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Abstract. We investigate the existence, properties and approach to stationary
non-equilibrium states of infinite harmonic crystals. For classical systems these
stationary states are, like the Gibbs states, Gaussian measures on the phase
space of the infinite system (analogues results are true for quantum systems).
Their ergodic properties are the same as those of the equilibrium states: e.g. for
ordered periodic crystals they are Bernoulli. Unlike the equilibrium states
however they are not "stable" towards perturbations in the potential.

We are particularly concerned here with states in which there is a non-
vanishing steady heat flux passing through "every point" of the infinite system.
Such "superheat-conducting" states are of course only possible in systems in
which Fourier's law does not hold: the perfect harmonic crystal being an
example of such a system. For a one dimensional system, we find such states
(explicitely) as limits, when f-*oo, of time evolved initial states μf in which the
"left" and "right" parts of the infinite crystal are in "equilibrium" at different
temperatures, β~[L =f= β% l, and the "middle" part is in an arbitrary state. We also
investigate the limit of these stationary (t-> oo) states as the coupling strength λ
between the "system" and the "reservoirs" goes to zero. In this limit we obtain a
product state, where the reservoirs are in equilibrium at temperatures /?£1 and
βx 1 and the system is in the unique stationary state of the reduced dynamics in
the weak coupling limit.

1. Introduction

Our theoretical understanding of the properties of large, macroscopic size, objects is
based to a great extent on the study of idealized model systems. Such models are
particularly useful when it is possible to identify explicitely some observed behavior
characteristic of macroscopic systems with properties of the models which appear,
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or take on essential new qualitative features, in the "thermodynamic" or infinite
volume limit. Thus, for equilibrium systems, one can identify physical phase
transitions with the appearance of singularities in the thermodynamic functions of
various model systems in this limit. In many interesting cases, e.g. ferromagnetic
spin systems, this phenomena can be studied in some detail.

For non-equilibrium systems the situation is much less satisfactory at the
present time. We do not yet have any (dynamical) model systems in which even the
simplest kinetic "laws", e.g. Fourier's law of heat conduction, can be shown to hold.
Indeed the models for which non-equilibrium properties can be computed, e.g. the
non-interacting gas and the perfect harmonic crystal corresponding to an ideal fluid
and an ideal solid, do not obey any macroscopic kinetic laws [1]. We feel however
that in spite of this the non-equilibrium properties of these ideal systems are worth
investigating for what they can teach us about essential new features of large
systems out of equilibrium. This is important since our present knowledge of non-
equilibrium phenomena is so limited that we do not even know what features of the
interactions are responsible for real systems obeying kinetic laws. We also do not
know at present how to formulate, in a precise mathematical way, the statistical
mechanics of stationary, current carrying, states of real systems although this is one
of the simplest non-equilibrium phenomena. The present note is devoted to the
investigation of such stationary states in harmonic systems.

Our work is related to earlier investigations by Lebowitz et al. [2-4] and other
authors [5,6] of the time evolution and stationary states of a finite harmonic
crystal, e.g. a one dimensional chain of JV-particles connected by harmonic springs,
whose left and right ends are in contact with stochastic heat reservoirs at
temperatures β^ί and β^ 1. When the temperature of the two reservoirs are equal,
βL = βR = β, then the ensemble (probability) density of the system in its phase space,
Q ( q ι 9 p ί 9 . . . 9 q N 9 p N ' 9 t ) approaches, as f->oo, the canonical distribution Z"1

exp[—βH(q1,...,pN)']. Here qi,pi are the displacement and momentum of the i-th
particle and the Hamiltonian has the form, H = ̂ Yjpf/mi + ̂ ^Aijqiqj. When
βL^rβR the system ensemble density still approaches a stationary state in which
however there will now be a constant energy (heat) flux, JN, through the system
going from the hot to the cold reservoir. For the one dimensional chain, with nearest
neighbor couplings, JN~(qjpj+ιy where the expectation is to be taken in the
stationary state.

