above must be intrepreted as restrictions of
Pμk,k('}t° tne sets {Xv,$$v} where V is respectively {£, s}, {ί}, {5}. We can rewrite
(2.18) in this way:

m(Pμkrk(ξs = m\ξt = l)DμkJDk= Σ Σ
t,seDk leX meX

Thus,

I^ Σ
t,seDk

Ae-c\t~s\<K\Dk
t,seDk

(2.19)

(2.20)

and C, c, K, A are some positive constants not depending on μk because of the
hypothesis C and fc>0. It follows immediately from (2.20) for any /c>0

= «,2

DSD K
»* <

η2d\Vk~η2d kv

By the same way

k^oo

(2.21)

(2.22)

Using again condition C for any

), Pμk,k(SWk<zμk,

^ c'
n>«o

^cΊQI Σ " v~ 1e~ c n, (2-23)
n>«o

where π0 = []/fc]— q, cf>0. Since the series ^nv~ve~cn is convergent; the right

hand side of (2.22) goes to zero when /c^oo. The relations (2.17a), (2.21)-(2.23)
and condition D imply hypothesis b).
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We have

Theorem 5. Equivalence between Gibbs ensemble and canonical ensemble holds in
the cases 1, 2, 3. a of Theorem 3.

Proof. In the cases 1, 2 of Theorem 3 the result can be obtained from Proposition 1.
In all cases the result can be also obtained directly by checking the relations (2.13).
In the case 1, 2 it is possible to use the condition C. In the case 3a it is possible
to use the results of the paper [34].

Note. It is interesting also to study the problem of the equivalence of ensembles
for the case when Pμ ? fc is the restriction on Vk of a Gibbs distribution in infinite
volume with chemical potential μ. This case can be reduced to the considered
above case when boundary condition are fixed using the following argument.
It is easy to see that

Vk = Nk) =$qVk,Nk(*t, te Vk\xk)Pfrk(dxk) (2.24)

where Pj^ is the measure on χzv\Vk defined by the joint conditional distribution
of the variables (ξt, ίeZ v\Fk) under the condition SVk = Nk. So if we show that
the restriction of the distribution qVk,Nk('\Xk) on anv volume U has a uniform
limit with respect the boundary conditions xk when fc-»oo we obtain as a con-
sequence that the restriction of the probability distribution (2.24) on the same
volume U has the same limit. The uniform on xk convergence follows from the
convergence for any fixed sequence of boundary conditions.
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