To obtain more information about these stationary non-equilibrium states, it is
necessary to specify the couplings between system and reservoirs. It was found in
[2] that when the effect of each reservoir on the particles with which it is in contact
is described by an Ornstein-Uhlenbeck process then all the stationary states of the
system are given by Gaussian distributions. For the one dimensional chain, with
equal masses, it was even possible to obtain explicitely the covariance matrix of the
general stationary Gaussian state. It was then found that, for large N, the heat
conductivity κ(N)9 defined as the heat flux JN divided by the "temperature gradient"
(/?£"1 — βR

 1)/ΛΓ grows like N while the "kinetic temperature" (average kinetic energy)
is constant throughout the chain (except very near the ends). This means in
particular that Fourier's law is not obeyed: the heat flux is proportional to the
temperature difference (β^l — β^1) and not to the gradient; JN-+J^Q as N-+CO.
This property of the stationary state appears to hold for a wide range of harmonic
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systems and reservoir couplings [3] at least whenever the spectrum of the force
matrix A has, for the infinite system, an absolutely continuous part which will
generally be the case, when the system is perfectly ordered. The situation is quite
different however for the isotopically disordered chain where the masses mj vary
from site to site in a "random" way. In this case JN-»0 for almost all mass
configurations [7,4]. Note however that JN-^Q still leaves open the question of
whether Fourier's law is obeyed in the random system, i.e. does κ(Λ/)->κ, 0 < κ < oo,
in this case? Very recently this question was answered in the negative, at least for
one dimension, by Papanicolaou [8] who showed that κN~N1/2 for the random
chain. What happens in higher dimensions is still an open and very interesting
problem. (It should be noted that the kinetic properties of an harmonic crystal may
actually be relevant to the behavior of some real solids at very low temperatures
when anharmonic effects are "negligible" [1].)

Papanicolaou's result was actually not derived for the chain with stochastic
reservoirs rather it was for a model investigated by Rubin and Greer [9] and also by
other workers [10,11]. In this model the reservoirs themselves consist of semi-
infinite harmonic chains—the left "reservoir" consists of particles with index
je(— oo, M— 1] and the right "reservoir" of particles with index je [_N + 1, oo). At
t = 0 these reservoirs are assumed to be in thermal equilibrium with reciprocal
temperatures βL and βR. Rubin and Greer [9] then derive an expression for the heat
flux through the system as £->oo: cf. also Hemmer [11], O'Connor and Lebowitz
[4] and others [10]. These authors do not however consider the full stationary
probability distribution of the system much less that of the reservoirs. These
reservoirs can actually be viewed as forming, together with the system, an infinite
harmonic chain—with a particular initial measure. It is precisely this point of view
which we adapt here and thereby place this investigation in the general context of
finding the non-equilibrium behavior of large, formally infinite, systems.

The time evolution of infinite harmonic systems and the ergodic properties of
their equilibrium states have been studied recently by Lanford and Lebowitz [12],
Titulaer [13], and vanHemmen [14]. The existence of a time evolution 7J* was
proven in [12] under very general conditions on the dynamical force matrix A. It
was also shown there that the limit of finite volume canonical ensembles, at
reciprocal temperatures β~l, is a stationary Gaussian measure, μβ, on the phase
space Ω' of the infinite system: μβ thus describes the equilibrium state of an infinite
harmonic crystal. The ergodic properties of the dynamical system (Ωf, T*,μβ) were
then shown to be directly related to the spectral properties of the matrix A. In
particular, absolute continuity of the spectrum of A is a necessary and sufficient
condition for the dynamical system to be Bernoulli. This condition is generally
satisfied for periodic (no disorder) harmonic crystals. If, on the other hand, the
spectrum of A contains some isolated eigenvalues, as would occur when there is a
light impurity in an otherwise perfect crystal, then the system is not even ergodic. (It
turns out that the time evolution 7J* in the phase space Ω' is the dual of a flow Tt in a
space Ω [14]. It is the latter which will frequently be used, hence our notation.)

The implication of good ergodic properties, i.e. mixing which is itself implied by
Bernoulliness, for an infinite system is that if such a system is locally disturbed away
from equilibrium it will return to its equilibrium state. This return to equilibrium in
the harmonic system is however not caused by any local collision mechanism, quite
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the opposite, it is due, as in the infinite ideal gas system, to local disturbances "flying
off to infinity" unhindered, never to be seen again [15,16]. In the infinite ideal gas
this escape is a direct and immediate consequence of the independent, straight line,
motion of each particle. In the absence of particles with arbitrary small velocities
there would be, in the infinite ideal gas no correlations between successive events, in
a bounded region A, separated by a time interval greater than some fixed ί0. For the
infinite harmonic crystal the independently moving objects which carry away the
local information are not the particles but the normal modes or more precisely the
running waves [1]. The fact, however, that these waves are not local objects makes
the mathematical (and also the physical) analysis of the non-equilibrium behavior
of the harmonic system more difficult and more interesting than that of the ideal
gas.

The difference between the ideal gas and harmonic system becomes even more
pronounced when we consider the time evolution of states which are "globally far"
from any equilibrium state or for that matter from any stationary state. For the
ideal gas any initial state with good clustering properties which has a certain
amount of "uniformity" will eventually evolve into a state in which there are no
correlations between the particles [17]. Conversely any spacially independent
velocity distribution function determines, by a Poisson construction, a stationary
state of the infinite system [18,19]. There are no such simple prescriptions for
infinite harmonic systems. We prove an approach to stationarity under the
condition that initially "far outside" the system is in equilibrium.

It is conceivable that a more general class of initial states approach a stationary
state as £->oo.

The outline of this paper is as follows: In section two we describe our model
system and the action of the time evolution operator T*. This leads to a
characterization of stationary Gaussian states—they are not specified by a finite
number of parameters. In section three we prove the approach to a unique
stationary Gaussian state of a one dimensional infinite harmonic system whose
dynamical matrix A has an absolutely continuous spectrum bounded away from
zero, and whose initial state is one in which the "far left" side and "far right" side are
each in "equilibrium" with temperatures β^1 and β^ 1. In section four we discuss the
ergodic and stability properties of Gaussian stationary states. In section five we
introduce a variable coupling λ between the "system" and the "reservoir". We first
investigate the weak coupling limit, Λ-»0, ί-»oo, λ2t = τ fixed, of the (reduced)
dynamics of the system. We then study the limit, as λ->0, of the stationary states μλ,
obtained as ί—>oo from initial states considered in Section 3. We obtain a state μ0,
where the reservoirs and the system are independent: the reservoirs are in
equilibrium at temperature β^1 and β^1 and the state of the system is invariant
under the reduced dynamics in the weak coupling limit. Finally, in section six, we
apply our results to particular simple reservoirs: they consist of unit masses with
nearest neighbor couplings of unit strength.

2. Time Evolution and Stationary Gaussian States

A general crystal lattice in v-dimensional space Rv is specified by the group Γ of
translations carrying the lattice onto itself. Γ is a discrete subgroup of the additive
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group Rv. As a group it is isomorphic to Zv. For simplicity of notation, we assume
that there is exactly one particle per unit cell (Bravais lattice). The points of our
lattice represent the equilibrium positions of the particles making up the harmonic
crystal. Let q^R" be the displacement of thej-th particle, jeΓ9 from its equilibrium
position and let PJ be its conjugate momentum variable. In the harmonic
approximation the equations of motion read [1, 20] :

dqj/dt = Pj, dPj/dt=-ΣAji<li> (2-1)
ί

where we have made the canonical transformation ^-^mΓ1/2^.? Pj-^mj/2pj; mj

the mass of the j-th particle. A is called the interaction or force matrix

[Λ ̂ K '̂̂ ./ iΣ^jMj is the P°tentίal energy].
To formulate precisely the dynamics of the infinite system, heuristically given by

(2.1), we need various spaces of sequences (ξj)jeΓ taking (real) values in Rv. Let d(Γ)
be the space of finite sequences (i.e. ξj = 0 for all but finitely many j). Following [14]
we introduce the family {|| | |m |raeJV} of norms on d(Γ)

\\ξ\\2

m=Σ\ξj\2(l+J2r. (2.2)
JeΓ

The completion of d(Γ) with respect to the norm || ||m is the Hubert space sm. s0 will
also be denoted by I2. s_m and sm are dual to each other under the mapping

= Σ ζjxj Th£ sPace s of rapidly decreasing sequences is s — P) sm and its dual, the
jeΓ m = Q

oo

space of polynomially bounded sequences, is s' = [J s_m. s equipped with the
m = 0

collection of norms {|| | |m |meJV} is a nuclear space [14]. We equip s'(Γ) with its
weak* topology and the σ-algebra inherited from that topology. Then a convenient
phase space for the infinite harmonic system is the measurable space Ω'

For the interaction matrix A we now assume :

(i) A is a bounded operator on each s_m, m^O.
Rewriting the equation of motion as

(23)
dtq l 0/ ( '

we see [12, 14] that, by exponentiating, the solutions of (2.3) define a flow T* on
s_ m ® s_ m for each ra^O and therefore also on the phase space Ω'. By duality, A* is
bounded on sm, m^O. Thus, the solutions of the "dual equations of motion"

30
define a flow Tt on each sm © sm and therefore also on s(Γ) © s(Γ) = Ω. Obviously, 7^*
is the dual group of transformations of Tt.

Condition (i) has a direct physical interpretation. Since s_m consists of
polynomially growing sequences, A will be bounded if Atj decreases sufficiently fast
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for \i— j|-»oo, i.e. if the forces drop off rapidly between particles whose equilibrium
positions are far away. A sufficient condition for (i) to hold [12] is

sup Σl^[l+(i-j)2]m<oo (2.5)
ieΓ jeΓ

for each m ̂  0.
In order for our harmonic system to be a model of a crystal it is essential that the

equilibrium positions, qt = 0, correspond to at least a local minimum in the potential
energy. This means that A should be positive (and therefore symmetric). We shall
therefore assume:

(ii) A is a strictly positive (bounded) operator on 12(Γ\ i.e. (ξ\Aξy^.Q for
ξel2(Γ) with equality holding only if ξ = 0. Later we shall impose further conditions
on the behavior of A near zero.

We now look for Gaussian measures invariant under the time evolution 7J*
Since the phase space Ω' is the dual of a nuclear space Ω, any probability measure μ
on Ωf is by Minlos' theorem [21, 14] uniquely defined by its Fourier transform Fμ
which is a positive definite continuous function on Ω with Fμ(ty = 1. For a mean-
zero non-degenerate Gaussian measure the Fourier transform is exp[ — ^<(£|βO]?
where <ξ|βO is a bilinear, continuous, strictly positive form on Ω. Q is called the
covariance matrix. For such a Gaussian measure to be stationary it is clearly both
necessary and sufficient that

for all teR. Differentiating and using (2.3) and (2.4), we obtain that a necessary and
sufficient condition for stationarity is that Q have the form

with Qι strictly positive (possibly unbounded) on 12(Γ\ Q2 anti self-adjoint on /2(Γ),
i.e. βf= -β2,

 and [8ι»4]=0=[62»^] τhe choice Q1=β~1A~\ β2=0, yields
the covariance matrix of the equilibrium state at temperature β~ 1. [Here, we have
to assume that (ξ\A~1ξy is continuous on s(Γ).]

Remarks, (i) While our discussion has been couched in language appropriate to the
infinite system condition (2.6) also holds for finite systems; A finite system in a
region A corresponds to setting q. = pt = 0 for iφAcΓ and Atj = 0 unless iJeA, [12].

(ii) We also note that due to the linearity of the equations of motion (2.1), every

set of "homogeneous" expectation values {(q^q"2 ...p"z)}, na non-negative integers

and ̂ n^^n fixed, obeys an autonomous equation of motion. Hence the covariance
matrix of any stationary state of the finite or infinite harmonic system (not only
Gaussian states) must have the form (2.6). Conversely, given a covariance matrix Q
of the form (2.6) we can always construct at least one stationary state, the Gaussian
one, with this covariance. For the finite system there will of course be many (an
infinite number) stationary states with the same Q but we do not know whether the
same is true for the infinite system.
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To get some insight into the nature of the stationary states defined by (2.6), let us
assume that the spectrum of A is non-degenerate. Then Ql = g(A), Q2=f(A). If the
system is finite, then, for Q2 to be real, / has to be a real function. By the anti self-
adjointness this implies Q2 = ® so that we always have <<2/|<2p f c>=0 for finite
systems. This implies in particular (the obvious fact) that there can be no steady heat
flow through an isolated finite system. Indeed for a finite system the invariant
Gaussian measures are simply Gaussians formed by the normal modes [1,20] with
different weights. However, if the system is infinite, then / does not have to be a real
function and therefore Q2 does not have to be zero. This can be seen explicitely for
the one dimensional system with only nearest neighbor interaction where Γ = Z and
A is a tridiagonal matrix with Au = 2, Atj — — 1 if \i —j\ = 1, Atj = 0 otherwise. If we
now choose (Q2)ij=j-i if \ι-j\ = ί9 (β2)y = 0 otherwise, then Q2 = ί(A-^A2)ί/2.
Thus, an infinite harmonic system will have many stationary non-equilibrium
Gaussian measures. In the next section we show that some of these states can be
obtained as the limit, when ί-»oo, of physically interesting initial conditions.

3. Approach to Stationary State

We consider an infinite harmonic chain, Γ = Z, and let PL, P, PR be the projection on
(— oo, M— 1], [M,JV], [N+l, oo),— oo<M+l^JV<oo, respectively. We shall
sometimes refer to the segment ( — oo, M — 1] as the "left reservoir", to the segment
[M, JV] as the "system" and to the segment [JV + 1, oo) as the "right reservoir" even
though they are all part of one infinite system. Initially, the system is in an arbitrary
state ρ and the reservoirs are in "equilibrium" with temperatures /?£" 1 and β^ 1, i.e.
their states are the equilibrium states μβL and μβκ of the semi-infinite chains with
interaction matrices PLAPL and PRAPR. In order for these states to be well defined,
we have to assume that ^ξ\(PLAPL)~1ξy and (^(P^P^)"^) are continuous on
PLs(Z) and PRs(Z\ respectively. Thus at ί = 0 the state of the infinite chain is,

, (3.1)

and we are interested in

lim/i-i;*. (3.2)
ί-»00

The limit in (3.2) is to be understood in the weak sense.
As we shall see later, whenever the limit (3.2) exists it will define a Gaussian

measure on the phase space Ω'. To see why this is so we can think of the time
evolution as composed of noninter acting waves (normal modes) propagating
through the infinite crystal. As ί-> oo, all initial local information streams off and we
merely see a "superposition" of waves' travelling to the right with "weights"
appropriate to μβL and waves travelling to the left with weights appropriate to μβκ.
IfβL<βR, then in the final steady state more "waves" will travel to the right than to
the left producing a steady energy flow through the chain.

Given this interpretation of the steady state we expect, and will later show, that
the limit (3.2) is independent of ρ and of the (finite) interval [M, TV]. A multiplication
of μt with a density / which corresponds to a "local" change in the initial state μi will


